
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

370 | P a g e
www.ijacsa.thesai.org

A Secured Large Heterogeneous HPC Cluster System

using Massive Parallel Programming Model with

Accelerated GPUs

Khalid Alsubhi

Faculty of Computing and Information Technology

King Abdulaziz University, Saudi Arabia

Abstract—High Performace Computing (HPC) architectures

are expected to develop first ExaFlops computer. This Exascale

processing framework will be proficient to register ExaFlops

estimation every subsequent that is thousands-overlay increment

in current Petascale framework. Current advancements are

confronting a few difficulties to move toward such outrageous

registering framework. It has been anticipated that billion-way of

parallelism will be exploited to discover Exascale level secured

system that provide massive performance under predefined

limitations such as processing cores and power consumption.

However, the key elements of the strategies are required to

develop a secured ExaFlops level energy efficient system. This

study proposes a non-blocking, overlapping and GPU

computation based tri-hybird model (OpenMP, CUDA and MPI)

model that provide a massive parallelism through different

granularity levels. We implemented the three different message

passing strategies including and performed the experiments on

Aziz-Fujitsu PRIMERGY CX400 supercomputer. It was

observed that a comprehensive experimental study has been

conducted to validate the performance and energy efficiency of

our model. Experimental investigation shows that the EPC could

be considered as an initiative and leading model to achieve

massive performance through efficient scheme for Exascale
computing systems.

Keywords—High Performance Computing HPC; MPI;

OpenMP; CUDA; Supercomputing Systems

I. INTRODUCTION

Since last three decades, High performance computing
(HPC), played a fundamental role in scientific endeavour
where vendors emphasized to improve system performance by
dramatic increasing through on-chip parallelism. According to
Top-500 supercomputers list, an improvement of 10x in system
performance is discovered after every 3.6 years [1]. A
supercomputer in 2012, Titan Cray XK7 was capable to
achieve 18 PFLOPs under the 8.3 MW power consumption [2].
Moving on the vision to enhance system performance to solve
the complex problems, Tianhe-II the current supercomputer
manufactured by NUDT is capable to deliver 55.2 PFLOPs
with 17MW power consumption [3]. The demand of
computation for solving complex problem envisioned to
develop new supercomputer [4]. This extraordinary scale
processing framework will be proficient to compute 1018
FLOPS activities for each subsequent that is thousand-crease
increment in current Petascale framework. As per expectations,
Exascale figuring framework will be involved countless

heterogeneous process hubs connected by complex systems
[5]. The essential issue for HPC frameworks is that such
Extreme (Exascale) processing framework doesn't exist yet,
anyway everything toward Exascale is simply expectations and
contemplations. To improve the system throughput, the trend
has been changed from traditional way of doubling clock
speeds by doubling number of cores, threads or other
parallelizing mechanisms [4]. However, it is predicted that
millions of cores of heterogeneous devices including CPUs and
GPUs will be comprised by the Exascale computing system.

A. Exascale Computing Limitations and Challenges

As indicated by the innovation and programming
approaches that are being utilized in existing Petascale
registering framework, the power consumption is about 25 to
60 MW by utilizing 30 M number of centres. The interest of
intensity utilization for Exascale registering framework will be
more than 130 Megawatts [6]. United State Department of
Energy characterized some essential limitations such as Power
Consumption roughly 20-30 MW, Development Cost (D.C) up
to 200 M US dollars, Delivery Time (DT) till 2020, and Cores
about 100 Million [7]. However, development of targeted
Exascale Supercomputer under the delimitation of these
constraints is the tremendous challenge for vendors and
development communities.

Leading to the massive powerful computing system, there
are several challenges which are still the blockage for
development toward emerging HPC systems. In [7], some
primary Exascale computing challenges discussed are
presented in Table I. For 21st century, these imperative
difficulties are the basic way to create innovatory answers for
Exascale figuring framework. Nonetheless, an emotional
reformulation at both equipment and programming levels,
programming models, vitality proficient strategies,
investigating apparatuses and overhaul calculations are
requested to accomplish the calculation in ExaFlops [8]. Since
last few years the development process for Exascale computing
system is being rapidly fast. Under these listed challenges,
many new approaches have been proposed.

B. Software Technology Navigation

In current study, our contribution is related to challenges 1,
2, and 5 from Table I to improve the system performance
through efficient and massive parallelism under minimum
power consumption. From software perspectives, still it has not

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

371 | P a g e
www.ijacsa.thesai.org

been determined that at what level [9], the software framework
is adoptable to achieve massive parallelism for Exascale
computing systems. The recent energy efficient GPU
technology introduced by NVIDIA outperforms the traditional
processing on CPU cores [34, 35, 36]. Therefore, involving
GPU accelerated computation in system, the hierarchy level of
programming model navigation is shown in Fig. 1.

According to this navigational model, the anticipation is
going to be that Tri-level model outperforms much better than
traditional single or dual models [10]. It provides massive
parallelism where energy efficient accelerated devices
(GPGPU) collaborate with other models that deal with fine-
grain and coarse-grain parallelism.

The rest of paper is organized as follows. Section II related
work describes the existing state-of-art-approaches at Single,
Dual, and Tri levels. Further Section III depicts a
comprehensive overview of proposed EPC model, its features
and components. Section IV, presents the experimental
platform and applications used to evaluate EPC model. Last
Section V concludes and explains the results in term of
summary.

TABLE I. EXASCALE COMPUTING CHALLENGES

Challenges Description

Power Consumption

Management

Power consumed by the system and its

management

Novel Architectures
New non-conventional architectures to support

Exascale frameworks

Memory Technology
Memory management and storing systems to

support massive storage.

Scalable System

Software

Scalable and resilience system are needed to

support sudden power fluctuation

Programming Systems
Novel programming techniques to support parallel

programming libraries and frameworks.

Data Management
Efficient data management approaches are

demanded.

Exascale Algorithms
New algorithms should be proposed to manage

massive parallelism and advance programming.

Discovery and Design

Algorithms

Discovery should be facilitated by mathematical

models.

Resilience &

Correctness

Faults and verification challenges should be

addressed.

Scientific Productivity
Scientific productivity is necessary to through

novel software tools.

Power Consumption

Management

Power consumed by the system and its

management

Fig. 1. Hierarchy Level of Programming Model Navigation.

II. RELATED WORK

Pushing toward HPC (High Performance Computing),
equipment and programming rising advances have been
examined toward Petascale registering framework in [11].
Prompting Petascale figuring framework, numerous equipment
point of view methods where studied such as Conventional
innovation, Preparing In-Memory structures (PIM), Digital
superconductor advances, Computation Fluid Dynamics
(CFD), Special-reason equipment, Web-based Petascale
Computing, atomic nanotechnology and insightful planetary
rocket and so on [12]. An information parallel programming
language with respect to procedures for Petascale framework
were proposed [13]. These models where capable to gain
parallelism for both course grain and fine grain level using
traditional homogenous system on multicore CPU devices [14].

In the end of recent decade, to bring scalability in system,
technology trend was changed from traditional homogenous to
heterogeneous cluster system where many-core devices were
introduced such as General Purpose Graphics Processing Unit
(GPGPU), Graphics Processing Unit (GPU) by NIVIDIA [15]
and MIC (Many Integrated cores) by Intel [16]. These
accelerated devices are based on Single Instruction Multiple
Data (SIMD) from Flynn’s classification. Beyond these
accelerated devices, many parallel programming models have
been proposed such as CUDA, OpenACC, and OpenCL. It has
been anticipated these parallel programming models could be
promising to achieve massive parallelism required for future
Exascale computing system [17]. In any case, to use such
incredible gadgets and models, a key component of the
methodology is the co-structure of uses, designs and
programming conditions at both equipment and programming
level.

According to development to HPC Exascale computing
system, China has a fast development towards HPC systems
and consequently they introduced Tianhe II HPC system
recently in 2014 [18]. Further they introduced the upgraded
version named as Tianhe III [19]. Similarly, DEEP (Dynamical
Exascale Entry Platform) by European Union in 2011 [20]
started effort toward a new HPC Exascale computing system.
SERT project funded by NAG took initiative to introduce first
Exascale computing system in 2020 [21, 22]. In Japan, RIKEN
[23] claimed to present first Exascale computing in start of
2020. Further, Indian Government also started Exascale
computing development since 2018 and claimed to introduce in
2022 [24].

III. PRELIMINARIES

MPI has many different schemes that can be used to
program a cluster system. Traditionally, two prevalent methods
MPI blocking (synchronous) and non-blocking (asynchronous)
are being used to distribute data over a cluster system [25, 26,
27]. In legacy systems, the whole processing was performed by
CPU cores using MPI blocking method. Consequently, the
processing over CPU cores was very costly with respect to
energy consumption and processing efficiency. Therefore, new
SIMD (single instruction multiple data) based energy efficient
devices (GPUs, MIC) were introduced that contains thousands
of cores on it. These cores compute data in parallel and
consequently, reduce processing time and power consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

372 | P a g e
www.ijacsa.thesai.org

Due to parallel computation, data processing over GPU cores is
very fast which required a rapid data input. In this way, MPI
non-blocking is appropriate approach to fully utilize these
powerful devices and achieve maximum performance. In
current study, we discussed three fundamental MPI non-
blocking schemes as follows:

A. (S1)- MPI Non-Blocking, no Overlapping Computation

In first strategy 1 (S1) MPI non-blocking and no
overlapping implemented scheme, computation does not
overlap during data processing [28]. This scheme performs just
like a blocking mechanism where all resources are reserved
until the whole processing is completed. One disadvantage of
this scheme is that many resources are reserved event though
they finished their assigned tasks. Although MPI
communication is capable to overlap with CUDA, but we
avoided from overlapping in this implementation. During
exchanging data from multiple arrays, MPI scatter and gather
data for one edge while memory copying operation is
proceeding for other components.

B. (S2)- MPI Non-Blocking, Overlapping Computation

The second implemented strategy for data distribution was
(S2) MPI non-blocking but overlapping computation where
CUDA copying operation was overlapped with MPI
communication. In this strategy, CUDA kernel was
decomposed into three potions where top and bottom edges
were done from the middle. In such way, kernel was started
with the edges which are going to be computed, rather than
start exchanging on entire domain. Following non-blocking
MPI mechanism, first portion started copying operation from
device to host. Immediately after completing copy operation to
host, middle portion of the domain started computation.
Similarly, last part of exchanging operation started as soon
middle potion complete its computation. This implementation
strategy can be more significant by improving the overlapping
computation of middle portion.

C. (S3)-MPI Non-blocking,Overlapping & GPU Computation

The final implementation was MPI (S3) non-blocking with
highest amount of overlapping which is anticipated the best
performing strategy for large scale cluster system [29]. Using
asynchronous method, CUDA streams were enabled and
started computation from middle portion that cause to for
massive overlapping, MPI communication and memory
operations. The important thing in this strategy is that, a very
small level of changes is needed inside the CUDA kernels to
perform the computations. In order to optimize the GPU
threads, a flag along with grid size and number of blocks is
broadcasted over the kernels to indicate a specific portion for
computation.

IV. EFFICIENT PARALLEL COMPUTING MODEL

We presented the proposed EPC model implemented in
C++. Based on the predicted Exascale computing system, EPC
model was categorized into three different computing
environments including cluster system, compute node, and
GPU computing. Each environment contained a separate layer
of parallelism as presented in Fig. 2.

Programmer interacts with EPC model through the
application written in C++. Before entering in parallelism zone,
data is analyzed by the programmer himself statically to know
that, which statement can be parallelized. Once data is
analyzed and ready for parallel computation, it entered in
parallel computing zones as described in following sections.

A. Inter-Node Computation Layer

The primary degree of parallelism of the model was
accomplished between hub correspondences. In view of these
parameters, developer break down and appropriate over
associated framework hubs utilizing an institutionalized SIMD
based Message Passing Interface (MPI) library [30]. MPI
blocking (synchronous) and non-blocking (no concurrent) two
pervasive components are being utilized to move and assemble
information over the processors. Blocking systems is utilized
when a solid synchronization is required because of reliance in
information. For this situation, the assets are held utilizing
some pre-characterized MPI holding up explanations until the
handling is finished. In our parallel registering system,
information is required just to convey over the processors that
subsequently gives coarse-grain parallelism at this level, along
these lines we chose "non-blocking, covering with GPU
calculation" the third MPI non-blocking technique as talked
about in past segment. In this procedure, when information is
moved no concurrently over associated hubs, it entered in
second degree of parallelism portrayed in following area.

B. Intra-Node Computation Layer

The proposed model provides the second level of
parallelism at Intra-node computation. At this level, the
distributed data through MPI processors is further
communicated with CPU threads for parallel processing. At
this stage, OpenMP pragmas are used that parallelize the
blocks of code either fine grain or course grain computation.
OpenMP threads use the system specified threads over CPU
cores and complete the executions. According to new OpenMP
version, we can use multiple OpenMP pragmas for multiple
blocks within single block that is the reason to achieve fine
grain parallelism in the code.

C. GPU Computation Layer Acceleration

The last level of parallelism in our proposed model is Intra-
node computation. In this layer of computation, the whole
processing is performed on accelerated GPU devices. In this
strategy, firstly the data is transferred form CPU cores to GPU
that further distributed over GPU Warps. According to the
structure of GPU each warp contains 32 number of cores where
the number of warps can be different from GPU structure to
structure. Once the data is transferred over GPU cores, GPU
kernel divide the tasks into multiple GPU warps and perform
all the operations in parallel. To perform the GPU computation,
we can utilize the different accelerated devices such as
NVIDIA GPU, AMD GPU etc. for current study, to maintain
the maximum support for C++, we selected NVIDIA GPU and
implemented accordingly.

In the past, low overlapping between CPU and GPU caused
the wastage of resources where GPU threads remain in idle
state until the processing from other kernels is not
accomplished. Usually, this inefficiency factor was found in

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

373 | P a g e
www.ijacsa.thesai.org

MPI non-blocking non-overlapping and non-blocking low-
overlapping strategies that consequently waste resources
utilization and decrease system efficiency.

Although MPI non-blocking was implemented in existing
design as shown in Fig. 3(a) but waiting state for kernel and
separate progress effected in decreasing efficiency. In each
broadcasting, Isend() function/method has performed in three
states including kernel initialization, kernel waiting and start
sending data. During Isend() from these states, kernel stream
was reserved. Once first kernel stream is complete, next one

start processing. In such way, each stream waste resource
utilization during waiting state. Conversely, in our proposed
design, we organized these three states for every broadcasting
Isend() in such way that kernels were overlapped and
initialized immediately after one. Therefore, all kernel streams
are now overlapping and can start processing as soon it
receives data. A minor waiting state is ignorable because data
sending process can be started as soon it complete its previous
stage. Fig. 3(b) shows a clear benefit of proposed design that
minimize delay in processing and increase efficiency through
higher overlapping.

Fig. 2. EPC: A Hybrid Parallel Computational Model.

Fig. 3. Overlapping: Existing vs Proposed Design.

(2)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

374 | P a g e
www.ijacsa.thesai.org

V. EXPERIMENTAL SETUP

A. Platform

To perform the experiments, we have used the Aziz
supercomputer the 360th positioned in 2015 top
supercomputers placed in High Performance Computing
Centre (HPCC), King Abdulaziz University. The Aziz
supercomputer contains Xeon CPU processors along with GPU
devices [31]. Aziz comprises of complete 11904 number of
cores on it including both CPU and GPU cores. Regarding the
Aziz memory, 96GB hubs and 256 GB individually configured
in it where each hub consists of individual processor -2.4 GHz
and 12 Cores- controlled CentOS 6.4 working framework. All
the nodes are connected with infini-band medium to make the
communication more efficient. With respect to overall
efficiency, Aziz supercomputer is very powerful that is able to
accomplish about 211 TFlops/s Linpack execution and about
228 TFlops/s overall [32].

B. Performance Measurment

The primary factor in High performance computing
systems is Performance [33]. Conventionally, the performance
of a computer system is calculated in number of Flops by
attaining the peak performance and the number of flops against
the targeted application execution as described in equation 1. If
we consider that Fp are the flops at peak floating point and Fm
are the number of flops against targeted application, therefore
Fc can be determined as:

𝐹𝑐 =
𝐹𝑝

𝐹𝑚
 (1)

Using the Aziz peak performance Aziz, we have quantified
the performance by executing targeted HPC applications at
different datasets described in following sections.

C. Power Measurment

The second most important metric is the power
consumption which is the primary challenge for current and
emerging HPC systems. In current we have discussed the
power consumption different perspectives. Conventionally the
power consumption can be categorized in two ways including
the power consumed at system level without running specific
application and secondly the power consumption with some
specific application computation [30]. Both categories have
been specified the given equations 2,3 as follows.

Psystem(w) = ∑ 𝑃𝐺𝑃𝑈
𝑖 (𝑤𝑖)

N

i=1
+ 𝑃𝐶𝑃𝑈(∑ (𝑤𝑖𝑀

𝑗)) + 𝑃𝑚𝑏(𝑤) (2)

In above equation, the power consumed by system is the
sum of power consumed by number of configured GPUs,
CPUs and mainboard.

Papp = ∑ 𝑃𝐺𝑃𝑈
𝑖 (𝑤𝑎𝑝𝑝

𝑖)
𝑁𝑎𝑝𝑝

i=1
+ 𝑃𝐶𝑃𝑈(∑ 𝑤𝑖𝑀

𝑗) + 𝑃𝑚𝑏(𝑤𝑎𝑝𝑝) (3)

Similarly, the equation 3 describe the power consumed by
system while running a specific application which is the sum of
power consumed by number of configured GPUs, CPUs and
mainboard.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we have presented all the determined results
from the experiments where we implemented various
numerical algorithms and discussed experimental results in this
section. In first implementation, we run DMM application with
multiple datasets through EPC model. A fundamental matrix
multiplication method used in our implementation has been
presented in below equation (6).

Sum of the given matrix can be defined as:

Cij = ∑ (Aik Bkj)
m

k=1
 (4)

Further to investigate the efficiency factor, we performed
DMM implementation in suggested tri-level hybrid model with
all MPI strategies (S1, S2 and S3) discussed in section (3).

By increasing matrix multiplication datasets, ‘S3’ increased
the efficiency gradually and depicted the best performance
compared to ‘S1’ and ‘S2’, and achieved 68% of peak
performance in Tflops. Unlikely, ‘S1’ and ‘S2’ could attain the
efficiency within range of 700-800 Gflops which was the initial
throughput in ‘S3’ implementation. With large dataset
computation, we observed that ‘S1’ declined the system
efficiency which was eventually cause of over waiting during
data distribution as shown in Fig. 4.

Along with performance, we quantified energy efficiency
which is considered the primary metric for current and
emerging HPC technologies. Likewise, the consequences in
performance efficiency, ‘S3’ throughout increased energy
efficiency at all datasets computation and accomplished 8.2
Gflops/w as shown in Fig. 5.

Further, we implemented 2-D Laplace application utilizing
Jacobian iterative strategy where we run all models. By and
large, the fractional differential conditions are ordered in a way
like conic but here we have discussed only elliptic equation as

Uxx (x, y) + Uyy (x, y) [22]. Be that as it may, the specific

elliptic condition called "2-D Laplace condition" [23] utilized
in current investigations is presented as follows in equation 7:

∂2U

∂x2 (x, y) +
∂2U

∂y2 (x, y) = 0 (5)

We implemented 2-D Laplace Jacobian iterative method in
EPC proposed model using all strategies. The mesh size was
increased dramatically in the range of 1000-8000. Fig. 6 and 7
demonstrate the consequences of 2-D Laplace method against
both metrics (performance and energy efficiency). The similar
efficiency ratio of ‘S1’ in matrix multiplication was found in 2-
D Laplace solver method in range of 390-700 Gflops/sec.
Although, efficiency increased gradually in ‘S1’ but we can
rely on it due to poor throughput.

We also evaluated energy efficiency in 2D Laplace
equation method (see Fig. 6). ‘S3’ provided the best energy

𝑐11𝑐12 ….𝑐1𝑝 𝑎11𝑎12 ….𝑎1𝑚 𝑏11𝑏12 ….𝑏1𝑝

𝑐21𝑐22 ….𝑐2𝑝 𝑎21𝑎22 ….𝑎2𝑚 𝑏21𝑏22 ….𝑏2𝑝

𝑐𝑛1𝑐𝑛2 ….𝑐𝑛𝑝 𝑎𝑛1𝑎𝑛2 ….𝑎𝑛𝑚 𝑏𝑚1𝑏,2 ….𝑏𝑚𝑝

=

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

375 | P a g e
www.ijacsa.thesai.org

efficiency as compared to other strategies. We noticed that ‘S2’
was also prominent and achieved energy efficiency up to 8.3
Gflops/w but ‘S1’ wasted a lot of energy throughout the
computation and achieved 7.4 Gflops/w at maximum mesh size.

Fig. 4. Performance efficiency in all Strategies during MM Computation.

Fig. 5. Performance Efficiency in All Strategies during 2-D Laplace Solver.

Fig. 6. Energy Efficiency 2-D Laplace.

Fig. 7. Energy Efficiency in MM.

VII. CONCLUSION

The emerging HPC models are relied upon to grow first
Exaflops PC to contain a huge number of heterogeneous
process hubs connected by complex systems till next half
decade. This Exascale processing framework will be skilled to
figure one Exaflops estimation for each subsequent which is
thousands-crease increment in current Petascale framework. In
current study, we have discussed the extensive constraints for
Exascale systems and perspective challenges for current
technologies. In this research, the proposed model is a novel
secure and efficient parallel programming approach which is
tri-level hybrid of MPI, OpenMP and CUDA. In MPI, we
implemented different strategies (S1, S2 and S3) under non-
blocking mechanism. Further to evaluate the efficiency factors,
the proposed model was implemented with all these strategies
in two benchmarking HPC applications including DMM and
two dimensional Laplace equation. Consequently, in both
applications, we found that ‘S3’ strategy (non-blocking,
overlapping and GPU computation) performed the best in
providing performance efficiency and energy efficiency
comparatively to (S1and S2). Therefore, hybrid of proposed
model with ‘S3’ MPI strategy can be consider as promising
model to achieve required performance and energy efficiency
for Exascale systems. By future perspectives, this model is
required to be executed a large cluster system that can meet the
minimum requirement for Exascale system configurations.

REFERENCES

[1] Liao, G., Guo, D., Bhuyan, L. and King, S.R., 2008, November. Software
techniques to improve virtualized I/O performance on multi-core systems.

In Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (pp. 161-170). ACM.

[2] Bland, B., 2012, November. Titan-early experience with the titan system

at oak ridge national laboratory. In High Performance Computing,
Networking, , 2012: (pp. 2189-2211). IEEE.

[3] Liao, X., Xiao, L., Yang, C. and Lu, Y., 2014. MilkyWay-2

supercomputer: system and application. Frontiers of Computer Science,
8(3), pp.345-356.

[4] Shalf, J., Dosanjh, S. and Morrison, J., 2010, June. Exascale computing

technology challenges. In International Conference on High Performance
Computing for Computational Science (pp. 1-25). Springer, Berlin,

Heidelberg.

[5] Perarnau, S., Gupta, R. and Beckman, P., 2015. Argo: An exascale

operating system and runtime. In High Performance Computing,
Networking, Storage and Analysis, SC15.

[6] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau,

M., Franzon, P., Harrod, W., Hill, K., Hiller, J. and Karp, S., 2008.
Exascale computing study: Technology challenges in achieving exascale

systems. (DARPA IPTO), Tech. Rep, 15.

[7] Reed, D., et. al., 2015. (ASCAC) Report: Exascale Computing Initiative
Review. USDOE Office of Science.

[8] Ang, J.A., Barrett, R.F., Benner, R.E., Burke, D., Chan, C., Cook, J.,

Donofrio, D., Hammond, S.D. Hemmert, K.S. Kelly, S.M. and Le, H.,
2014, November. In Hardware-Software Co-Design for High

Performance Computing (Co-HPC).

[9] Ceruzzi, P.E., 2005. Moore's law and technological determinism:
reflections on the history of technology. Technology and Culture, 46(3),

pp.584-593.

[10] Barker, Kevin J., et al. "Entering the petaflop era: the architecture and
performance of Roadrunner." Proceedings of the 2008 conference on

Supercomputing. IEEE Press, 2008.

[11] Sameh, A.H., 2015. Parallel Sparse Linear System and Eigenvalue

Problem Solvers: From Multicore to Petascale Computing. PURDUE
UNIV LAFAYETTE IN.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

376 | P a g e
www.ijacsa.thesai.org

[12] Dongarra, J.J. and Walker, D.W., 2001. The quest for petascale

computing. Computing in Science & Engineering, 3(3), pp.32-39.

[13] Zima, H.P., 2007. From FORTRAN 77 to locality-aware high
productivity languages for peta-scale computing. Scientific Programming,

15(1), pp.45-65.

[14] Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., & Chapman,
B. (2011). High performance computing using MPI and OpenMP on

multi-core parallel systems. 37(9), 562-575.

[15] Roberge, V., Tarbouchi, M. and Okou, F.A., 2017. Distribution system
optimization on graphics processing unit. IEEE Transactions on Smart

Grid, 8(4), pp.1689-1699.

[16] Satish, Nadathur, et al. "Fast sort on cpus, gpus and intel architectures."
Intel Labs (2010): 77-80.

[17] Bastem, B., Unat, D., Zhang, W., Almgren, A. and Shalf, J., 2017,
August. Overlapping Data Transfers with Computation on GPU with

Tiles. In Parallel Processing (ICPP), 2017 46th International Conference
on (pp. 171-180). IEEE.

[18] Collis, S.S., 2014. Computers are changing and so must our codes.. (No.

SAND2014-20299PE). Sandia National Laboratories (SNL-NM),
Albuquerque, NM (United States).

[19] Lendino, J. (2016, June 29). Meet the new world's fastest supercomputer:

China's TaihuLight. Retrieved from https://www.extremetech.com/
extreme/230458-meet-the-new-worlds-fastest-supercomputer-chinas-

taihulight

[20] Kunkel, J. M., Balaji, P., & Dongarra, J. (2016). High Performance
Computing: 31st International Conference, ISC High Performance 2016,

Frankfurt, Germany, June 19-23, 2016, Proceedings. Basingstoke,
England: Springer.

[21] STFC,https://www.scd.stfc.ac.uk/Pages/SCD_Science_Highlights_2016.

pdf, 2016.

[22] NCF, European Exascale Software Initiative.

[23] D'Hollander, E., Dongarra, J., & Foster, I. (2013). Transition of HPC

Towards Exascale Computing. Amsterdam, Netherlands: IOS Press.

[24] India to Launch $730M National Supercomputing Mission. (2014,
October 7). Retrieved from https://www.hpcwire.com/2014/10/06/india-

launch-730m-national-supercomputing-mission/

[25] Ashraf, M. U., Fouz, F., & Alboraei Eassa, F. (2016). Empirical Analysis

of HPC Using Different Programming Models. International Journal of
Modern Education and Computer Science, 8(6), 27-34.

[26] Hassani, A., Skjellum, A. and Brightwell, R., 2014, June. Design and

evaluation of FA-MPI, a transactional resilience scheme for non-blocking
MPI. In Dependable Systems and Networks (DSN), 2014 44th Annual

IEEE/IFIP International Conference on (pp. 750-755). IEEE.

[27] Ahmed, H., Skjellumh, A., Bangalore, P. and Pirkelbauer, P., 2017,
September. Transforming blocking MPI collectives to Non-blocking and

persistent operations. In Proceedings of the 24th European MPI Users'
Group Meeting (p. 3). ACM.

[28] Morgan, B., Holmes, D.J., Skjellum, A., Bangalore, P. and Sridharan, S.,

2017, September. Planning for performance: persistent collective
operations for MPI. In Proceedings of the 24th European MPI Users'

Group Meeting (p. 4). ACM.

[29] Hoefler, T., Squyres, J., Bosilca, G., Fagg, G., Lumsdaine, A. and Rehm,
W., 2006. Non-blocking collective operations for MPI-2. Open Systems

Lab, Indiana University, Tech. Rep, 8.

[30] Hahnfeld, J., Cramer, T., Klemm, M., Terboven, C. and Müller, M.S.,

2017, September. A Pattern for Overlapping Communication and
Computation with OpenMP^* Target Directives. In International

Workshop on OpenMP (pp. 325-337). Springer, Cham.

[31] Fujitsu to Provide High-Performance Computing and Services Solution to
King Abdulaziz University. (n.d.). Retrieved from http://www.fujitsu

.com/global/about/resources/news/press-releases/2014/0922-01.html.

[32] King Abdulaziz University, www.kau.edu.sa

[33] L. Ahmad, A. Majidi, and A. Baniasadi. "IPMACC: Open source
OpenACC to CUDA/OpenCL translator." (2014).

[34] G. David, and N. S. Trudinger. Elliptic partial differential equations of

second order. springer, 2015.

[35] B. Richard L., and J. D. Faires. "Numerical Analysis. Brooks/Cole,
Thomson Learning." Inc 206 (2001): 772.

[36] Lilja, D. J. (2005). Measuring Computer Performance: A Practitioner's
Guide. Cambridge, England: Cambridge University Press.

