
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Natural Language Processing based Anomalous
System Call Sequences Detection with Virtual

Memory Introspection
Suresh K. Peddoju1, Himanshu Upadhyay2

Applied Research Center
Florida International University

Florida, USA

Jayesh Soni3, Nagarajan Prabakar4

School of Computing and Information Sciences
Florida International University

Florida, USA

Abstract—Malware has become a significant problem for the
security of computers in this scientific era. Nowadays, machine
learning techniques are applied to find anomalous activities in
computers especially in virtualization environments. Identifying
anomalous activities in virtual machines with virtual memory
introspector and analyzing data with machine learning
techniques are need of current trend. In this paper, an anomaly
detection method is implemented using Natural Language
Processing (NLP) based on Bags of System Calls (BoSC) for
learning the behavior of applications on Windows virtual
machines running on Xen hypervisor. During this process,
system call traces are extracted from normal applications (benign
processes) and malware affected applications (malicious
processes) with the help of virtual memory introspection.
Preprocessing of extracted system call sequences is done to
obtain valid system call sequences through filtering and ordering
of redundant system calls. Further, analysis of behavior of
system call sequences is carried out with NLP based anomaly
detection techniques. During this process, Cosine Similarity
Algorithm (Co-Sim) is applied to identify malicious processes
running on a VM. Apart from this, Point Detection Algorithm is
applied to precisely locate the point of compromise in the system
call sequences. The results shown in this paper indicates that
both of these algorithms detect anomalies in the running
processes with 99% accuracy.

Keywords—System call sequence; anomaly detection; natural
language processing; memory forensics; cosine similarity

I. INTRODUCTION
Nowadays, virtualization is playing a vital role in

distributed systems. It became popular due to its usage and
applicability. The significant advantage of virtualization is to
provide vast resource sharing, load balancing, and protecting
system resources. With the development of virtualization
technologies, hypervisor-based methods have evolved to scan
virtual machines (VM) and identify the threats happening on it.
In the current market, the latest malware is more sophisticated
and robust so that no malware detection techniques are capable
of detecting and protecting the virtual machine. Thus, many
organizations are facing cyber threats to their data and
resources. Hypervisor-based malware detection techniques
overcome these problems in comparison to host-based malware
detection techniques. Virtual Machine Introspection (VMI) is
the most versatile malware detection technique to monitor and

analyze cyber threats on virtual machines [1][2][3]. VMI is a
technique to control the virtual machine run-time state at the
hypervisor level, and it is used for forensic analysis of VM
activities.

In hypervisor-based environment, it is important to observe
virtual machine activities through hypervisor to keep track of
benign and malicious activities happening on it. Memory
forensics is good technique to extract and analyze memory
activities. In this paper, we built a memory forensics
architecture which uses VMI. All memory data structures are
extracted (including system call sequences) to monitor
anomalous activity in VM.

One of the techniques to identify the anomalous behavior
of VM is to trace system call sequences of all running
applications on VM. Hypervisor will extract system call
sequences from memory of VM in runtime. Anomaly detection
techniques are applied on collected data to find any anomalies
in system call sequences by comparing benign and malicious
data. This process will help in identifying the compromised
VM on hypervisor. One of the efficient approaches for
anomaly detection is Bag of System Calls (BoSC). Kang et al.
in 2005 [4] introduces it as a frequency-based technique.
According to this method, system call sequences Si are
represented as a list {C1, C2, . . . , Cn}, where in n is the
number of unique system calls, and Ci is count of system calls,
present in the generated input sequence of system calls.

In this paper, we study the richness of using BoSC
technique to detect malicious behavior at the process level in a
hypervisor based environment. Further, we also propose an
algorithm that detects anomalies at a particular point of time
using cosine angle similarity. The results shows that
considering the sequence of system call occurrences is
powerful for detecting real-time anomalies in running
processes on Xen hypervisor.

The outline of the paper is as follows: Section 2 describes
state of the art related to proposed techniques. The subsequent
section provides a system overview. Section 4 discusses the
system call feature extraction and pre-processing. In the next
section, we explain the proposed algorithm. Furthermore, we
give an in-depth explanation of the environmental setup in
section 6. The results of the proposed algorithms are presented
in section 7. Finally, we conclude the paper in section 8.

455 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

II. RELATED WORK
Classifying malware in any production system is of crucial

importance for the security of its software components. Static
analysis and dynamic analysis are two types of different
malware analysis methods. Due to an increase in malware
threats, there is a substantial increase in research work on
malware detection.

In the static analysis method, we directly analyze source
files without executing them [5]. Masud et al. [6], extracted 4-
gram byte codes with five different static features of assembly
instructions and combined them. For malware detection, they
used two classification algorithms, namely decision tree
algorithm and support vector machine. Ye et al. [7] used an
association mining algorithm that generated association rules
by developing an Intelligent Malicious code Detection System
(IMDS) to obtain import function information. Finally, they
used an association rule-based classification algorithm to detect
malware.

However, techniques such as encryption, packing of
malware, and polymorphism affect static based anomaly
detection methods. Analyzing the behavior of an application is
known as dynamic analysis. Its basic idea is to analyze the
execution of the application [8]. This approach solves many of
the problems of static-based analysis.

Many authors have used Hidden Markov Model (HMM)
based classifier to detect anomalies in system calls
[9][10][11][12][13][14]. However, each author uses a different
set of techniques for improving the precision of anomaly
detection. Alarifi and Wolthusen [15] took sequences from a
virtual machine and then trained them using HMM. Their
HMM-based method gave fewer detection rates since it
required fewer training samples. The detection rate was 97%
by using 780k system calls for training. Wang et al. [11] used
the probability score and threshold value of the whole
sequence. Cho et al. [13] used HMM by training regular user-
level privilege operations. Hoang et al. [14] introduced an
anomaly detection technique for multi-layer by using the
sliding window approach. Warrender et al. [9] provide a
comparison of STIDE [16], RIPPER [17], and HMM-based
methods. These methods had different performance
characteristics, while HMM performed with good accuracy.
However, HMM requires multiple passes through the training
data, high computational power, and needs large storage,
especially for significant sequence length. Time series based
modeling has been performed in [18][19]. The Kernel State
Modeling (KSM) technique uses sequences of system call
sequences as an individual task of kernel modules [20]. This
method calculates the probability of occurrences of the finite
number of states in malicious traces of system calls and
compares against the expectations of normal traces. The KSM
results in higher detection rates in comparison to HMM-based
methods for UNM dataset. For feature extraction, neural-net
based embedding is used for single dimensions data
[21][22][23][24]. Suresh et al. [25][26] introduce machine
learning algorithms for feature extraction for multidimensional
data.

III. SYSTEM OVERVIEW
The proposed framework and methodology is described in

this section. This framework describes how system call
sequences are extracted and analyzed by using a VMI based
architecture and machine learning methods. This workflow
collects system call traces of running processes and introspects
the malicious behavior of processes on guest VM. The
following subsections describe the architecture, methodology,
and procedure to create custom malware.

A. Architecture
The architecture of the proposed memory forensic

framework, as shown in Fig. 1, consists of four modules: the
Virtualization module, the Advanced Cyber Analytics module,
the Malware repository module, and the Test Control Center
module. The proposed framework acquires smart memory
introspection features, analyzes them with advanced cyber
analytics algorithms along with a control center for managing
the system for visualizing the results.

The following sub-sections describe the functionality of
individual modules and their components.

1) Virtualization: In this module, smart memory
introspection is performed on Virtual Machine (VM) using
VMI API to introspect and perform memory forensics. This
module consists of different sub-modules such as Introspector
and Security Agent.

a) Introspector: This module extracts low-level data
from the memory of virtual machines running on a hypervisor,
and transfers this data to agent listener(s) for anomalyanalysis.
The Introspector interfaces with hypervisors to ensure that the
state of the virtual machines (running, stopped, or shut-down)
can be manipulated, and VMs can be added and deleted as
needed.

b) Security Agent: This sub-module initiates scans on
VMs using the LibVMI library to perform introspection. Its
primary mechanism is to extract data from a VM and send the
data to the agent listener for further analysis. The Security
Agent has various features that allow the agent to scan
processes, invariant data structures, and to monitor files
changes.

Fig. 1. System Call Traces with Virtual Machine Introspection.

456 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

2) Advanced cyber analytics: This module comprises of
different machine learning and deep learning algorithms to
train the model and perform a test on that model for further
prediction and analysis of data. The baseline data is
considered as benign data, and the test vector injected data is
known as malicious data. The data extracted by using the
introspection module is stored on a database server and then
analyzed using different cutting-edge machine learning
techniques.

3) Malware repository: This repository consists of a
massive set of malware that compromises kernel-level data
structures. This repository includes different malware for
Windows and Linux. This malware repository also consists of
custom malware sets to compromise the specific context of
kernel data structures.

4) Test control center: With the help of the Test Control
Center module, the operator can control and manage the whole
framework and its modules with a user interface. The operator
can handle the VM operations, such as creation, deletion, stop,
start, pause, and view. Also, the operator can control the VMs
by installing or running malware and benign applications. The
operator visualizes the processed results from the Advanced
Cyber Analytics module for further analysis.

B. Methodology
In the current implementation of this framework, system

call traces are collected from live VM using Virtual Memory
Introspection method. An Introspector package developed on
hypervisor which consists of two modules introspector and
security agent. Among these modules, introspector module gets
connected with the VM and initiates the security agent module
to extract the system call traces from live memory of VM.
Further, security agent sends extracted data to database with
the help of other application called Agent Listener. This
application intern stores information into database. Next step is
to pre-process and analyze the collected system call traces
using anomaly detection algorithms. In view of these, a custom
application is designed to manage the VM, initiate the
scanning, view results and many more. For further study, an
operator can process these traces.

C. Custom Malware
A set of custom malware were created to compromise

system call sequences by way of DLL injection. This injection
hooks into the write function of processes and initiates
additional system calls by creating a hidden file on disk. This
set of custom malware is used in experiments to compromise
system call sequences.

IV. FEATURE EXTRACTION TECHNIQUE
A process behavior is defined with an approach based on

angle similarity. As part of this method, the occurrences of
system calls generated by the process are considered, instead of
the temporal ordering of system calls. This paper presents a
technique called angle similarity which is similar to text
classification for anomaly detection, where a sequence of
system calls is considered as the document, and individual
system calls are viewed as a word. The system-call sequence

are extracted under normal operation are collected from the
hypervisor. Fig. 2 shows the sample sequence of system calls.

Fig. 2. Sample Sequence.

According to this approach, each and every system call is
mapped to a unique number from 0 to 450 to a given sequence
of the system calls. The total unique system calls for Windows
is 450. A sample mapping of system calls is shown.

System
Call

Name
NtQueryInformationProcess NtOpenKey NtQueryValueKey NtOpenKey NtQueryValueKey NtClose

Mapping
Number 25 18 23 18 23 15

We create a Bag of System Calls of 450 dimensions where
each cell value designates the frequency of the ith system call.
The following Fig. 3 shows a sample Bag of System calls:

Fig. 3. BoSC of 450 Dimensions.

V. DETECTION ALGORITHM
The proposed approach computes the cosine similarity

between the features from normal processes and malicious
processes. Cosine similarity is a similarity measure between
two vectors that calculate the cosine angle between them.

The cosine angle between two vectors is calculated using
their Euclidean dot product. Equation 1 shows the Euclidean
dot product.

𝐴.𝐵 = ‖𝐴‖‖𝐵‖ 𝑐𝑜𝑠 𝜃 (1)

Given two vectors of n dimensions, A and B, the cosine
similarity value is calculated as the function of cos(θ) shown in
Equation 2:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) = 𝐴.𝐵
‖𝐴‖‖𝐵‖

= ∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

�∑ 𝐴𝑖
2𝑛

𝑖=1 �∑ 𝐵𝑖
2𝑛

𝑖=1

 (2)

Where Ai and Bi are the features of vectors A and B
respectively in the equation.

A. Anomaly Detection Algorithm
The following algorithm detects anomalies in the running

processes in Windows VM on Xen hypervisor.

For a given set of processes in baseline and test data, use its
system-call sequences and mapping table to map system-call
name to number. An anomalous system call sequences can be
detected by using Algorithm #1, which is shown.

B. Point Detection Algorithm
A Point detection algorithm detects a particular point in the

process execution where the malicious attack has happened.

457 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Sequence length is the number of the system calls taken
into consideration. Sequence length of the system call is
provided as input to the Point Detection Algorithm as given
below in Algorithm #2, BoSC of an anomalous process from
the above anomaly detection algorithm #1, and BoSC of a
normal process.

For point detection algorithm, we use a sliding window of
varying lengths and calculate the cosine similarity for that
particular window. If the cosine similarity is less than 0.99,
then that process within that window is considered as
anomalous. Fig. 4 depicts the point detection method.

Algorithm 1: Anomaly detecting process for system call
sequences.

Algo #1 Anomaly Detection Algorithm

Step 1: for each process B(P i) in Baseline { P1 , P2 P3, ….., Pn }do
Map Si ->Snum using the System Call mapping table.
 Where Si is system call name and Snum is System call mapping
number
 Create bag-of-words for P i by counting occurrences of each Si

Step 2: for each process in T(P i) the TestData{ P1 , P2 P3, ….., Pn }do
 Prepare combined list C(P i) from B(P i)∩T(P i)

Step 3: for each process C(P i) in combined list { P1 , P2 P3, ….., Pn }do
 if C(P i) ≠ Mapping table M(t)then
 P is Anomalous;
 else
 Map Sj ->Snum using the System Call mapping table.

Create bag-of-words for P j by counting occurrences
of each Sj

 Similarity = f (B(P i), B(P j))
 if Similarity < 0.99 then
 P is Anomalous;
 else
 P is Normal;
 end do
end do

Algorithm 2: Point detection for system call sequences

Algo #2 Point Detection Algorithm

Step 1: for each Anomalous Process A(Pi) and Baseline process B(Pi)do
 for each i in range [length(BoSC ofA(Pi)) – (sequence_length)]
do
 Seq(B(Pi)) = BoSC_of_B(Pi) [i:i+sequence_length]
 Seq(A(Pi)) = BoSC_of_A(Pi) [i:i+sequence_length]
 SimVal = Cosine_Similarity(Seq(B(Pi)), Seq(A(Pi)))
 if SimiVal< 0.99 then
 Return A(Pi), Seq(A(Pi))
 end do
end do

Fig. 4. Point Detection Method.

VI. ENVIRONMENT SETUP
The proposed framework is developed on Xen 4.12

hypervisor and managed virtual machines (VM) with Libvirt
5.4.0 library. For getting memory addresses of running
processes virtual machine introspector method are being
imposed with latest version of DRAKVUF library. The current
implementation of this framework consists of two modules
namely Introspector and Security Agent. These modules
extract system call traces by inspecting the VM called System
Under Test (SUT) using the LibVMI library on top of
DRAKVUF in combination with a rekall profile of Google.
This rekall profile is files in JSON that ccomprises of memory
mappings and offsets of windows data structures. The above
two specified modules, are written in Go Language to process
the request and extract the system call traces from VM with
LibVMI functions. LibVMI library services and the Libvirt
library are usedto create, start, or stop virtual machines of
windows. An applicationis designed for operator to extract the
system call traces. This Application is written in Microsoft
Visual Studio .NET framework and comprises of user-defined
API calls for introspector communication and other related
function calls. An agent transmits eextracted data to the
database server. Finally, the stored data is analyzed using
different machine learning algorithms. The whole experimental
setup is shown in Fig. 5.

Fig. 5. Experimental Framework for Extracting System Call Traces.

458 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

VII. RESULTS
In this section, we present the results of the proposed

algorithms.

A. Anomaly Detection Algorithm
We evaluated this algorithm with system-call traces of

1,000,000 system calls with multiple experiments. The total
number of unique system calls in Windows operating system is
450. Fig. 6 and 7, display the top 5 system call with their
frequencies of a normal SUT application and a malicious SUT
application, respectively.

The result shown in Fig. 6 and 7 clearly differentiates
between malicious SUT application system call frequencies in
comparison with benign SUT application. The following
Table \I shows the similarity score between malicious and
normal SUT application.

From Table I, we can say that the cosine similarity of a
normal SUT Applications is higher whereas malicious SUT
application is lower in compared with normal SUT application.

Furthermore, the cosine similarity value is independent of
the number of records. Fig. 8 demonstrates this characteristic.
We observe the same cosine similarity behavior even with the
varying number of records.

B. Point Detection Algorithm
For the point detection algorithm, we tested with a

sequence length of 3, 5, 10, and 15. From Fig. 9, we observe
that sequence length of 5 gives an ideal cosine similarity value
for a single scan.

Fig. 6. Top 5 System Calls based on their Frequency of a Normal SUT

Application.

Fig. 7. Top 5 System Calls based on their Frequency of a Malicious SUT

Application.

TABLE I. COSINE SIMILARITY BETWEEN NORMAL SUT AND MALICIOUS
SUT APPLICATIONS

Applications Normal SUT Application Malicious SUT Application

Similarity Score 0.99 0.20

Fig. 8. Cosine Similarity Value for Normal SUT and Malicious SUT w.r.t #

Records in Ten Thousand.

Fig. 9. Cosine Similarity Value w.r.t Sequence Length for a Single Scan.

Furthermore, we evaluated the algorithm with varying scan
times. From Fig. 10, we found that with a sequence length of 5,
the cosine similarity value is consistently higher in comparison
with all other sequence lengths with varying scan times.

Fig. 10. Cosine Similarity Value w.r.t Sequence Length and Varying Scan

Times.

459 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

VIII. CONCLUSIONS
All intrusion-based detection algorithms work on the

hypothesis that regular activities differ from irregular events
(intrusions). Anomaly detection algorithms learn a program’s
behavior. The behavior is in the form of the frequency of
system calls raised by the processes under evaluation. We
presented two anomaly detection algorithms. Both algorithms
calculate the cosine similarity between the processes under
examination based on the frequency of system calls. Anomaly
Detection Algorithm detects anomaly between benign and
malicious system call sequences whereas point detection
algorithm detects the timeframe of the malicious attack in the
anomalous process. With the help of both of these algorithms
we can able to detect malicious behavior of system call
sequences with 99% accuracy rate.

ACKNOWLEDGMENT
This work was funded by TRMC of DoD. We are very

much thankful for providing facilities and infrastructure to do
our experiments. We thank all who directly and indirectly
helped us in doing this experiments and results.

REFERENCES
[1] M H Ligh, A Case, J Levy, A Walters. “The Art of Memory Forensics,”

2014.
[2] Xen Project available at https://www.xenproject.org/, 2013.
[3] Hizver, Jennia, and Tzi-ckerChiueh. "Real-time deep virtual machine

introspection and its applications." ACM SIGPLAN Notices. Vol. 49.
No. 7. ACM, 2014.

[4] D. Fuller and V. Honavar, “Learning classifiers for misuse and anomaly
detection using a bag of system calls representation,” in Proceedings of
the Sixth Annual IEEE Systems, Man and Cybernetics (SMC)
Information Assurance Workshop. IEEE, 2005, pp. 118–125.

[5] Payet E, Spoto F. Static analysis of Android programs [J]. Information
and Software Technology,2012,54(11): 1192-1201.

[6] Masud M. M., Khan L, Thuraisingham B. A scalable multi-level feature
extraction technique to detect malicious executables[J]. Information
Systems Frontiers, 2008, 10(1):33-45.

[7] Ye Y, Wang D, Li T, et al. IMDS: Intelligent malware detection
system[C]//Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2007:
1043-1047.

[8] Egele M, Scholte T, Kirda E, et al. A survey on automated dynamic
malware-analysis techniques and tools[J]. ACM computing surveys
(CSUR), 2012, 44(2): 6.

[9] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: alternative data models,” in Security and Privacy,
1999. Proceedings of the 1999 IEEE Symposium on, 1999, pp. 133–145.

[10] Soni, J., Prabakar, N., and Upadhyay, H. (2019) “Deep Learning
approach to detect malicious attacks at the system level: poster,”
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks. ACM, pp. 314-315.

[11] W. Wang, X.-H. Guan and X.-L. Zhang, “Modeling program behaviors
by hidden Markov models for intrusion detection,” in Machine Learning
and Cybernetics, 2004. Proceedings of 2004 International Conference
on, vol. 5. IEEE, 2004, pp. 2830–2835.

[12] D.-Y. Yeung, and Y. Ding, “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern Recognition, vol. 36, no.
1, pp. 229–243, 2003.

[13] S.-B. Cho and H.-J. Park, “Efficient anomaly detection by modeling
privilege flows using a hidden Markov model,” Computers and Security,
vol. 22, no. 1, pp. 45 – 55, 2003.

[14] X. D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for anomaly
intrusion detection using program sequences of system calls,” in Proc.
11th IEEE Intl Conf. Networks, 2003, pp. 531–536.

[15] Alarifi and Wolthusen “Anomaly detection for ephemeral cloud IaaS
virtual machines,” in Network and system security. Springer, 2013, pp.
321–335.

[16] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self
for Unix processes,” in Proceedings of the 1996 IEEE Symposium on
Security and Privacy, May 1996, pp. 120–128.

[17] W. Lee and S. J. Stolfo, “Data mining approach for intrusion detection,”
in Usenix Security, 1998.

[18] Soni, J., Prabakar, N. and Kim, J-H. (2017) “Prediction of Component
Failures of Telepresence Robot with Temporal Data.” 30th Florida
Conference on Recent Advances in Robotics

[19] G. S. Thejas, J. Soni, K. Chandna, S. S. Iyengar, N. R. Sunitha, and N.
Prabakar. 2019. Learning-Based Model to Fight against Fake Like
Clicks on Instagram Posts. In SoutheastCon 2019. Huntsville, Alabama,
USA. In press.

[20] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture, “A host-
based anomaly detection approach by representing system calls as states
of kernel modules,” in Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on. IEEE, 2013, pp. 431–440.

[21] Soni, J., Prabakar, N., and Upadhyay, H. (2019) “Feature Extraction
through Deepwalk on Weighted Graph,”Proceedings of the 15th
International Conference on Data Science (ICDATA’19), Las Vegas,
NV, 2019.

[22] Soni, J., Prabakar, N. (2018) “Effective Machine Learning Approach to
Detect Groups of Fake Reviewers,” Proceedings of the 14th
International Conference on Data Science (ICDATA’18), Las Vegas,
NV, 2018.

[23] P. Suresh Kumar and S. Ramachandram, "Fuzzy based Integration of
Security and Trust in Distributed Computing," Proc of Springer 7th
International Conference Soft Computing for Problem Solving
(SocProS'2017), Indian Institute of Technology, Bhubaneswar,
December 2017.

[24] P. Suresh Kumar, HimanshuUpadhyay and ShekarBansali, “Health
Monitoring with Low Power IoT Devices using Anomaly Detection
Algorithm,” IEEE conference SLICE-2019, Rome, Italy, June 2019.

[25] P. Suresh Kumar and Pranavi S, "Performance Analysis of Machine
Learning Algorithms on Diabetes Dataset using Big Data Analytics,"
Proc of IEEE 2017 International Conference on Infocom Technologies
and Unmanned Systems (ICTUS'2017), Dubai, United Arab
Emirates(UAE), December 2017. pp 580- 585.

[26] A. Rishika Reddy and P. Suresh Kumar, "Predictive Big Data Analytics
in Healthcare," Proc of IEEE 2016 Second International Conference on
Computational Intelligence & Communication Technology (CICT),
Ghaziabad, 2016, pp. 623-62.

460 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. System Overview
	A. Architecture
	1) Virtualization: In this module, smart memory introspection is performed on Virtual Machine (VM) using VMI API to introspect and perform memory forensics. This module consists of different sub-modules such as Introspector and Security Agent.
	a) Introspector: This module extracts low-level data from the memory of virtual machines running on a hypervisor, and transfers this data to agent listener(s) for anomalyanalysis. The Introspector interfaces with hypervisors to ensure that the state of the�
	b) Security Agent: This sub-module initiates scans on VMs using the LibVMI library to perform introspection. Its primary mechanism is to extract data from a VM and send the data to the agent listener for further analysis. The Security Agent has various fea�

	2) Advanced cyber analytics: This module comprises of different machine learning and deep learning algorithms to train the model and perform a test on that model for further prediction and analysis of data. The baseline data is considered as benign data, a�
	3) Malware repository: This repository consists of a massive set of malware that compromises kernel-level data structures. This repository includes different malware for Windows and Linux. This malware repository also consists of custom malware sets to com�
	4) Test control center: With the help of the Test Control Center module, the operator can control and manage the whole framework and its modules with a user interface. The operator can handle the VM operations, such as creation, deletion, stop, start, paus�

	B. Methodology
	C. Custom Malware

	IV. Feature Extraction Technique
	V. Detection Algorithm
	A. Anomaly Detection Algorithm
	B. Point Detection Algorithm

	VI. Environment Setup
	VII. Results
	A. Anomaly Detection Algorithm
	B. Point Detection Algorithm

	VIII. Conclusions

