
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Mapping UML Sequence Diagram into the Web
Ontology Language OWL

Mo’men Elsayed1, Nermeen Elkashef2
Department of Mathematics and Computer Science

Faculty of Science, Alexandria University
Alexandria, Egypt

Yasser F.Hassan3
Professor of Computer Science

Faculty of Computer Science and Artificial
Intelligence, Pharos University, Alexandria, Egypt

Abstract—In this paper, we propose a new mapping technique
from the OMG’s UML modeling language into the Web
Ontology Language (OWL) to serve the Semantic Web. UML
(Unified Modeling Language) is widely accepted and used as a
standardized modeling language in Object-Oriented Analysis
(OOA) and Design (OOD) approach by domain experts to model
real-world objects in software development. On the other hand,
the conceptualization, which is represented in OWL, is designed
to process the content of information rather than just present the
information. Therefore, the matter of migrating UML to OWL is
becoming an energetic research domain. OWL (Web Ontology
Language) is a Semantic Web language designed for defining
ontologies on the Web. An ontology is a formal specification
naming and definition of shared data. This technique describes
how to map UML Models into OWL and allows us to keep
semantic of UML sequence diagrams such as messages, the
sequence of messages, guard invariant, etc. to make data of UML
sequence diagrams machine-readable.

Keywords—Mapping; Unified Modeling Language; UML;
sequence diagram; ontology; Web Ontology Language; OWL

I. INTRODUCTION
Nowadays we are observing a growing effort for

supporting semantics of data that is stored on the web that
makes the web more intelligent that procreate a promising
technology is called “Semantic Web”. The Semantic Web is
developed by W3C for providing the knowledge data
interchange over the web that available standard formats,
reachable, manageable, and understand which will be used by
machines for overcoming the original web limitation of only
interchanging data through documents [1]. The semantic web
is also called “Web of data”. The web will be able to process
and explicate information to be better to meet the human
requirement and able to provide full and immediate answers
for natural language queries. Ontology and also the various
languages designed for sharing data: Extensible Markup
Language (XML), Resource Description Framework (RDF)
and Web Ontology Language (OWL) are the stilts of this
technology [2].

The ontology lies at the core of semantic data integration.
The ontology is the knowledge data domain that will be shared
and explored. The Semantic Web does not break away from
the web but rather an extension of the current one, where data
is given distinct meaning, better-enabling computers and
people to work in cooperation [3]. Therefore, the issue of

converting UML to OWL is becoming an active research
point.

UML, the Unified Modeling Language, is the most utilized
language to the requirements specification [4]. UML is a
standardized modeling graphical language that includes an
integrated set of diagrams. Every diagram depicts the
modeling system in different portions, but together they can
provide a full map of the modeling system. We focus on one
diagram that is a UML sequence diagram. A UML sequence
diagram is a type of interaction diagram where it illustrates
how and in what order a set of objects works together. A
sequence diagram is employed for dealing with the dynamic
view of a system, whereas OWL is developed to form a
semantic web to represent the explicit specification of a
conceptualization, not just a document web. A picture is worth
a thousand words, this idiom definitely fits describing UML.
UML is a standard notation language that can be used for
specifying, visualizing, constructing, and documenting the
phases of software systems.

Ontology means an ontology may be a characterization
(like a suitable specification of a program) of concepts and
relationships which is able to exist among them through a
community. In other words – an ontology illustrates a part of
the globe.

This paper is organized as follows: Section 2 offers the
background of our work. In Section 3 discusses our technique
for mapping UML sequence diagrams into OWL 2 DL in
detail. Section 4 presents an overview of our technique with a
running case study. Section 5 concludes and points out the
fields of future work.

II. BACKGROUND

A. Unified Modeling Language
UML is a standardized blueprint representation to design

and analyze a model of a system. These blueprints provide
more than 10 diagrams in which every diagram supports an
aspect to characterize every part of a system.

UML is developed to make available communication
among the software developers by specifying, visualizing,
constructing, and documenting the aspects of software
systems. UML includes things, relationships, and diagrams, as
shown in Table I. One exceptional diagram is a sequence
diagram which is categorized as a behavioral diagram.
Behavior diagrams depict a dynamic aspect of the objects in a

318 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

system, a chain of changes to the system through time. A
sequence diagram is one of the interaction diagrams that
illustrate the interactions between object instances and the
ordering of messages according to time. A sequence diagram
illustrates the interactions among objects, and emphasizes a
sequential order of messages.

B. Ontology Foundations
An ontology is a specification of a conceptualization [3].

The term is borrowed from philosophy, where an ontology can
be a methodical account of existence. The meaning depends
on our understanding what "exists" is that which can be
represented wherever the terms "specification" and
"conceptualization" is a description (like a formal
specification of a program) of concepts and describable
relationships between them that can reflect in the
representational vocabulary with which an abstraction of a
program. Typically by using UML, we can represent the
abstract of a program. For example, A UML object o is the
object of class C is drawn by using UML, as given in Fig. 1.

In ontologies, the concepts of the program are represented
in a set of axioms that depict the specification of a
conceptualization [4], and the relationship among concepts as
properties. Therefore, the UML Class C is mapped to OWL 2 as

Declaration (Class(C))

In the OWL the UML object o of class C is called an
individual and is expressed as a class assertion:

ClassAssertion(C o)

TABLE I. UML THINGS, RELATIONSHIPS AND DIAGRAMS

UML Category UML Elements UML Elements

Things Structural Things

Classes
Interfaces
Collaborations
Use Cases
Active Classes
Components
Nodes

 Behavioral Things
Interactions
State
Machines

 Grouping Things Packages
 Annotational Things Notes

Relationships Structural Relationships

Dependencies
Aggregations
Associations
Generalizations

 Behavioral Relationships

Communicates
Includes
Extends
Generalizes

Diagrams Structural Diagrams

Class Diagrams
Component Diagrams
Deployment Diagrams
Use Case Diagrams

 Behavioral Diagrams

Sequence Diagrams
Communication
Diagrams
Statechart Diagrams
Activity Diagrams

Fig. 1. A UML Object o of Class C.

C. OWL and UML
The Ontology Definition Metamodel (ODM) [5] is derived

from Meta-Object Facility (MOF) [5,6] and based on the
Object Management Group (OMG) [7] specifications that
permit integrating ontology engineering into concepts of
OMG modeling. The ODM follows an identical hierarchy just
like the one mentioned in a four-layer OMG modeling
hierarchy [8].

The ODM was primarily developed to support the
ontology structure [5]. It contains classes, associations, and
constraints.

MOF defines an abstract framework and language for
constructing, managing, and specifying technology-neutral
metamodels. It is the foundation for defining any modeling
language like UML. Consequently, The UML is also derived
from the MOF and fundamental form of ODM. Therefore,
UML notations are also used for ontology modeling [6,
chapter 7].

The ODM provides metamodels for several knowledge
representation languages such as OWL and RDF [8]. In our
technique, ODM metamodel OWL is used to represent the
MOF / UML based models. In our technique, we use a
decidable fragment of OWL 2 DL.

Whereas the ODM and UML are derived from MOF [5,6],
therefore there exist common features, as well as there, are
also different features. The common features are shown in
Table II. The comparison between UML and ODM
aforementioned is given in terms of UML and OWL 2 DL.
Table III shows the features in UML which do not have
equivalent OWL 2 elements.

TABLE II. UML ELEMENTS THAT HAVE THE DL EQUIVALENT OWL 2 DL
ELEMENTS

UML Elements OWL Elements
Class
Instance
Enumeration
Multiplicity
Datatype

Class
Individual
Oneof
Min/max/exact cardinality
Datatype

TABLE III. UML ELEMENTS THAT HAVE THE DL EQUIVALENT OWL 2 DL
ELEMENTS

UML Elements OWL Elements

Ordering
Messages
Operations
Guards
Fragment
Operands

Not available
Not available
Not available
Not available
Not available
Not available

319 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

D. Reasoners
Reasoning is a critically important capability for the

Semantic Web application development. A reasoner plays a
vital role in developing that automatically infers logical
consequences from a collection of logical facts or axioms such
as Pellet, FaCT++, HerMiT, etc.

Pellet [9] provides functionality to check consistency and
infer subsumption of ontologies and Semantic Web Rule
Language. Pellet is a complete and capable OWL-DL
reasoner, which is written in Java and is open source. Based
on these criteria, we have chosen Pellet [9] which satisfies our
requirements to reasoner processes the ontology and generates
a validation report.

III. UML SEQUENCE DIAGRAMS INTO OWL 2 DL
In order to create better OWL 2 ontologies from a UML

sequence model, we explain in this section our understanding
of UML sequence diagram concepts and show how to migrate
these concepts into OWL 2.

The UML sequence diagrams capture the dynamic behavior
of a system. The sequence diagram provides the behavioral
interface of object instances and the sequence of messages that
they send to each other over time by using the vertical axis of
the diagram to show time what messages are sent and what.

A. Classes and Objects
A concept that grouped multiple objects that have the same

features and share the same behaviors is commonly known as
a class in UML. The concept of class in UML is equivalent to
the concept of class in OWL 2 because both concepts are
similar. A UML Class C is mapped to OWL 2 as:

Declaration(Class(C))

An object is an instance (or element) of a class. In UML,
objects have the behaviors of their class. Each object in a
sequence diagram belongs to a specific class in a class
diagram. A UML object o of class C is mapped into
ClassAssertion axiom in OWL 2 called an individual:

ClassAssertion(C o)

Furthermore, By default in a UML sequence diagram,
every object is different from another. However, OWL 2
follows the open-world assumption, so we must mention that
all individuals are different from each other. For example,
objects o1, …, on in a sequence diagram, we use the
DifferentIndividuals axiom in OWL 2:

DifferentIndividuals(o1 … on)

B. Sequence of Messages
Messages that depict the call of operations belong to a

specific class are shown horizontally in Fig. 2. They are sent
from a source object that is defined as a caller and received by
a target object is defined as a receiver in a sequence diagram.
A vertical position indicates the sequence of the messages of
the sequence diagram, wherever the first message is always
shown at the top in the diagram. Next, subsequent messages
are added to the sequence diagram little down from the earlier
message.

Fig. 2. A Simple UML Sequence Diagram.

A Sequence of messages is a number of messages that
come one after another in a particular order as shown in Fig. 2.
OWL 2 contains no axioms specifically for defining sequence
or ordering [10]. However, OWL 2 has axioms that can be
used to model sequence. Our technique describes a design
pattern for modeling a sequence of messages using OWL 2
axioms, as summarized in the diagram in Fig. 3.

Before starting the conversion, we create a class OWL
called “Fragment” to represent the sequence of messages in
the UML sequence diagram. The class “Fragment” represents
the kind of fragment in the UML sequence diagram. The
object property “hasOperand” connects operands to the class
“Fragment” which contains the operands of it. The class
“Operand” represents the sequence of elements in the UML
sequence diagram that can have multiple elements that is
executed by the class “Element” and the object property
“hasMessage”/”hasFragment”. The class “Operand” specifies
a particular size refers to the number of messages in the
operand. As shown in Fig. 3, the object property “hasNext”
connects an individual of the class “Element” to exactly
another one. Consequently, the object property “hasNext”
supports the sequence of elements. Furthermore, “hasNext” is
accompanied by its related transitive properties and inverse.
Two object properties are defined, “firstElement” and
“lastElement”, to determine which are the first and the last
elements in the class “Operand”, as sub-properties of
“element”. The elements connected with these two properties
cannot be respectively preceded or followed by another
element. Moreover, the class “Element” represents the type of
elements in the operand this is executed by the class
“Message” and “Fragment” respectively with the object
property “hasMessage” and “hasFragment”. The class
“Message” specifies a particular type that refers to the type of
a message in the UML sequence diagram. In order to identify
which are the caller and the receiver objects of a message, two
object properties are defined caller and receiver. The object
property “next message” connects an individual of the class
“Message” to exactly another one. Two objects, properties are
defined, “firstMessage” and “lastMessage”, to determine
which are the first and the last messages in an operand and a
fragment, as sub-properties of “hasMessage”. Consequently,

320 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

the object property “nextOperand” supports the sequence of
operands. Two object properties are defined, “firstOperand”
and “lastOperand”, in order to determine which are the first
and the last operand in the class “Fragment”.

This class and the properties are related to this class are
defined as follows:

Class: Fragment
 SubClassOf:

 kind exactly 1,
 firstOperand exactly 1 Operand,

 lastOperand exactly 1 Operand
DisjointWith: Operand, Element, Message

ObjectProperty: hasOperand
 Domain: Fragment
 Range: Operand
 SubPropertyChain: hasOperand o nextOperand
 InverseOf: operandOf
ObjectProperty: followedBy
 Characteristics: Irreflexive
ObjectProperty: precedeBy
 Characteristics: Irreflexive
 InverseOf: followedBy
ObjectProperty: firstOperand
 Characteristics: Functional
 SubPropertyOf: hasOperand
 Domain: Fragment
 Range: precedeOperand exactly 0 Operand
ObjectProperty: lastOperand
Characteristics: Functional
 SubPropertyOf: hasOperand
 Domain: Fragment
 Range: nextOperand exactly 0 Operand
Class: Operand
 SubClassOf:
 size exactly 1 xsd:nonNegativeInteger,

 guard max 1 xsd:string,
 firstElement max 1 Element,

 lastElement max 1 Element
 DisjointWith: Fragment, Element, Message
DataProperty: guard
 Domain: Operand
 Range: xsd:string
DataProperty: size
 Characteristics: Functional
 Domain: Operand
 Range: xsd:nonNegatveInteger
ObjectProperty: nextOperand
 Characteristics: Functional
 SubPropertyOf: followedBy
 Domain: Operand
 Range: Operand
ObjectProperty: precedeOperand
 Characteristics: Functional
 SubPropertyOf: precedeBy
 InverseOf: nextOperand
ObjectProperty: hasElement
 Domain: Operand
 Range: Element
 SubPropertyChain: hasElement o hasNext
 InverseOf: elementOf
ObjectProperty: firstElement
 Characteristics: Functional

 SubPropertyOf: hasElement
 Domain: Operand
 Range: hasPrecede exactly 0 Element
 InverseOf: firstElementOf
ObjectProperty: lastElement
 Characteristics: Functional
 SubPropertyOf: hasElement
 Domain: Operand
 Range: hasNext exactly 0 Element
 InverseOf: lastElementOf
Class: Element
 SubClassOf: inverse hasElement some Operand
 DisjointWith: Fragment, Operand, Message
ObjectProperty: hasNext
 Characteristics: Functional
 SubPropertyOf: followedBy
 Domain: Element
 Range: Element
ObjectProperty: hasPrecede
 Characteristics: Functional
 SubPropertyOf: precedeBy
 InverseOf: hasNext
 ObjectProperty: hasFragment
 Domain: Element
 Range: Fragment
ObjectProperty: hasMessage
 Domain: not Message
 Range: Message
 InverseOf: messageOf
ObjectProperty: firstMessage
 Characteristics: Functional
 SubPropertyOf: hasMessage
ObjectProperty: lastMessage
 Characteristics: Functional
 SubPropertyOf: hasMessage
Class: Message
 SubClassOf:
 index exactly 1 xsd:positiveInteger,
 type exactly 1,
 caller max 1 not Message
 receiver max 1 not Message
 DisjointWith: Fragment, Operand, Element
DataProperty: index
 Characteristics: Functional
 Domain: Message
 Range: xsd:positiveInteger
ObjectProperty: caller
 Characteristics: Asymmetric
 Domain: Message
 Range: not Message
ObjectProperty: receiver
 Characteristics: Asymmetric
 Domain: Message
 Range: not Message
 DisjointWith: caller
ObjectProperty: nextMessage
 Characteristics: Functional
 SubPropertyOf: followedBy
 Domain: Message
 Range: Message
ObjectProperty: precedeMessage
 Characteristics: Functional
 SubPropertyOf: precedeBy
 InverseOf: nextMessage

321 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Fig. 3. Diagram Summarizing the Class “Fragment” and Its Related Classes and Properties.

The reflexive object properties “followedBy” and
“precedeBy” (respectively super-“hasNext”, “nextMessage”
and “nextOperand”, and “hasPrecede”, “precedeMessage” and
“precedeOperand”) refers to all the elements that
follow/precede a particular element. In OWL 2, no cycles are
permitted. Acyclicity means that an element cannot follow or
precede itself, i.e., an element e1 either follows or precedes
e2, e2 follows or precedes e3 and e3 follows or precedes e1 is
disallowed. A sufficient and necessary condition for acyclicity
of followedBy/precedeBy is irreflexive closure of the property
is transitive. We make followedBy/precedeBy irreflexive and
transitive at the same time. However, to set those two
properties as transitive is not possible [8] since the logic
system would no longer be decidable, and we would keep the
ontology in a DL framework. We map transitivity in Semantic
Web Rule Language (SWRL). The transitivity of the
properties” followedBy” and “precedeBy” is written in SWRL
as

• followedBy(?e1, ?e2) ^ followedBy(?e2, ?e3)->
followedBy(?e1,?e3)

• precedeBy(?e1, ?e2) ^ precedeBy(?e2, ?e3) ->
precedeBy(?e1,?e3)

The UML sequence diagram is mapped in a way that is
possible to infer some implicit data. Leaving to a reasoner. For
example, it is not necessary to specify all the operands of the
fragment and all the elements of the operand. In fact, through
the properties chain axiom defined in for the properties.

• hasOperand : hasOperand o nextOperand

• hasElement : hasElement o hasNext

It can specify the first (properties firstOperand and
firstElement) and the last (properties lastOperand and
lastElement) elements. In this technique, the reasoner will be
able to infer all the remaining hasOperand and hasElement.

Moreover, the mixture of the above property chain can be
very useful when combined with the subsequent SWRL rules:

• firstMessage(?o, ?m1) ^ index(?m1, 1) ^ size(?o, ?v) ^
index(?m2,?v) -> lastMessage(?o, ?m2)

• firstOperand(?f, ?o) ^ firstMessage(?o, ?m) ->
firstMessage(?f,?m)

• elementOf(?e, ?o) ^ firstElementOf(?e, ?o) ^
hasMessage(?e,?m) -> firstMessage(?o, ?m)

• elementOf(?e, ?o) ^ firstElementOf(?e, ?o) ^
hasFragment(?e, ?f) ^ firstMessage(?f, ?m) ->
firstMessage(?o, ?m)

• lastOperand(?f, ?o) ^ lastMessage(?o, ?m) ->
lastMessage(?f, ?m)

• elementOf(?e, ?o) ^ lastElementOf(?e, ?o) ^
hasMessage(?e, ?m) -> lastMessage(?o, ?m)

• elementOf(?e, ?o) ^ lastElementOf(?e, ?o) ^
hasFragment(?e, ?f) ^ lastMessage(?f, ?m) ->
lastMessage(?o, ?m)

• elementOf(?e, ?o) ^ hasMessage(?e, ?m) ->
hasMessage(?o, ?m)

• hasOperand(?f, ?o) ^ hasMessage(?o, ?m) ->
hasMessage(?f, ?m)

• elementOf(?e, ?o) ^ hasFragment(?e, ?f) ^
hasMessage(?f,?m) -> hasMessage(?o, ?m)

• hasNext(?e1, ?e2) ^ hasMessage(?e1, ?m1) ^
hasMessage(?e2, ?m2) -> nextMessage(?m1, ?m2)

• hasNext(?e1, ?e2) ^ hasMessage(?e1, ?m1) ^
hasFragment(?e2, ?f) ^ firstMessage(?f, ?m2) ->
nextMessage(?m1, ?m2)

322 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

• nextOperand(?o1, ?o2) ^ lastMessage(?o1, ?m1) ^
firstMessage(?o2, ?m2) -> nextMessage(?m1, ?m2)

• hasNext(?e1, ?e2) ^ hasFragment(?e1, ?f1) ^
lastMessage(?f1, ?m1) ^ hasFragment(?e2,?f2) ^
firstMessage(?f2, ?m2) -> nextMessage(?m1, ?m2)

• hasNext(?e1,?e2) ^ hasFragment(?e1,?f) ^
lastMessage(?f,?m1) ^ hasMessage(?e2,?m2) ->
nextMessage(?m1, ?m2)

• messageOf(?m1,?o) ^ messageOf(?m2, ?o) ^
index(?m1, ?v1) ^ add(?v2, ?v1, 1) ^ index(?m2, ?v2) -
>nextMessage(?m1, ?m2)

• nextMessage(?m1, ?m2) ^ index(?m1, ?v1) ^ add(?v2,
?v1, 1) -> index(?m2, ?v2)

• Operand(?o) ^ firstMessage(?o, ?m) ^ lastMessage(?o,
?m) -> size(?o, 1)

• Operand(?o) ^ firstMessage(?o, ?m1) ^ index(?m1,1) ^
lastMessage(?o, ?m2) ^ index(?m2, ?v) -> size(?o, ?v)

• nextOperand(?o1,?o2) ^ lastMessage(?o1, ?m1) ^
index(?m1,?v1) ^ lastMessage(?o2, ?m2) ^
index(?m2,?v2) ^ subtract(?v3, ?v2, ?v1) -> size(?o2,
?v3)

• hasNext(?e1,?e2) ^ hasMessage(?e1, ?m1) ^
index(?m1,?v1) ^ hasFragment(?e2, ?f) ^
firstOperand(?f, ?o) ^ lastMessage(?o,?m2) ^
index(?m2,?v2) ^ subtract(?v3,?v2,?v1) -> size(?o, ?v3)

• hasNext(?e1, ?e2) ^ hasFragment(?e1, ?f1) ^
lastOperand(?f1,?o1) ^ lastMessage(?o1,?m1) ^
index(?m1,?v1) ^ hasFragment(?e2, ?f2) ^
firstOperand(?f2,?o2) ^ lastMessage(?o2,?m2) ^
index(?m2,?v2) ^ subtract(?v3, ?v2, ?v1) ->
size(?o2, ?v3)

Let us introduce an example to show how to use our
technique for describing a UML sequence diagram. Suppose
one wants to describe the example, in Fig. 2. It is possible to
model this scenario straightforwardly using our technique:

:example a :Fragment
 ; :kind “sd”
 ; :firstOperand :op1
 ; :lastOperand :op1 .
:op1 a :Operand
 ; :size “4”^^xsd:nonNegative
 ; :firstElement :el1
 ; :lastElement :el2 .
:el1 a :Element
 ; :hasMessage :first_message
 ; :hasNext :el2 .
:el2 a :Element
 ; :hasMessage :second_message
 ; :hasNext :el3 .
:el3 a :Element
 ; :hasMessage :third_message
 ; :hasNext :el4 .
:el4 a :Element
 ; :hasMessage :fourth_message .

:first_message a :Message
 ; :index “1”^^xsd:positiveInteger
 ; :type “synchronous”
 ; :caller :x
 ; :receiver :z .
:second_message a :Message
 ; :index “2”^^xsd:positiveInteger
 ; :type “synchronous”
 ; :caller :y
 ; :receiver :z .
:third_message a :Message
 ; :index “3”^^xsd:positiveInteger
 ; :type “asynchronous”
 ; :caller :x
 ; :receiver :z .
:fourth_message a :Message
 ; :index “4”^^xsd:positiveInteger
 ; :type “return”
 ; :caller :z
 ; :receiver :x .

C. Messages
A UML sequence diagram shows interactions with which

messages are exchanged among a set of objects participate. It
concentrates to determine the behavioral view of a system.
There are two dimensions in the UML sequence diagram, a
vertical dimension, and a horizontal dimension respectively
representing time and objects participating in the interaction.
The horizontal dimension also captures the message which can
be a signal or a class operation call between two vertical
dashed lines which are called lifetimes. Each lifetime indicates
an individual participant over a time in the interaction.

A message is an abstract element that has a name. It
specifies the kind of communication between two lifelines of
an interaction. It does not specify only the sort of
communication but also the caller and therefore the receiver.
Caller and receiver are normally two occurrence specifications
(points at the ends of messages). The message is shown from
the caller message end to the receiver message end.

The types of communication of the message as defined in
the UML are listed below.

• Synchronous Message: represents a class operation call.
All other calls of the caller are blocked waiting for the
receiver to have processed the message and returned.

• Asynchronous Message: the caller of message does not
need to wait for a replay to continue. Like synchronous
messages.

• Reply Message: it is also defined return message, used
to refer to the receiver that has processed the message
and returned a result to the message caller.

• Self Message: when a caller and a receiver are the same
it means a caller sent a message to itself. is represented
as a U shaped arrow.

• Create Message: the receiver of this message is created
during the interaction by the message that is being sent.

323 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

• Delete Message: it destroys its receiver. Targets can be
destroyed during the interaction by the message that is
being sent.

• Found Message: is a message from an unknown caller
to a known receiver.

• Lost Message: is a message from a known caller to an
unknown receiver.

In OWL 2 DataOneOf axiom is suitable for defining a type
of the message. “DataOneOf” defines a datatype with a set
predefined value space.

DatatypeDefinition(type DataOneOf("synchronous"
"asynchronous"…))

The message is a signal or a class operation. In a UML
class diagram an operation op in class C can be one of the
following:

op = { SimpleOp, ParOp }

• SimpleOp (simple operation): is an operation without
parameters.

• ParOp (parameter operation): is an operation with
parameters.

For each SimpleOp, we create a data property by
respectively its domain and range associating with the class
corresponding to the operation and the XSD type
corresponding to the type of the operation in the UML class
diagram.

Simple operations have a multiplicity restriction to max
one value. The simple operations of a UML class in a class
diagram are mapped in OWL 2 as a “DataProperty”. The
range of the data property is datatype. The datatype can be
xsd:string, xsd:int and other datatypes [11].

Simple operations that use basic types are mapped by
declaring a data property with the operation's name. An
operation is a required component of its class. Consequently,
the data properties describing operations have a max
cardinality of one. The Simple operation SimpleOp of the
UML class C having any of the above-mentioned DataType is
translated in OWL 2 as

Declaration(Class(C))

Declaration(DataProperty(SimpleOp))

SubClassOf(C DataMaxCardinality(1 SimpleOp))

DataPropertyDomain(SimpleOp C)

DataPropertyRange(SimpleOp DataType)

An operation with parameters is mapped to:

• an OWL class (named className) with data property
for every additional parameter and one of its datatype,
the data properties have an exact cardinality of one.

• and object property between the new class and the class
contains this operation, the object property has an exact
cardinality of one.

Fig. 4. A UML Operation op with Parameter par of Class C.

Fig. 4 shows an example of an operation op with
parameters of class C is drawn by using UML.

The example of an operation op with parameters of class C
is mapped into OWL 2 as

Declaration(Class(C))

Declaration(Class(Op))

Declaration(DataProperty(par))

SubClassOf(Op DataExactCardinality(1 par))

DataPropertyDomain(par Op)

DataPropertyRange(par String)

Declaration(DataProperty(datatype))

SubClassOf(Op DataExactCardinality(1 datatype))

DataPropertyDomain(datatype Op)

DataPropertyRange(datatype String)

Declaration (ObjectProperty(Op_C))

SubClassOf(Op ObjectExactCardinality(1 Op_C))

ObjectPropertyDomain(Op_C Op)

ObjectPropertyRange(Op_C C)

DisjointClasses(Op C)

D. Combined Fragment
A Combined fragment is an interaction fragment using an

interaction operator to define the semantics of the combined
fragment, such as alternative, option, and loop. Each
combined fragment contains at least one interaction operand
that is like a UML sequence diagram that can contain
interaction fragments and messages together to model
conditional behavior in a UML sequence diagram. An
interaction operand illustrates the interactions between classes
or object instances and the ordering of messages according to
time. An interaction operand may have interaction constraints
also called guards, which is a boolean conditional expression.
A guard is a semantic condition that specifies the condition
under which the interaction fragments and messages will be
performed inside the interaction operand.

Interaction Operators as defined in the UML sequence
diagram [12] are listed below.

• sd: abbreviation for sequence diagram, has one operand
used for framing an entire sequence diagram.

• alt: abbreviation for alternatives, means that the
combined fragment represents alternative or choice

324 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

paths of execution. Only the one whose guard is true
will be chosen to execute.

• opt: abbreviation for option, equivalent to an alt only
with one path with a guard, and the option operand is
executed if the guard is true.

• loop: has one operand with a guard, means that the
combined fragment represents a loop. The operand will
be repeated at least the minimum count and no more
than the maximum count as long as the guard is true.

• break: has one operand with or without a guard that is
performed instead of the remainder of the enclosing
interaction fragment.

• par: abbreviation for alternatives, means that the
combined fragment represents more than one operands
which can be executed parallel. Operands can be freely
interleaved. In any order, but must be according to the
ordering imposed by each operand separately.

• critical: abbreviation for critical region, is a region
cannot be interleaved by other occurrence
specifications.

• ref: abbreviation for critical reference, refers to an
interaction defined on another diagram.

There are other interaction operators, such as Strict
Sequencing, Weak Sequencing, Negative, Ignore, Consider,
and Assertion which are also defined in [12, 13].

In OWL 2 DataOneOf axiom is suitable for defining a type
of a combined fragment. “DataOneOf” defines a datatype with
a fixed predefined value space.

DatatypeDefinition(kind DataOneOf("alt" "opt"…))

We can use a number of value restriction infix operators
with the guard constraint of the class “Operand”, such as =,
>=, <=, > and <. The guard constraint is mapped in OWL 2 as
a DataProperty. The value constraint of the guard is written in
the UML sequence diagram as [Guard Op Value], where OP is
the infix operator and Value represents the guard value. The
map of the value constraint in OWL 2 is based on the infix
operator used with the guard operator, such as “>=” is mapped
using the OWL 2 axiom DatatypeRestriction and
xsd:minInclusive, “>” is mapped using the OWL 2 axiom
DatatypeRestriction and xsd:minExclusive,“<=” is mapped
using the OWL 2 axiom DatatypeRestriction and
xsd:maxInclusive, “<” is mapped using the OWL 2 axiom
DatatypeRestriction and xsd:maxExclusive, “!=” is mapped
using the OWL 2 axiom complementOf and the axiom
DataHasValue, and “=” mapped using the OWL 2 axiom
DataHasValue. For example, [Guard = Value] is a guard
constraint, is mapped to OWL 2 as:

DataHasValue(Guard }Value}^^ datatype)

In this translation, Guard is the name of the guard, Value is
the value of the guard, and datatype is the datatype of the
guard Value.

IV. CASE STUDY
There has been substantially related work on mapping

UML diagrams into Ontology has been discussed by several
authors in the past. For instance, B. Bouchra. Author in [2]
discusses the conversion method by building an e-learning
ontology from its UML class diagram. In their approach. They
have recourse to the Collection Ontology to map the
composition relationship and the Value Partitions Design
Pattern to map the inheritance. Moreover, the approach
presented in [4] discusses the migrating UML class diagrams
to Ontology. In their approach, the model information is
stored in the XMI document by using a Power Designer tool
then creating an ontology by passing this XMI document as
the input of their mapping algorithms. The approach presented
in [8] describes conversion rules from UML diagrams to
Ontology containing multiple class, object and statechart
diagrams. However, the goal of his work is analyzing the
consistency and satisfiability of models. Moreover, they do
not discuss the mapping UML sequence diagrams into
Ontology.

We present a summary of our technique that we expound
with a running example. Fig. 5 shows a UML sequence
diagram that describes the withdrawal cash scenario of an
ATM system, where Messages are numbered top-down. It
exposes the object of each class and messages that can be
invoked on them. It consists of four classes, namely, “User”,
“ATM”, “Bank” and “Account”. To evaluate our technique we
need to first map this diagram into OWL 2 by following the
mapping discussed in the previous sections, after mapping the
diagram we pass the OWL 2 ontology to the OWL 2 reasoner.
Fig. 6 and 7 illustrate the diagram after is mapped.

Fig. 5. Withdrawal Cash Scenario of an ATM System.

325 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Fig. 6. The Withdrawal ATM Diagram after is Mapped.

Fig. 7. The First Message insertCard after is Mapped.

V. CONCLUSION
UML sequence diagrams are used to describe the behavior

of systems. In this paper, we have demonstrated a technique
for mapping behavioral knowledge expressed in the UML
sequence diagrams as an OWL ontology. The OWL DL and
SWRL rules are used to formalize the semantics of the
sequence diagrams model. We have analyzed similarities and
differences among UML and OWL elements in-depth. With
this knowledge, we have developed rules for addressing the
issue of defining sequence in OWL. Furthermore, we
formalized a suitable way to handle the fragment operator
with an arbitrary number of operands, which is crucial when
specifying transformations of sequence diagrams.

As our future work, we will continue to study additional
cases in order to complete the set of rules. We plan to provide
the support of other interaction constraints.

REFERENCES
[1] P. Kumar K N, R. Kumar V, K. Raghuveer, “A Survey on Semantic Web

Technologies for the Internet of Things,” In 2017 IEEE International
Conference on Current Trends in Computer, Electrical, Electronics and
Communication (CTCEEC), 2017, doi: 10.1109/CTCEEC.2017.8454974.

[2] B. Bouchra, B. Mohamed, “Building an e-learning system’s OWL
ontology by exploring the UML model”, Journal of Theoretical and
Applied Information Technology (JATIT),Vol.87,No.3,2016,pp.380-387.

[3] H. Martina, V. Bureš , "Formal Ontologies in Information Systems
Development: A Systematic Review", Information, Vol. 11, No. 2, 2020.

[4] E. Oussama, A. Khadija, A. Larbi, B. Mohamed, "Mapping UML to
OWL2 Ontology", Journal of Theoretical and Applied Information
Technology (JATIT), Vol. 90, No. 1, 2016, pp. 126-143.

[5] OMG “Ontology Definition Metamodel Superstructure Version 1.1,”
2014, https://www.omg.org/spec/ODM/About-ODM/.

[6] K. John, “Model-Based Development and Evolution of Information
Systems – A Quality Approach” , Springer, London, UK, 2012.

[7] Object Management Group Website (OMG), https://www.omg.org/.
[8] H.K. Ali, P. Ivan, “Consistency of UML class, object and statechart

diagrams using ontology reasoners”, Journal of Visual Languages &
Computing, Vol. 26, 2015, pp. 42-65.

[9] S. Evern, P. Bijan, C.G. Bernardo, K. Aditya, K.Yarden, “Pellet: a
practical OWL-DL reasoner” , Journal of Web Semantics, Vol. 5, No. 2,
2007, pp.51-53.

[10] C. Paolo, P. Silvio, “The Collections Ontology: creating and handling
collections in OWL 2 DL frameworks”, Semantic Web Journal (SWJ),
Vol. 5, No. 6, 2014, pp. 515- 529.

[11] W3C, OWL Working Group, “OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C Recommend
ation 11 December 2012,” https://www.w3.org/TR/owl2-syntax/.

[12] OMG, “Unified Modeling Language Superstructure Version 2.5.1,” 2017,
https://www.omg.org/spec/UML/About-UML/.

[13] R. James, J. Ivar, and B. Grady, “The Unified Modeling Language
Reference Manual 2nd Edition. Addison Wesley”, 2004.

326 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Background
	A. Unified Modeling Language
	B. Ontology Foundations
	C. OWL and UML
	D. Reasoners

	III. UML Sequence Diagrams into OWL 2 DL
	A. Classes and Objects
	B. Sequence of Messages
	C. Messages
	D. Combined Fragment

	IV. Case Study
	V. Conclusion

