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Abstract—In recent years, there has been a dramatic increase 

in both practical and research applications of unmanned aerial 

vehicles (UAVs). According to the literature, there is a need in 

this area to develop a more refined model of UAV system 

architecture—in other words, a conceptual model that defines 

the system’s structure and behavior. The existing models mostly 

are fractional and do not account for the entire important 

dynamic attributes. Progress in this area could reduce ambiguity 

and increase reliability in the design of such systems. This paper 

aims to advance the modeling of UAV system architecture by 

adopting a conceptual model called a thinging (abstract) machine 

in which all of the UAV’s software and hardware components are 

viewed in terms of the flow of things and five generic operations. 

We apply this model to a real case study of a drone. The results— 

an integrated conceptual representation of the drone—support 
the viability of this approach. 
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I. INTRODUCTION 

Individuals are becoming more reliant on automated 
systems for a wide range of applications. According to Culus 
Schellekens, and Smeets [1], “It looks like our 21st century 
will be the century of robots, with a lot of buzz concerning a 
fast-growing subfamily of these machines, namely drones.” 
The recent drone attacks on Saudi Arabia’s oil installations 
highlight the importance of giving this technology high 
research priority. The introduction of unmanned aerial vehicles 
(UAVs) has raised profound questions around the world with 
regard to issues such as accountability, transparency, privacy, 
legality, use of force, and safety [2]. In recent years, although 
UAVs have been an in-demand research topic, “there still exist 
many unanswered questions” [3]. 

From a technical standpoint, unmanned airplanes can be 
categorized as UAVs, remotely piloted vehicles, or drones. 
These types differ mainly in the type of the mission, the size, 
and (importantly) the level of autonomy in their operation [4]. 
The term “drone,” which is in general use among both the 
media and the public, refers to all types of UAVs. 

Nowadays, the number of possible uses of UAVs is large 
and increasing [5]. One planned development in this direction 
is the use of a centimeter-scale quadcopter with a driving 
application over vast regions. An immense number of such 
vehicles are used for various purposes (e.g., providing climatic 
and meteorological data) [3]. One especially important 

application of UAVs is carrying out so-called D missions [6]: 
those that are dangerous, dirty, or dull. 

This paper focuses on the high-level modeling and control 
of UAVs. Its general objective is to offer a schematic language 
for UAVs so as to enhance the understanding of their 
functionalities. The understanding of technology is a 
constitutive part of human life and helps to address issues of 
survival and improve the use and practice of technology. 
According to Sellars [7], contemporary society hangs together 
largely through technology. This context requires 
understanding “both the practice of designing and creating 
artifacts (in a wide sense, including artificial processes and 
systems) and the nature of the things so created” [8]. 
Accordingly, there is a need to develop a language that ensures 
good technical specification. Such a specification is similar to a 
script for performing a task in that it allows stakeholders 
(engineers, team members, legislators, technocrats, managers, 
officials, etc.) to understand the roles they need to play and that 
helps them to avoid either stepping on one another’s toes or 
overlooking a critical piece of information [9]. 

This paper’s specific objective is thus to provide a 
modeling language that can be used to specify the system 
architecture as an integral phase of the UAV development 
process. The system architecture is the conceptual model that 
defines the structural, behavioral, and other views of a system 
[10]. Indeed, it is necessary to develop, for UAVs, both 
“architecture generation and assessment models. Architecture 
assessment models that presently exist tend to be fractional and 
do not account for all dynamic attributes that should be 
considered in the architecture assessment” [11]. Further 
development in this area can reduces systems’ ambiguity and 
increases their tangibility. 

To accomplish these aims, we propose applying a 
diagrammatic modeling technique called a thinging machine 
(TM). This modeling apparatus is viable in the area of UAV 
systems architecture because it can provide a precise 
description of the total system. This claim is substantiated by 
contrasting TM models with the current UAV diagramming 
methods. Additionally, this paper shows the feasibility of the 
TM approach by describing a real case study. 

Section II includes a partial survey of the works in the area 
of diagram-based modeling for UAVs. Section III provides a 
review of the TM modeling tool, and a detailed example is 
given in Section IV. Section V describes the case study, in 
which an actual drone is modeled. Section VI clarify the TM 
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model itself and Section VII present the application of TM in 
the case study and describe the possible utilization of the 
resulting model in a simulation. Section VIII discuss the 
simulation aspects, and finally Section IX is the conclusion. 

II. SOME RELATED WORKS 

Extensive research has been conducted on the conceptual 
modeling of UAVs at all levels [12]. Drones provide 
unprecedented levels of access to airspace, and such new 
access could fundamentally change business, shipment, and 
travel [13]. However, we focus here on a few architectural 
models that facilitate contrasts with the TM approach. A 
comprehensive survey of the field can be found in Renaul [11]. 

Pastor et al. [6] presented a hardware/software architecture 
for UAVs, using block diagrams to provide a general view of 
the architecture of a mission-control computer and ad hoc 
diagrams to describe operational scenarios. This is an example 
of such a scenario: The mission control decides to take a 
georeferenced video. For this task, it will need the services 
provided by storage, the flight-computer system, and the 
camera and sensing modules. 

Diem, Hien, and Khanh [14] sought to analyze, design, and 
implement controllers of a standard UAV platform; they thus 
adopted a model-driven architecture with a real-time unified 
modeling language (UML). This architecture contains three 
models that are used to separate the specifications for a 
system’s operation: the computation-independent, platform-
independent, and platform-specific models. To capture the 
general requirements based on the object-oriented paradigm, 
Diem, Hien, and Khanh [14] presented a model with abstract 
classes using UML stereotypes and a class diagram [15] in 
order to describe the main functional components of quadrotor 
UAVs (see Fig. 1-3). According to Diem, Hien, and Khanh 
[14], in Fig. 1, “The Guidance System’s class is responsible for 
giving the desired trajectory for a quadrotor UAV to follow. 
This responsibility is completed by taking the desired 
waypoints defining pre-mission with the possible inclusion of 
external environmental disturbances issued from the Air 
Environment’s class; then, it generates a path for this quadrotor 
UAV to follow. 

This is the level of modeling and description that TM 
modeling targets. The style of diagramming in Fig. 1-3 is 
included to provide a contrast with the TM diagrams for the 
model UAV, as developed later in this paper. 

 

Fig. 1. A UML Class Diagram for Presenting the main Functional 

Components of Quadrotor UAVs (Redrawn and Adapted from [14]). 

 

Fig. 2. Local State Machine for the Drive use case. (Redrawn and Adapted 

from [14]). 

 

Fig. 3. Main use-case Model for a Quadrotor UAV. (Redrawn and Adapted 

from [14]). 

Although nothing prevents a diagram from presenting 
multiple views of a system, these diagrams are heterogeneous 
and contain awkward symbols; thus, there is a need for more 
systematic depictions that, according to [16], help to meet the 
challenge of defining a single coherent architecture. TM both 
presents the totality of the system in a conceptual form and 
distinguishes between a model’s static and dynamic aspects. 

III. THINGING MACHINES 

We adopt a conceptual model that is centered on a system’s 
things and (abstract) machines. The philosophical foundation 
of this approach is Heidegger’s notion of thinging [17]. 
According to Riemer, Johnston, Hovorka, and Indulska [18], 
Heidegger’s philosophy gives an alternative analysis of “(1) 
eliciting knowledge of routine activities, (2) capturing 
knowledge from domain experts and (3) representing 
organizational reality in authentic ways” [18]. More 
information about TM’s philosophical foundation can be found 
in Al-Fedaghi [19–21]. 

The simplest type of the thing/machine combination is a 
TM, which is a generalization of the known input-process-
output model. In a TM, the flow of things is the exclusive 
conceptual movement among the five operations (stages), as 
shown in Fig. 4. A thing is created, processed, released, 
transferred, and/or received in a machine. 

 

Fig. 4. A Thinging Machine. 
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Accordingly, the stages of a TM can be described as 
operations that transform, modify, or otherwise affect things 
abstractly or concretely. They are as follows. 

 Arrive: A thing flows to a new machine (e.g., packets 
arrive at a router’s port). 

 Accept: A thing enters a TM after arrival; on the 
assumption that all arriving things are accepted, arrive 
and accept can be combined as the Receiving stage. 

 Release: A thing is marked as ready for transfer 
outside the machine (e.g., in an airport, passengers wait 
to board after passport clearance). 

 Process: A thing’s descriptions are changed (rather 
than the thing itself). 

 Create: A new thing is created (e.g., a forward packet 
is generated in a machine). 

 Transfer: A thing is input to or output from a machine. 

TM also includes triggering (denoted by a dashed arrow), 
or the initiation of a new flow (e.g., electricity triggers a flow 
of air). TM modeling is used in many applications (e.g., see Al-
Fedaghi [22–25]). 

IV. EXAMPLE 

Transporting things is a main application area for UAVs 
[26–29]; this includes delivering medicines and immunizations. 
For the delivery, a transaction message is sent to the UAV with 
the GPS coordinates and the identifier of the order’s package 
docking device [30]. At the delivery location, the control unit 
checks to ensure that the identifier matches the one in the 
transaction message and then performs the package transfer 
[28–30]. Without loss of generality, we model just the delivery 
system’s pickup, as shown in Fig. 5. 

In the figure, a packet-transfer request is created (circle 1) 
and sent to the UAV system (2), where it is processed (3) to 
extract the pickup-location address (4). This address—with 
proper processing (5)—flows (6) to the tracking device (7, the 
antenna and communication) and is sent (8) to the satellites (9). 
The pickup location’s GPS coordinates then flow from the 
satellites (10), through the tracking device, to the UAV (11), 
which processes them (12). This process triggers the creation 
of control instructions (13). These instructions flow to the 
actuator (14), which is responsible for moving and controlling 
the UAV’s mechanism. Accordingly, the UAV moves to the 
pickup location (15). 

 

Fig. 5. The TM Model of the UAV Delivery System’s Pickup. 
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Upon arrival at the pickup location, the transfer request is 
processed again (16) to extract the docking device’s identifier 
(17) and send it to the local location (18). At the same time, the 
docking device’s local-location identifier (19) flows (20) to the 
UAV, which compares the two identifiers (21, 22). If the 
identifiers’ UAV (23) and local location (24) match, 
confirmations are exchanged (25). 

Upon confirming its identifier from both sides, the docking 
device (26) moves to the local location and transfers the 
involved package to the UAV (27). Lastly, the UAV leaves for 
the delivery location (28). 

In a TM model, an event is a machine with at least three 
submachines: the time, the region, and the event itself. 
Accordingly, Fig. 6 shows each event, represented by its 
region, and Fig. 7 shows the UAV system’s behavior in terms 
of the chronology of events (listed below). 

 Event1 (E1): A package-transfer request is created. 

 Event2 (E2): The request arrives at the UAV, where the 
local-area address is extracted and sent to the tracking 
device, which sends the GPS coordinates. 

 Event3 (E3): The GPS coordinates are received. 

 Event4 (E4): The GPS coordinates are sent to the 
control, which issues instructions to the actuator. 

 Event5 (E5): The UAV is processed (moved) according 
to the incoming coordinates. 

 Event6 (E6): The UAV moves to the pickup location. 

 Event7 (E7): The docking-device identifier is extracted 
from the request and sent to the pickup location. 

 Event8 (E8): The docking-device identifier is received 
and checked at the pickup location. 

 Event9 (E9): Confirmations are exchanged between the 
UAV and the pickup location. 

 Event10 (E10): The package is picked up. 

 Event11 (E11): The UAV reaches the delivery location. 

 

Fig. 6. The TM Model of Part of the UAV Delivery System. 

 

 
   

 

 

 
  … 

 
Transferring 

request 

 Identifier of 

docking 

device 

Satellites 

Data 

Address 

  

Pick up location 

address 

Receive 

Transfer 

Delivery 

location 

Receive 

Transfer 

Receive 

Transfer 

 

 

 

 

 

 

 

  

Match? 

Process 

Transfer 

Identifier 

of docking 
device 

T
ra

n
sf

er
 

Confirmation 

Receive 

  

Docking 

device 

Packag

e 

Receive 

Create 

Release C
re

at
e 

Release 
Process 

Receive Receive 
Transfer Transfer Transfer Transfer Transfer 

 

 

 

 

UAV 

system 
 

Process  

Pickup location 

 

Control 

Create 

Transfer 

 Actuator Process 
Release 

Pick up location  

 

Tracking 

Device 

Process 

Release Transfer 

Transfer 

Release 

Transfer Receive 

Receive 
GPS coordinates 

Transfer 

Transfer 

Receive 

T
ra

n
sf

er
 

R
ec

ei
v

e 

R
el

ea
se

 

T
ra

n
sf

er
 

T
ra

n
sf

er
 

R
ec

ei
v

e 

R
el

ea
se

 

T
ra

n
sf

er
 

Pick up location address 

Process 

 Transfer 

Process Match?  

Identifier of docking device 

Transfer 

Create 

Transfer 

R
ec

ei
v

e 

R
el

ea
se

 

T
ra

n
sf

er
 

Transfer 

Releas

e 

Receive 

Receive 

T
ra

n
sf

er
 

Receive 
Release 

Transfer 

Process 

Transfer 

Release 

Process 

The physical 

UAV itself 

Receive Create 

Transfer 
Release 

Transfer 

Transfer Receive Process 

E1 

E2 

R
el

ea
se

 

Create 

Release 

Transfer 

Receive Transfer 

E3 

E4 E5 

E6 
E7 

E8 
E9 

E10

0 

E11

0 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

614 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 7. The Chronology of Events in the TM Model of Part of the UAV Delivery System. 

V. CASE STUDY 

This case study is from an actual project called RECON 
that involves a drone and its control unit, as initially reported in 
[25]. RECON was implemented to monitor, analyze, inspect, 
and intervene in data collection for traffic planners, safety 
managers, and commuters. RECON was originally built using 
non-TM notions. Fig. 8, 9, and 10 show some of the diagrams 
used for the original drone (see [25]). No further details about 
RECON are given because this paper is focused on elaboration 
of the use of TM and not on description of a UAV project. 

 

Fig. 8. The RECON user Interface. 

 

Fig. 9. An Overview of RECON. 

 

Fig. 10. The RECON user Interface Modeled as a UML use Case. 

VI. MODELING UNMANNED AERIAL VEHICLES 

Fig. 11 shows a TM-based static UAV model that consists 
of a user interface (UI) (circle 1), a server with a control panel 
(2), and the drone itself—comprising a controller (3) and a 
physical body (4). The UI contains several pointers (i.e., 
buttons; see Fig. 8), which are used to manage the flight. 

If the drone is turned on, creating a click (5) in the UI 
causes one of the following signals to be sent (6): point-to-
point, auto-landing, elevating signal, lateral balance, throttle 
signal, rudder signal, fail-safe, and follow-me. 

A. Point-to-Point 

This pointer causes the drone to move to a new point 
(position) from its current point in all directions. To 
accomplish this point-to-point movement, the UI process (6) 
creates a signal that is released and transferred (7) to the server, 
where it is stored (8) in the database. The signal also flows to 
the drone controller (9), where it is processed to trigger the 
physical drone’s movement (10). 

The point-to-point movement (11, in the lower right corner 
of the figure) creates digital data (12) that flow to the server 
(13), where they are stored. The data also flow to the UI (14), 
where they are displayed on the user’s screen (15). 

B. Auto-Landing 

This pointer causes the drone to land automatically in a 
given location. To accomplish this, a signal is created, released, 
and transferred (16) to the server, where it is stored (17). The 
signal is also sent to the controller (18), where it is processed, 
which triggers the physical drone’s auto-landing operation 
(19). In addition, the auto-landing operation (20) creates related 
data (21) that flow to the server (22), where they are stored. 
The data then flow to the UI (23) for display on the user’s 
screen (24). 

C. Elevating Signal 

This pointer causes the drone to move up or down. To 
accomplish this, a signal is created, released, and transferred 
(25) to the server, where it is stored (26). The signal then flows 
to the drone controller (27). In the controller, it is processed to 
trigger the physical drone’s movement (28). Furthermore, this 
movement (29) creates related data (30) that flow to the server 
(31), where they are stored. The data then flow to the UI (32), 
where they are displayed on the user’s screen (33). 

D. Lateral Balancing 

This pointer measures the rate of rotation and helps keep 
the drone balanced. Flying with unbalanced props can harm the 
drone’s motors, reduce its flight quality, and affect its stability. 
Stabilization technology provides navigational information to 
the controller to enhance flight safety. The drone’s lateral 
balance needs to work almost instantly to act against gravity, 
wind, and so on. To accomplish this, a signal is created, 
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released, and transferred (34) to the server, where it is stored 
(35). The signal then flows to the drone controller (36). In the 
controller, it is processed to balance the physical drone (37). 

This stabilizing motion (38) creates related data (39) that flow 
to the server (40), where they are stored. The data then flow to 
the UI (41), where they are shown on the user’s screen (42). 

 

Fig. 11. The TM’s Static UAV Model. 
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E. Throttle Signal 

This pointer affects the speed of the drone’s electric motors 
(which increase and decrease its speed). Increasing the throttle 
generates more thrust. To accomplish this, a signal is created, 
released, and transferred (43) to the server, where it is stored 
(44). The signal then flows to the drone controller (45), where 
it is processed to increase or decrease the physical drone’s 
speed (46). In addition, the change in movement speed (47) 
creates related data (48) that flow to the server (49), where they 
are stored. The data then flow to the UI (50), where they are 
displayed on the user’s screen (51). 

F. Rudder Signal 

This pointer involves altitude adjustments. To accomplish 
this, a signal is created, released, and transferred (52) to the 
server, where it is stored (53). The signal then flows to the 
drone controller (54), where it is processed to increase or 
decrease the physical drone’s speed (55). In addition, the 
change in altitude (56) creates related data (57) that flow to the 
server (58), where they are stored. The data then flow to the UI 
(59), where they are presented on the user’s screen (60). 

G. Fail-Safe 

This procedure supports the drone in case of an error. This 
mode sets the conditions that the model’s servos and motors 
revert to when it loses the transmitter’s control signal. For 
instance, the fail-safe could automatically cause the drone to 
return home or to the nearest base station. To accomplish this 
task, a signal is created, released, and transferred (61) to the 
server, where it is stored (62). The signal then flows to the 
drone controller (63), where it is processed to move the 
physical drone (64). In addition, this movement (65) creates 
related data (66) that flow to the server (67), where they are 
stored. The data then flow to the UI (68), where they are 
displayed on the user’s screen (69). 

H. Follow Me 

This pointer causes the activation of follow-me mode, 
which gives the drone the ability to autonomously track a 
target without piloting. For example, a drone can be 
programmed to automatically follow its operator around. To 
accomplish this, a signal is created, released, and transferred 
(70) to the server, where it is stored (71). The signal then flows 
to the drone controller (72), where it is processed to move the 
physical drone in follow-me mode (73). In addition, this 
movement (74) creates related data (75) that flow to the server 

(76), where they are stored. The data then flow to the UI (77), 
where they are shown on the user’s screen (78). 

VII. DYNAMIC THINGING MACHINE MODEL 

The space limitations and density of overlapping events do 
not permit us to diagram all the events for the processes in the 
UI. Accordingly, we show the events for only two of them: 
Point-to-Point and Follow Me, as shown in Fig. 12. Clicking 
on Point-to-Point causes the following events. 

 Event 1 (E1): Point-to-Point is clicked on the pointer. 

 Event 2 (E2): A flow signal to the server is created. 

 Event 3 (E3): The signal is stored in the database. 

 Event 4 (E4): The signal flows to the drone controller. 

 Event 5 (E5): The physical drone begins to move. 

 Event 6 (E6): The movement operation takes its course. 

 Event 7 (E7): The signal is processed to trigger up or 
down movement in the physical drone. 

 Event 8 (E8): The signal is processed to balance 
(stabilize) the physical drone. 

 Event 9 (V9): The signal is processed to accelerate or 
slow the physical drone’s movement. 

 Event 10 (E10): The signal is processed to increase or 
decrease the physical drone’s speed. 

 Event 11 (E11): The signal is processed to trigger the 
physical drone’s movement; instructions are sent to the 
flight controller to execute to this mode. 

 Event 12 (E12): The signal is processed to move the 
physical drone and thus follow the selected target. 

 Event 13 (E13): The signal is processed to trigger flows 
to the controller and shift from analog to digital. 

 Event 14 (E14): The signal flows to the control panel. 

 Event 15 (E15): The signal is stored in the database. 

 Event 16 (E16): The signal flows to the server. 

 Event 17 (E17): The signal flows to the UI. 

Fig. 13 shows the chronology of these events. 
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Fig. 12. Events in the TM Model of the UAV Delivery System. 
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Fig. 13. The Chronology of Events in the TM Model of the UAV. 

VIII. SIMULATION 

The TM diagram can be used to simulate drone processes. 
TM events are fine-grained activities that result in the 
integration of a static description and a dynamic model of 
events. Without loss of generality, we focus on flowcharting 
using the simulation language Arena. In Arena, the flowchart 
plays an important role, and the success of a simulation 
depends on how well the flowchart projects the identification 
of events; the notion of an event is used informally. TM can 
assist with this process. 

 

Fig. 14. Some Combinations in a Series of Elementary Elevating Events. 

By contrast, a TM diagram specifies all elementary events 
(create, process, release, transfer, and receive). For example, 
Fig. 14 shows the series of elementary events involved in 
elevating the drone (see Fig. 11, circle 5), including the click 
and the movement of the drone, as well as some more complex 
events that can be formed from the elementary events. Many 
possible selections of events are possible. For example, release-
transfer/transfer-receive can be considered one event in which 
a thing flows from one submachine to another. Alternatively, it 
can be considered two events: leaving (release-transfer) and 
arriving (transfer-receive). We start with a TM diagram and 

identify event boundaries from the elementary events until we 
attain the required level of granularity. We are experimenting 
with Arena flowcharts produced by an ad hoc method as well 
as those developed using TM. 

IX. CONCLUSION 

This paper addresses the development of conceptual 
modeling for UAVs. We propose a flow-based specification 
called TM as a good vehicle in this area and demonstrate the 
TM methodology through a case study involving the 
construction of a drone. 

A shortcoming of TM regards its (visual) diagramming 
complexity, which originated in the various machines’ and 
submachines’ completeness. The TM diagram can be 
simplified to whatever level of granularity is required for the 
original TM description. For example, Fig. 15 was produced 
from a static TM representation of a UAV. 
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Further research is needed to directly apply the TM 
methodology to more sophisticated UAV systems. Further 
investigation is also required to develop TM tools and 
supporting apparatus. Specifically, additional synchronization, 
constraints, and logical notation need to be superimposed on 
the base TM description. As mentioned previously, TM can be 
used as a basis for simulation. 
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