
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

133 | P a g e

www.ijacsa.thesai.org

Clustering-Based Trajectory Outlier Detection

Eman O. Eldawy1

Faculty of Computers and Information

Minia University, Minia, Egypt

Hoda M.O. Mokhtar2

Faculty of Computers and Artificial Intelligence

Cairo University, Cairo, Egypt

Abstract—The improvement in mobile computing techniques

has generated massive trajectory data, which represent the

mobility of moving objects like vehicles, animals, and people.

Mining trajectory data and especially outlier detection in

trajectory data is an attractive and challenging topic that

fascinated many researchers. In this paper, we propose a

Clustering-Based Trajectory Outlier Detection algorithm (CB-

TOD). The proposed algorithm partitions a trajectory into line

segments and decreases those line segments to a smaller set

(Summary-trajectory SS(t)) without affecting the spatial

properties of the original trajectory. After that the CB-TOD

algorithm using a clustering method to detect the cluster with the

smallest number of segments for a trajectory and a small number

of neighbors to be sub-trajectory outliers for this trajectory. Also,

our proposed algorithm can detect outlier trajectories in the

dataset. The main advantage of CB-TOD algorithm is reducing

the computational time for outlier detection especially for big

trajectory data without affecting the efficiency of the outlier

detection results. Experimental results demonstrate that CB-

TOD outperforms the state of art existing algorithms in

identifying outlier sub-trajectories and also outlier trajectories in

real trajectory dataset.

Keywords—Data mining; outlier detection; trajectory data

processing; clustering

I. INTRODUCTION

The various advances in GPS devices supported collecting
an enormous number of moving objects data easily and
rapidly. Therefore, mining of these trajectory data is
insistently required to reveal and discover some unknown
insights that could be employed to obtain intelligent
transportation systems and facilitate smart cities' life.
Generally, outlier detection in data mining relates to
identifying an object that is incompatible with the other
objects [1]. In mining of moving objects database, Trajectory
Outlier Detection (TOD) is an important research topic. An
outlier trajectory (anomalous) is a trajectory (or a segment of
trajectory) that represent different characteristics than the
majority trajectories in terms of similarity metrics [2-5].
Outlier segments in a trajectory are different segments from
the other segments in the same trajectory as presented in [6],
but the outlier trajectory is a trajectory having further few
neighbors [4]. The identification of unusual trajectories has
great importance in several applications. A popular application
of detecting abnormal trajectories is the meteorological
monitoring of typhoons. If we can identify unexpected
variations in a typhoon path, like a variation in direction, we
can announce an early warning for the reduction of casualties
and property injuries as quickly as possible [7]. Also,
identifying moving objects trends which may be events,

represented by a group of animal moving objects in a specific
time that does not conform to a familiar pattern, is essential
for detecting animal abnormal habit and attracts the attention
of biologists[6]. These applications are behind our motivation
work presented in this paper. Outlier detection algorithms can
be classified into four categories: distribution-based, distance-
based, density-based and clustering-based [8].

Notwithstanding the value of trajectory outlier detection,
especially detection sub-trajectory outliers, few research
articles discussed this problem. Lee et al. [6] proposed a
partition-and-detect framework (TRAOD) for detecting
outlying sub-trajectories. TRAOD consists of two phases:
partitions trajectories into segments, and then detects the
outliers. In the partition phase, TRAOD separates each
trajectory into a set of line segments. In the detection phase,
density and distance-based measures employed to identify
outlying sub-trajectories. Further, Zhang et al. [4] proposed
the iBAT algorithm utilizing the isolation mechanism to
distinguish outlier trajectories. Also, iBAT utilized a few in
number and different than the majority as usual features of
abnormal trajectories. However, the outlier trajectories
recognized using the iBAT algorithm, but sub-trajectories
outliers ignored.

Distinctive from static data, a trajectory may be long and
has complicated characteristics. Hence, implementing the
computations on the complete trajectory as a fundamental
computational unit, it is presumably neglecting to detect local
or global outlying partitions that may be essential for various
applications.

Example 1: Suppose having five trajectories TR1, TR2,
TR3, TR4, and TR5 as shown in Fig. 1. We observe that the
thick part in Tr3 is an outlying sub-trajectory as it is different
from the remaining partitions in the trajectory. Contrarily, if we
compare the whole trajectory with its neighbors we can neglect
these partitions because the deviations are averaged over the
whole trajectory; so, the overall behavior of the trajectory TR3
appears to be similar to those of the neighboring trajectories.

Fig. 1. Example of Sub-Trajectory Outlier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

134 | P a g e

www.ijacsa.thesai.org

Our proposed algorithm employs a partition-and-group
framework for clustering trajectories [9] with some
enhancements to reduce the computational cost. In our
methodology, the coreset concept proposed in [10] used but
without removing any partitions from trajectory. Basically,
after partitioning the trajectories into a collection of line
segments, these line segments decreased to a representative
less set of lines without adjusting the length of the original
trajectory (where the length of trajectory is the summation of
the lengths of its line segments). After that, trajectories’
partitions clustered employing a density-based spatial
clustering of applications with noise (DBSCAN) clustering
algorithm [11]. Density-based clustering methods proper for
clustering a set of line segments as it identifies clusters of any
random shapes. Furthermore, it operates efficiently in a big
trajectory dataset [11]. Subsequently, the cluster with the
fewest number of line segments for each trajectory in the
dataset detected. If this cluster contains line segments that
have inadequate neighbors, then the line segments of a
trajectory in this cluster recognized outlier line segments for
this trajectory. Moreover, if a trajectory contains a
considerable number of outlying partitions, then identified it
as an outlier trajectory.

In this paper, a Clustering-Based Trajectory Outlier
Detection algorithm (CB-TOD) proposed. Our algorithm
mainly consists of three phases:

1) Partitioning and summarization phase: each trajectory

partitioned into several partitions (i.e. line segments); after

that these partitions are reduced to a smaller representative set

without affecting the information contained in the initial

trajectory. Eventually, we get a summarized set of all

partitions for all the trajectories in the dataset.

2) Clustering phase: similar line segments grouped to a

cluster. Consequently, a cluster probably includes line

segments from different trajectories.

3) Outlier detection phase: after clustering, for each

trajectory, we get the cluster which includes the smallest

number of segments for that trajectory and a small number of

neighbors, then mark this cluster as an outlier cluster for this

trajectory and accordingly classify the line segments included

in this detected cluster as outlier segments. Moreover, we

define an outlier trajectory as the trajectory with a

considerable number of outlying partitions.

The main contributions in this paper are the following:

 We employed a novel model that reduces the
computational time by decreasing the size of the
trajectories dataset and representing each trajectory
with the Summary set of line segments that are
adequate to define the trajectory behavior without
missing the basic motion information.

 A Clustering-Based Trajectory Outlier Detection
algorithm (CB-TOD) proposed to detect outlier sub-
trajectories as well as whole outlier trajectories
utilizing a clustering-based methodology.

 Finally, experimental results are presented and
demonstrate that CB-TOD outperforms existing
algorithms in detecting both outlying sub-trajectories
and outlier trajectories for real trajectory data. Also, the
experiments confirm that CB-TOD reduces the
computation time of outlier detection without affecting
the accuracy of the outlier detection results.

The rest of the paper is structured as follows. Section II
presents an overview of related work. Section III describes the
problem statement. Our proposed clustering-based trajectory
outlier detection (CB-TOD) algorithm presented in
Section IV. Section V presents our experimental results.
Section VI concludes the work presented in the paper. Finally,
in Section VII, we suggest directions for future work.

II. RELATED WORK

This section categorizes the previous research in trajectory
outlier detection into two main directions: detecting sub-
trajectories outliers and detecting outlier trajectories.

1) Sub-trajectories outlier detection: few research studies

were conducted on the problem of detecting sub-trajectories

outliers [6, 12-16]. TRAOD is the first approach for detecting

outlying sub-trajectories[6]. TRAOD consists of two phases:

firstly, partitions the trajectories and then detects the outliers.

In the partition phase, TRAOD used the partition method used

in TRACLUS algorithm[9]. Lee et al. [9] presented a

TRACLUS algorithm that includes a partition-and-group

framework for clustering trajectory data. TRACLUS consists

of two steps: partitioning and grouping and used for clustering

common sub-trajectories. In partitioning step, they applied the

Minimum Description Length (MDL) principle[17] for

partitioning a trajectory into a set of line segments. In the

grouping step, they used a density-based clustering algorithm

for grouping similar sub-trajectories. In the detection phase,

TRAOD employed density and distance-based measures to

detect outlying sub-trajectories. Despite the capability to

detect outlying sub-trajectories and outlier trajectories,

TRAOD suffered from computational time overhead as well

as high complexity of O(n2). Later, Guan et al. [12] proposed

R-Tree based Trajectory Outlier Detection (R-TRAOD) and

used R-Tree to accelerate the process of outlier detection. Liu

et al. [13] proposed a density-based trajectory outlier

algorithm (DBTOD) and employed a density-based technique

to detect outliers and solve the problems in TRAOD to detect

outliers when a trajectory is local and dense. In[14] Daqing

Zhang et al. proposed the iBOAT algorithm, which is an

improvement on iBAT[4], to work in real-time data. Also, it

determines which part(s) of a trajectory is an outlier. iBAT

algorithm utilizes the isolation mechanism to identify the

outlier trajectory. Despite, it can detect the outlier trajectories

and neglect sub-trajectories outlier. In[15] Hao et al. proposed

a probabilistic-model called DB-TOD, which models the

drivers’ behaviors from a historical trajectory dataset and

assist in detecting outlier trajectories. DB-TOD used an

automatic feature correction mechanism for modeling driving

behaviors efficiently. Also, it can identify both complete

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

135 | P a g e

www.ijacsa.thesai.org

outlier trajectories and partial ones. Recently, Yu et al.[16]

proposed a TODCSS algorithm that depends upon the

common slices sub-sequence for identifying trajectory outlier.

Firstly, they compute a direction-code sequence of each

segment in each trajectory. Secondly, they used the common

slices sub-sequences as a distance measure between two

trajectories. Finally, the slice outliers and trajectory outliers

discovered based on the new computed distance.

2) Trajectories outlier detection: many researchers

studied mining in trajectories data to detect outlier trajectories

[4, 18-20]. In [18] a framework called ROAM (Rule and

Motif-based Anomaly Detection in Moving Objects) was

presented. This framework introduces a motion-classifier for

trajectory outlier detection. The motifs are a sequence of

motion features with values related to time and location. The

classifier distinguishes between an anomalous trajectory and a

normal one. The main drawback on ROAM framework is that

it requires labeled data for the classification process. Sabarish

et al. [19] presented a trajectory Outlier Detection algorithm

using Boundary (TODB). In TODB algorithm, they used the

Convex hull algorithm to generate boundaries for trajectories.

Furthermore, they exploit the ray casting algorithm as a

classifier to judge a tested trajectory if its inside boundaries or

not. The main drawbacks of TODB algorithm, because it used

a classification method for categorizing trajectories, is that it

required a labeled trajectories dataset that is rarely available.

Also, it focuses on the whole trajectory and neglects the

detection of sub-trajectories outliers. Moreover, Yong et al.

[20] presented TOP-EYE algorithm that employed a decay

function to identify the evolving trajectory in an advanced

stage. TOP-EYE algorithm computes an outlying score for

each trajectory in an accumulating method.

CB-TOD differentiates itself from previous studies by
using clustering methodology to detect outlier sub-trajectories
and also outlier trajectories. Moreover, the proposed CB-TOD
approach decreases the computational time of detecting
outliers by reducing the line segments comprising a trajectory
and considering only the most representative segments.

III. PRELIMINARIES

This section presents the preliminary concepts that will be
used in the rest of the paper and formalizes the problem
statement.

A. Definitions

Definition 1. A line segment motion angle θ is a
representation of the segment's motion direction and it is
measured as follows:

θ = ((

) (

) (1)

where the angle is defined by the two endpoints and the
horizontal axis.

Definition 2. A line segment Ꙇ is represented as (Pstart, Pend,
θ) where Pstart is the start point of the segment, Pend is the end

point of the segment, and θ is the motion angle of the segment
and measured as in Equation 1.

Definition 3. A Trajectory τ is an ordered set of line

segments, i.e. τ = {Ꙇ 1, Ꙇ 2, Ꙇ 3,…. Ꙇm}, where m is the number of

line segments in a trajectory τ.

Definition 4. Given a trajectory τi ϵ S, a Summary

trajectory of τi is a summarization representation of line

segments in τ i. Such that:

 If | τi |= m, then | SS(τi) |= n, such that n ≤ m

 It mainly divides into two steps:

a) Merge step:

 if (θ i−1 – θi) < Φ1(accepted deviation angle)

then

 merge (Ꙇi, , Ꙇi-1) into one-line segment Ꙇi'∈ SS(τi).

Where Len (Ꙇi') =Len (Ꙇi) +Len(Ꙇi-1)

b) Add without merge

 if (θ i−1 – θi)>= Φ2(deviation angle)

 Then Ꙇi ∈ SS(τi)

Definition 5. Outlying line segments of a trajectory τi

called out (τi) is defined as following:

 Given a cluster C contains similar line segments
depends on a distance measure.

 If C contains the minimum number of common line
segments of this trajectory τi compared to other clusters
(as the trajectory line segments may be divided among
different clusters depends on the distance measure),
and

 If C has a small number of similar neighbors' line
segments from different trajectories in the dataset of
trajectories S. In another words, if the number of
participating trajectories in this cluster (we called it
Density(C)) is less than a threshold P.

Definition 6. A trajectory τi is called outlier trajectory and
added to outliers set if it contains a considerable length of
outlying line segments. Such that:

 ≥F (2)

where F is a threshold and its value depend on the length
of a trajectory.

B. Problem Statement

Given a set of trajectories S = { , · · }, our goal is
to detect the outlying line segments in each trajectory and also
detect outliers' trajectories Out = {O1, O2 · · · ,Onum } in a given
dataset S. Our objective is minimizing the computation time of
detection outliers by reducing the number of line segments in
each trajectory to a representative once without losing the
basic motion information of a trajectory.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

136 | P a g e

www.ijacsa.thesai.org

IV. CLUSTERING-BASED TRAJECTORY OUTLIER DETETCION

(CB-TOD)

In this section, a description of the proposed approach
Clustering-Based Trajectory Outlier Detection (CB-TOD) is
presented. In CB-TOD we utilize the partition-and-group
framework INTRODUCED IN [9]. Our approach is mainly
divided into the following phases:

1) Trajectory partitioning and summarization phase

2) Clustering phase, and

3) Outlier detection phase

We explain these phases in the rest of this section. An
overview of the proposed approach that abstracts the main
steps in our algorithm is shown in Fig. 2. Also, Table I
summarizes the main notations used in this paper.

A. Partitioning and Summarization Phase

This phase is a preprocessing phase for clustering. The
input to this phase is the trajectories dataset S, then each
trajectory in S is partitioned into a set of line segments by
using the minimum description length (MDL) principle as
presented in [9]. After that, a summary-trajectory set is created
which is a summarization of a trajectory line segments. The
coreset method is used for building the summary-trajectory set
[10] with some modifications. In [10] the authors added to the
coreset a segment with a high impact on the overall trajectory
motion pattern and the segments with little effect in trajectory
motion pattern are ignored; so, the trajectory-coreset is a small
representative subset of the trajectory (that highly
approximates the trajectory). In contrast, in our proposed
approach a summary-trajectory includes segments that
affected the motion pattern of a trajectory to a summary-
trajectory set. Also, segments with a little effect on the
trajectory motion pattern will be merged with the preceding
segments to get a single segment with the total length of the
merged segments and appended it to a summary-trajectory set.

A thresholds Φ1 used for the allowance deviation angle
and Φ2 controls the deviation angle used in a summary-
trajectory set. Thus, given two consecutive segments Ꙇ1, Ꙇ2 with
a motion directions θ1, θ2 respectively as computed by
Equation 1. If (θ2 − θ1) ≥ Φ2 (deviation angle), then, Ꙇ2 is added
to the summarized set, otherwise, if (θ2 − θ1) < Φ1 (accepted
deviation angle), then we merge the two line segments (Ꙇ1, Ꙇ2)

to get one-line segment (Ꙇ1´). Thus, we can consider the
summary set as a representable set of the original trajectory
whose total length is the same as the original trajectory length.

Example 2: A trajectory τ consists of the following line
segments (Ꙇ1, Ꙇ2, Ꙇ3, Ꙇ4, Ꙇ5, Ꙇ6) as shown in Fig. 3, A segments Ꙇ1,

Ꙇ2, and Ꙇ3have the same motion direction and slope; so, we
merge these segments into one-line segment and express it as
Ꙇ1´ and add it to the summary set of this trajectory. So, a

summary-trajectory set will now consist of (Ꙇ1´, Ꙇ4, Ꙇ5, Ꙇ6) line
segments. The new set of line segments contains fewer
segments which results in decreasing the comparison time for
computing the distance between line segments. Furthermore, it
does not affect the length of the resulting trajectory as shown
in Fig. 4.

TABLE I. LIST OF NOTATIONS USED IN THIS PAPER

Symbol Definition

S Trajectory dataset

SS(τi) Summary set of line segments for a trajectory τi

Len (Ꙇi) Length of line segment Ꙇi

Φ1 accepted deviation angle

Φ2 Deviation angle

D A set of line segments of all trajectories in trajectories dataset S

Density(C) Number of participating trajectories in a cluster C

P
Threshold of acceptable number of participating trajectories in

this cluster

F Threshold for acceptable outlying partition in a trajectory

Fig. 2. Overview of CB-TOD.

Fig. 3. Initial Trajectory Representation.

Fig. 4. Trajectory-Summary Example.

Algorithm 1 shows how to create the summary-trajectory
set from the original trajectory. The input to the algorithm is
the trajectory τ, the accepted deviation angle between
segments Φ1 and the deviation angle between segments Φ2.
The algorithm adds segments to the summary-trajectory ss(τ)
if the absolute difference between its angular value and the
preceding segment’s angular value is greater than or equal to
the deviation angle. Also, if the difference between the
angular value of the current line segment and the angular
value of the preceding line segment is less than Φ1; then we
extend the preceding line segment to be the result of merging
the two segments (replace the end-point of preceding line

Ꙇ1

Ꙇ2
Ꙇ3

Ꙇ4
Ꙇ5

Ꙇ1´ Ꙇ5 Ꙇ4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

137 | P a g e

www.ijacsa.thesai.org

segment with the end-point of the current line segment) and
then we add this line segment to the summary-trajectory ss(τ).

A summary-trajectory algorithm is used for optimization
and speed-up the computations of the distance between line
segments.

Algorithm 1: Summary-trajectory (τ, Φ1, Φ2)

Input: List of segments in the given trajectory τ, Φ1: the

accepted deviation angle between segments’ angular values,

Φ2 the deviation angle between segments

Output: SS(τ): List of summary segments in τ

1: SegPrevious= P [0];

2: SegCurrent= P [1];

3: SS(τ). Add (SegPrevious)

4. SS(τ). Add (SegCurrent)

5: foreach (Seg ∈ P(τ)) do

6: SegCurrent= Seg;

7: if (|(SegCurrent.angle − SegPrevious.angle)|< Φ1) then

8: SS(τ). remove (SS(τ)size-1)

9: SS(τ). add (SegCurrent)

10: else

11: if (|SegCurrent.angle − SegPrevious.angle)≥Φ2) then

12: SS(τ). Add (SegCurrent);

13: SegPrevious=SegCurrent;

14: end

15: output SS(τ);

B. Clustering Phase

In our proposed approach a Density-Based clustering
algorithm (DBSCAN) is applied to the summary-trajectory
line segments set resulted from the previous phase. DBSCAN
is a good choice for clustering large spatial databases [11] as it
can discover any cluster with arbitrary shape. Moreover, using
DBSCAN in clustering does not require knowing the number
of clusters in advance. DBSCAN algorithm uses two
parameters Ɛ and MinPts (where Ɛ is a parameter specifying
the radius of a neighborhood concerning some point and
MinPts is the minimum number of points required to form a
dense region) [11]. In clustering, we used the same distance
function as in [9]. Given a set D of line segments of all
trajectories in the trajectory's dataset S. DBSCAN algorithm is
then applied on D for grouping close line segments according
to the distance. Notice that a cluster contains line segments
from multiple trajectories to prevent constructing clusters with
line segments from only one trajectory [9]. Algorithm 2
illustrates the pseudo code for S-Clustering (Summary-
Clustering) algorithm and is used for clustering all line
segments D in our trajectory's dataset S.

C. Outlier Detection Phase

In this phase, we get the set of clusters from the previous
phase. Each cluster contains line segments that are close to
each other. A cluster that includes the smallest number of
segments for a trajectory and also has an insufficient number
of neighbors is considered as an outlier cluster of this
trajectory. Consequently, the line segments introduced in this
detected cluster are classified as outlier segments. Moreover,
the outlier trajectory is a trajectory that holds an observable
length of outlying segments. Algorithm 3 describes a

Clustering-Based Trajectory Outlier Detection Algorithm
(CB-TOD). As demonstrated in algorithm 3, CB-TOD
algorithm divides into two steps; firstly, we get outliers
segments in each trajectory using clustering. Secondly, getting
the outliers trajectories in the dataset by using outliers'
segments. We sum the lengths of outlier segments of this
trajectory and compared them to the total length of the
trajectory as described in definition 6.

Algorithm 2: S-Clustering (summary clustering algorithm)

Input: A set of trajectories S = { , · · }

Output: A set of clusters contains partitions segments for

trajectory dataset

 C = {C1, C2,………….,Cm}

1: for each (∈ S) do

2: /* Partitioning Phase*/

3: Summary-trajectory (, Φ1, Φ2)

 /* Fig. 5 */

4: Get a set SS(τ) of line segments using the result;

5: Accumulate SS(τ) into a set D;

 /* Grouping Phase */

6: Execute Line Segment Clustering on line segments in D;

7: Output a set C of clusters as the result;

Algorithm 3: Clustering-Based Trajectory Outlier Detection

(CB-TOD)

Input: A set of trajectories S = { , ·, },

 a set of clusters C = {C1, C2,………….,Cm},

 P acceptable number of participating trajectories in a cluster,

 F threshold for acceptable outlying segments length of a

trajectory.

Output: A set of outliers' trajectories Out = {O1, O2 · · · ,Onum

} with its outlying segments

1: for each (∈ S) do

2: for each (Ci ∈ C) do

3: /* Definition 5 */

4: min= C1

5: If (min≥Count (Ꙇ (), C) && Density(C) ≥ P) then

6: min = Count (Ꙇ (), C)

7: Insert line segments on this cluster to

8: for each ∈ S do

9: /* Definition 6 */

10: if (Len (Out_seg ()) ≥ F) then

11: insert into Out

12: Output Out trajectories with its outlying segment;

V. EXPERIMENTAL EVALUATION

In this section, the performance of CB-TOD algorithm is
evaluated experimentally.

A. Experimental Setting

CB-TOD algorithm is tested using the same animal
movement data set as in [6,9,13] which represents Elk and
Deer data. Elk data has 33 trajectories and 15,422 points; Deer
data has 32 trajectories and 20,065 points. Our experiments
are conducted on Intel core i7 2.7 GHz notebook with 8 GB of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

138 | P a g e

www.ijacsa.thesai.org

main memory, running on the Windows 10 operating system.
We implemented the algorithm using JAVA inside eclipse
PHOTON IDE.

B. Accuracy Evaluation

In this section, we evaluate the accuracy of our proposed
algorithm CB-TOD. The accuracy measured by both the
number of sub-trajectories outliers and trajectory outliers. In
this experiment, we measure the number of anomalous
trajectories and sub-trajectories for Elk data and Deer data as
shown in Fig. 5 (a and b), respectively. We compare our
obtained results with the results in [13], as we used the same
datasets with the same parameter values. We observed that the
CB-TOD algorithm detects fewer sub-trajectories outliers for
both Elk and Deer data respectively, compared to TRAOD [6]
and DBTOD [13] algorithms, as shown in Fig. 5(b). That is
because we minimize the number of line segments in each
trajectory by employing the summary-trajectory technique.
Moreover, the CB-TOD algorithm discovers the same number
of trajectory outliers compared to the TRAOD algorithm, as
displayed in Fig. 5(a) for Elk data. Furthermore, in Fig. 5(a),
we observe that our algorithm detects more numbers of
trajectory outliers compared to TRAOD and DBTOD
algorithms for Deer Data; that is because our algorithm
decreases the representative trajectory line set without
changing the information contained in the initial trajectory and
that accomplished to us the accuracy goal.

Impact of deviation angle (Φ2). In this experiment,
Fig. 6(a, b) displays the effects of varying the deviation angle
(Φ2) on both the number of sub-trajectories outliers and the
number of trajectories outliers. We evaluated the changes in
the deviation angle (Φ2) and its effects on the number of
outlier segments and the number of outliers trajectories in the
dataset. Generally, when we increased the deviation angle
(Φ2), the number of sub-trajectories reduced as it joined more
numbers of segments that have the same motion. We observed
that the best value for the deviation angle is between 60 and
120 degrees. A constant value for the accepted deviation angle
Φ1 is used (Φ1≤30 degrees).

C. Performance Evaluation

In this part of the experiments, we evaluate the run-time of
the proposed algorithm (CB-TOD).

Computational time. Generally, the processing time of our
proposed algorithm CB-TOD is less compared with the
competitive outlier detection methods because of summarizing
trajectory segments to a smaller set of segments without
affecting the length of the original trajectory. We compared
the processing time of our algorithm (CB-TOD) with both
TRAOD [6] and DBTOD [13] algorithms, as we used the
same datasets as in [13]. As shown in Fig. 7, the processing
time of CB-TOD algorithm shows the best performance
compared to both TRAOD and DBTOD algorithms for the
two datasets (Elk and Deer), respectively. This is because
using a summary-trajectories technique to reduce the
computational time of the outlier algorithm leads to a
reduction in dataset size (as it generates a fewer number of
segments).

(a) Trajectories Outliers (b) Sub-trajectories Outliers

Fig. 5. Comparing between CB-TOD,TRAOD and DBTOD (Accuracy)

(a)Sub-trajectories Outliers (b) Trajectories Outliers

Fig. 6. Effects of Varying the Deviation Angle(Φ2)

Fig. 7. Comparing between CB-TOD, TRAOD and DBTOD (Performance).

Impact of deviation angle (Φ2). In this experiment, the
effect of varying the deviation angle (Φ2) on the processing
time of CB-TOD algorithm is measured. As shown in Fig. 8,
the processing time of CB-TOD decreased by increasing the
value of the deviation angle (Φ2). The intuition behind this
observation is that when we increase the deviation angle (Φ2);
we get a smaller number of line segments and consequently
the computation time decreases.

Fig. 8. Effects of Varying the Deviation Angle (Φ2) on CB-TOD Running

Time.

0

200

400

600

800

CB-TOD TRAOD DBTOD

C
P

U
 T

im
e

(s
e

c)

Elk

0

10

20

30

0 50 100 150 200C
P

U
 T

im
e

(s
e

c)

Deviation angle Φ2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 5, 2020

139 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In this paper, we proposed a clustering-based trajectory
outlier detection (CB-TOD). Our algorithm summarizes the
partitions of a trajectory to the smallest set of partitions
without affecting the length of the original trajectory. CB-
TOD can efficiently detect outlying sub-trajectory and also
outlier trajectory from the trajectory dataset. The main
advantage of CB-TOD algorithm is reducing the
computational time of outlier detection especially for big
trajectory data without affecting the efficiency of the outlier
detection results.

VII. FUTURE WORK

For future work, we aimed to extend our work to maintain
bigger datasets. Also, we will use machine learning techniques
to predict possible outliers in a big trajectory dataset.

REFERENCES

[1] W. I. D. J. M. K. Mining, "Data mining: Concepts and techniques," vol.
10, pp. 559-569, 2006.

[2] Y. J. A. T. o. I. S. Zheng and Technology, "Trajectory data mining: an
overview," vol. 6, no. 3, pp. 1-41, 2015.

[3] L. Sun et al., "Real time anomalous trajectory detection and analysis,"
vol. 18, no. 3, pp. 341-356, 2013.

[4] D. Zhang, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li, "iBAT:
detecting anomalous taxi trajectories from GPS traces," in Proceedings
of the 13th international conference on Ubiquitous computing, 2011, pp.
99-108.

[5] J. D. Mazimpaka and S. Timpf, "Trajectory data mining: A review of
methods and applications," Journal of Spatial Information Science, vol.
2016, no. 13, pp. 61-99, 2016.

[6] J.-G. Lee, J. Han, and X. Li, "Trajectory outlier detection: A partition-
and-detect framework," in 2008 IEEE 24th International Conference on
Data Engineering, 2008, pp. 140-149: IEEE.

[7] F. Meng, G. Yuan, S. Lv, Z. Wang, and S. Xia, "An overview on
trajectory outlier detection," Artificial Intelligence Review, vol. 52, no.
4, pp. 2437-2456, 2019.

[8] D. Chen, C.-T. Lu, Y. Kou, and F. J. G. Chen, "On detecting spatial
outliers," vol. 12, no. 4, pp. 455-475, 2008.

[9] J.-G. Lee, J. Han, and K.-Y. Whang, "Trajectory clustering: a partition-
and-group framework," in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, 2007, pp. 593-604.

[10] O. Ossama, H. M. Mokhtar, and M. E. El-Sharkawi, "Clustering moving
object trajectories using coresets," in Advances in Wireless, Mobile
Networks and Applications: Springer, 2011, pp. 221-233.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based
algorithm for discovering clusters in large spatial databases with noise,"
in Kdd, 1996, vol. 96, no. 34, pp. 226-231.

[12] B. Guan, Y. Zhang, L. Liu, J. Chen, and R. Guo, "An improving
algorithm of trajectory outliers detection," in Advanced Technology in
Teaching-Proceedings of the 2009 3rd International Conference on
Teaching and Computational Science (WTCS 2009), 2012, pp. 907-914:
Springer.

[13] Z. Liu, D. Pi, and J. Jiang, "Density-based trajectory outlier detection
algorithm," Journal of Systems Engineering and Electronics, vol. 24, no.
2, pp. 335-340, 2013.

[14] C. Chen et al., "iBOAT: Isolation-based online anomalous trajectory
detection," IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 2, pp. 806-818, 2013.

[15] H. Wu, W. Sun, and B. Zheng, "A fast trajectory outlier detection
approach via driving behavior modeling," in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management,
2017, pp. 837-846.

[16] Q. Yu, Y. Luo, C. Chen, and X. Wang, "Trajectory outlier detection
approach based on common slices sub-sequence," Applied Intelligence,
vol. 48, no. 9, pp. 2661-2680, 2018.

[17] P. D. Grünwald, I. J. Myung, and M. A. Pitt, Advances in minimum
description length: Theory and applications. MIT press, 2005.

[18] X. Li, J. Han, S. Kim, and H. Gonzalez, "Roam: Rule-and motif-based
anomaly detection in massive moving object data sets," in Proceedings
of the 2007 SIAM International Conference on Data Mining, 2007, pp.
273-284: SIAM.

[19] B. Sabarish, R. Karthi, and T. G. Kumar, "Spatial Outlier Detection
Algorithm for Trajectory-Data," International Journal of Pure and
Applied Mathematics, vol. 118, no. 7, pp. 325-331, 2018.

[20] Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee, "Top-
eye: Top-k evolving trajectory outlier detection," in Proceedings of the
19th ACM international conference on Information and knowledge
management, 2010, pp. 1733-1736.

