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Abstract—Machine learning techniques are gaining 

popularity and giving better results in detecting Web application 

attacks. Cross-site scripting is an injection attack widespread in 

web applications. The existing solutions like filter-based, 

dynamic analysis, and static analysis are not effective in detecting 

unknown XSS attacks, and machine learning methods can detect 

unknown XSS attacks. Existing research to detect XSS attacks by 

using machine learning methods have issues like single base 

classifiers, small datasets, and unbalanced datasets. In this paper, 

supervised ensemble learning techniques trained on a large 

labeled and balanced dataset to detect XSS attacks. The ensemble 

methods used in this research are random forest classification, 

AdaBoost, bagging with SVM, Extra-Trees, gradient boosting, 

and histogram-based gradient boosting. Analyzed and compared 

the performance of ensemble learning algorithms by using the 
confusion matrix. 
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I. INTRODUCTION 

Machine learning algorithms are useful in detecting 
unknown and new XSS attacks in Web Applications. Ensemble 
methods are a combination of different base models, and the 
ensemble learning models can give optimal results compared to 
base models [1]. In XSS attacks, the attacker can steal victim’s 
session cookie, sensitive data of victim, implement keyloggers 
at browser, and damage the reputation of a trusted Website. 

A common problem in existing XSS prevention techniques 
are the incapability of detecting unknown or new XSS attacks 
[2]. Highly effective XSS detection models can be built by 
using ensemble learning techniques. AdaBoost, bagging, Extra-
Trees, gradient boosting, random forest, histogram-based 
gradient boosting are ensemble methods, which uses base 
models like decision trees, etc. 

Cross-site scripting injection attacks are categorized into 
three types, and they are persistent (stored), non-persistent 
(reflected), and DOM-based attacks. Many existing solutions 
primarily focused on preventing only one type of XSS attack, 
and there are only a few solutions to avoid all types of attacks 
[3]. The proposed ensemble learning models can detect all 
types of attacks by proper implementation at the server and 
client-side. 

Ensemble methods use different algorithms to achieve 
better prediction rate. Usually, ensemble learning involves the 
same base learning algorithm. The limitation in ensemble 
methods is that these require more computations compared to a 
single model. In ensemble learning base models are combined 
in three ways. 

Bagging: In bagging (bootstrap aggregation) weak learning 
algorithms applies on a small sample dataset and takes an 
average of all learners prediction. Bagging will decrease the 
variance. 

Boosting: It is an iterative method, in boosting sample 
weights are adjusted based on the previous classification. 
Boosting will decrease bias error. 

Stacking: In this output of one model is given as input to 
another model. Stacking will decrease variance or bias based 
on models used. 

The purpose of this paper is to investigate and compare the 
prediction accuracy of machine learning ensemble methods in 
detecting Cross-site scripting attacks in Web Applications. 

The paper is organized as follows: Section 2 contains 
related work. We prepared XSS data for training and testing in 
Section 3. We implemented the ensemble learning models in 
Section 4. We analyzed the performance of proposed ensemble 
models in Section 5. Sections 6 and 7 contains conclusion and 
future work. 

II. RELATED WORK 

Rodriguez et al. [4] analyzed 67 documents related to XSS 
attacks. According to their research, most of the researches use 
browser tools or web page analysis methods to prevent XSS 
attacks, very few researches on machine learning algorithms to 
prevent these attacks. Based on their research most common 
issues in existing researches are detecting only one type of 
XSS attacks, low attacks data, only restricted to one 
programming environment like PHP, same data for different 
researches, methods not scalable, high false positives, methods 
work on only one browser, few methods proposed to use 
artificial intelligence, etc. 

S. Gupta and B. B. Gupta [5] did a study on defense 
mechanisms of XSS attacks, and they stated that safe input 
handling is one of the essential techniques to mitigate XSS 
attacks. A good XSS defensive technique needs to differentiate 
malicious code and legitimate JavaScript code automatically. 

Hydara et al. [6] studied 115 research papers on XSS 
attacks. Based on their study, non-persistence XSS attacks are 
popular, and there is a need for solutions to remove XSS 
vulnerabilities from the source code. 

Shanmugasundaram et al. [7] stated that developers lack 
knowledge on implementing existing XSS solutions in their 
web applications. 
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Aliga et al. [8] study showed that most of the XSS 
prevention solutions are client-side, and they are unable to 
detect new XSS attacks, and these solutions lack self-learning 
capabilities. They reviewed 15 XSS prevention techniques, and 
out of 15, only two techniques have self-learning capabilities. 

Nunan et al. [9] used supervised ML methods like Naive 
Bayes and SVM to detect XSS attacks. Their total data set size 
216054, and among them, 15366 are XSS attacks. They 
evaluate the algorithms based on accuracy, detection, and false 
alarm rates, etc. Their results show that compared to Naive 
Bayes, the SVM achieved the best performance. They selected 
the following features for classification of XSS attacks 
Obfuscation of code, the number of domains, URL Length, 
duplicate special characters, Schemes, etc. 

Mereani and Howe [10] developed Random Forest, kNN, 
and SVM models to detect XSS malicious code, and they used 
labeled data in training. They trained using 2000 samples and 
used 13000 for testing. In their experiments, they reached 
accuracy up to 99.75%. They extracted Structural features 
contain a set of special characters in malicious JavaScript, and 
Behavioural Features includes function and commands used in 
malicious JavaScript code, a total of 59 features from both 
categories. 

Rathore et al. [11] developed an ML method for Social 
networking services (SNSs) to detect XSS attacks. In their 
method, extracted Webpage features, URL features, and SNSs 
features from web pages and used this data to train models. 
Some of the features include domains in a URL, URL length, 
Iframes count, external link counts, and malicious JavaScript 
codes in SNSs webpage, etc. 1000 SNSs pages used to build a 
dataset for testing and used different classifiers in their testing. 
They achieved 97.2% accuracy in their tests. 

Akaishi and Uda [12] used a combination of classifiers to 
detect XSS attacks in their research. Their data set contain 
balanced 10000 samples where attack data in URL format. 
They divided the attack sentence into words, co-occurrence, 
and frequency of words used in their classification. They used 
word2vec based model in their research to transform words 
into vectors, and used those vectors is classification algorithms. 
According to them, CNN and SVM are the best filters for real-
world problems. 

Mokbal et al. [13] proposed a Multilayer perceptron based 
model to detect XSS attacks. Their model achieved an 
accuracy of 99.32% in detecting attacks. Their dataset contains 
a total of 138569 samples, and among them, 38569 are attack 
samples. They extracted URL based, HTML based, and 
JavaScript-based features form content and used these features 
in training proposed models. Some of the features like URL 
length and special characters in URL, HTML tags, JavaScript 
events, etc. 

Wang, Cai, and Wei [14] proposed a deep learning-based 
framework to detect malicious JavaScript. The structure 
contains logistic regression, deep learning method, and sparse 
random projection. They extracted features from JavaScript 
code by using Stacked denoising autoencoders (SdA). These 
features used to train SVM or logistic regression models. 
Classification of malicious code done by logistic regression. 

Their labeled dataset contains 14783 malicious JavaScript 
codes and 12320 benign samples. Their model achieved 94.9% 
accuracy. 

III. DATA COLLECTION AND DATA PREPROCESSING 

For this research, collected XSS vectors by using popular 
XSS tools like XSStrike, XSSER [15] and from different 
sources collected thousands of attack vectors. The dataset 
contains 154626 unique samples with labels. Half of this 
dataset is XSS attack vectors, and another half (77313) of the 
dataset is safe vectors. XSS attack vectors and Safe vectors are 
maintained at 128 characters, and longer sequences are split 
into 128 character chunks. Fig. 1 shows safe vector generator, 
by using this, generated safe vector samples. These randomly 
generated safe vectors are three types with length ranges from 
40 to 126 those are, string with only uppercase or lowercase 
alphabets, strings with all alphabets and digits, and strings with 
all alphabets, digits and special characters. The below 
examples show different types of safe vectors: 

1. kikDfuPLasVpSDqfKLMUTbyDAssjedEhphsOSPUnxO
OHwDUkdHxLyJGPoMRIVERzJwuTVmbCwwYjVTtQ
TfApxparHUUEEiidfUWBfJNUnVovFYNlBTJJ 

2. aLcmHRaDMXwMmOmzQDhbEfeSYcZTRsPNkbjcoCa
YauezgpthiPEvrUGfOXHGljqgZSDiArGKshBDvmcYm
OdOYIpDsfbfGoPrwQXIkjltIIqImReZGbEVFwABEJZg
Sn 

3. BqAoxOrvaovydRv8QuQmQvoAk6hUbTaUFx18al7jYZ
XBWvf1GWHIlbwgYd1qR2mx 

4. x54fQrSJicA8f2KInEibadR3NrAVwkTgKdFn8WqBpqB
KcufKJZ1zPpqybBPPQCu0LcWHjkRqvEgnJHUolgRLiZ
ebe13wt7b6S1uY23cWkbleU7dzbKyQMysra18u 

5. Y0P/U#Y_Dk#NNZ?p>B]6Ndb[&,:^iMI=~ts8Depf*C`aQ
>!d[;p02LzJ,`5"hVCqAPXonVtrQ]L9`JBD=8L<c"Tl-
?PASb7bs|/[.IXXMyQ:7av`q?m-@XV7"xm( 

6. 2\{k@1\WMNXMi/3[1=mo#UHv5Da@-PzvG%*t(h-
f\L25+{IU3#2Y_[msZ8h_^QP$@E4quPS~.~JddH"G3.+2
)1~+svNQ.HPuCT5eKZVV*[Ej]*x5 

The number of safe vectors generated depends on XSS 
attack vectors, to maintain the balance between XSS and safe 
samples of the dataset. This balanced dataset used to train and 
test the models. The below examples shows sample XSS attack 
vectors. 

1. <img src="http://www.example.org/theerrornoimg.file" 
onerror=alert(" hi, here XSS Problem");> 

2. <script\x20type="text/javascript">javascript:alert(19);</sc
ript> 

To prepare input for models, converted the character 
sequence of XSS attacks, and Safe vectors into Unicode integer 
format, Fig. 2 shows sample data in Unicode format. The 
dataset is standardized by using sklearn’s [16] StandardScaler 
function, Standardization of a dataset will improve the 
performance and accuracy of machine learning algorithms. 
Fig. 3 shows a sample data after standardization without the 
output column. The preparing process of dataset for model 
training shown in Fig. 4. 
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Fig. 1. Safe Vector Generator. 

 

Fig. 2. Sample Data from the Dataset in Unicode Format. 

 

Fig. 3. Sample Data from the Dataset after Standardization. 

 

Fig. 4. Process of Preparing the Dataset. 

IV. IMPLEMENTATION OF ENSEMBLE METHODS 

In this research supervised ensemble machine learning 
methods are used to detect XSS attacks. The ensemble learning 
methods [17] used are random forest classification, AdaBoost, 
bagging with SVM, Extra-Trees, gradient boosting, and 
histogram-based gradient boosting. These ensemble 
classification methods are effective in detecting XSS attacks 
compared to base models. 

Google Colab [18] is used to build and test these models. 
The working environment includes Python 3.6.9, scikit-learn, 
TensorFlow 2.1.0 (includes Keras) [19], etc. 

The dataset contains balanced unique 154626 samples, 
77313 are Safe vectors and 77313 are XSS attacks. Total 
samples divided into 8:2 ratio for training (123700) and testing 
(30926) samples. 

Fig. 5 shows the confusion matrix. The confusion matrix 
values are used to compare and evaluate the models. 

Confusion matrix [20] used to calculate performance 
metrics of a model, by using the confusion matrix one can 
calculate the following values. 

Recall = (TRUE POSITIVE) / (TRUE POSITIVE + FALSE 

NEGATIVE) 

Precision = (TRUE POSITIVE) / (TRUE POSITIVE + FALSE 

POSITIVE) 

F-measure = (2 x Recall x Precision) / (Recall + Precision) 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

A. Random Forest Classifier (RF) 

Random forest classifier contains a collection of decision 
trees, and each decision tree fits on a subset of the dataset. 
Based on the output of all decision trees, the random forest 
classifier decides the final class of an input object. Table I 
shows the confusion matrix of the random forest model, and 
Table II shows the recall, precision, F-measure, and accuracy 
of the random forest model in detecting XSS attacks and safe 
vectors. Cross-validation scores of random forest classifier 
model are 0.99803, 0.99774, 0.99787, 0.99796, 0.99822 and 
the mean is 0.99796. In the random forest model, reached 
accuracy up to 0.99822. 

 

Fig. 5. Confusion Matrix. 
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TABLE I. RANDOM FOREST MODEL CONFUSION MATRIX 

 
Safe samples 

(Predicted) 

XSS samples 

(Predicted) 

Safe samples (Actual) 15463 0 

XSS samples (Actual) 62 15401 

TABLE II. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF 

RANDOM FOREST MODEL 

 Recall Precision F-measure 

Safe samples 1.00000 0.99601 0.99800 

XSS samples 0.99599 1.00000 0.99799 

Accuracy = 0.99800 

B. AdaBoost Classifier (AB) 

Boosting algorithms are used to reach high accuracy, 
AdaBoost (Adaptive Boosting) is a popular ensemble boosting 
algorithm works on decision trees. AdaBoost combines 
multiple low performing classifiers to get high performing 
classifier. In AdaBoost's every iteration, weak classifiers are 
tweaked (weighted data) based on the accuracy of previous 
training. The confusion matrix of the AdaBoost classifier 
model is shown in Table III, and Table IV shows the recall, 
precision, F-measure, and accuracy of the AdaBoost classifier 
model in detecting XSS attacks and safe vectors. Cross-
validation scores of AdaBoost classifier model are 0.9977, 
0.99793, 0.99735, 0.99764, 0.99832 and the mean is 0.99779. 
In the AdaBoost model, reached accuracy up to 0.99832. 

C. Bagging Classifier with SVM (BC) 

Bootstrap aggregating (or Bagging) is an ensemble method 
in machine learning. SVM is used as a base classifier for the 
bagging model. In bagging, the base classifiers are trained (fits) 
on a randomly selected subset data of the original dataset, and 
the final prediction depends on individual base classifiers 
predictions. The confusion matrix of the bagging model is 
shown in Table V, and Table VI shows the recall, precision, F-
measure, and accuracy of the bagging model in detecting XSS 
attacks and safe vectors. Cross-validation scores of bagging 
classifier model are 0.98192, 0.98228, 0.98186, 0.98264, 
0.98276 and the mean is 0.98229. In the bagging model, 
reached accuracy up to 0.98276. 

D. Extra-Trees Classifier (ET) 

Extra-Trees (Extremely Randomized Trees) method is an 
ensemble method similar to the random forest classifier. In 
Extra-Trees classifier, decision trees are constructed randomly 
in the forest, and these decision trees trained (fits) on subsets of 
data. The final prediction depends on all decision trees 
predictions. The confusion matrix values of the Extra-Trees 
classifier model is shown in Table VII, and Table VIII shows 
the recall, precision, F-measure, and the accuracy of the Extra-
Trees classifier model in detecting XSS attacks and safe 
vectors. Cross-validation scores of Extra-Trees classifier model 
are 0.99049, 0.99088, 0.99069, 0.99192, 0.99175 and the mean 
is 0.99115. In the Extra-Trees classifier model, reached 
accuracy up to 0.99192. 

E. Gradient Boosting Classifier (GB) 

Gradient boosting classifier is an ensemble boosting 
algorithm, where a weak classifier is modified into a strong 
classifier. In the gradient boosting classifier, decision trees are 
base classifiers, and loss function is optimized while adding a 
new tree. Table IX shows the confusion matrix of the gradient 
boosting model, and Table X shows the recall, precision, F-
measure, and the accuracy of the gradient boosting model in 
detecting XSS attacks and safe vectors. Cross-validation scores 
of gradient boosting classifier model are 0.99618, 0.99573, 
0.99644, 0.99609, 0.99648 and the mean is 0.99618. In the 
gradient boosting model, reached accuracy up to 0.99648. 

TABLE III. ADABOOST MODEL CONFUSION MATRIX 

 
Safe samples 

(Predicted) 

XSS samples 

(Predicted) 

Safe samples (Actual) 15440 23 

XSS samples (Actual) 46 15417 

TABLE IV. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF 

ADABOOST MODEL 

 Recall Precision F-measure 

Safe samples 0.99851 0.99703 0.99777 

XSS samples 0.99703 0.99851 0.99777 

Accuracy = 0.99800 

TABLE V. BAGGING MODEL CONFUSION MATRIX 

 
Safe samples 

(Predicted) 

XSS samples 

(Predicted) 

Safe samples (Actual) 15243 220 

XSS samples (Actual) 354 15109 

TABLE VI. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF 

BAGGING MODEL 

 Recall Precision F-measure 

Safe samples 0.98577 0.97730 0.98152 

XSS samples 0.97711 0.98565 0.98136 

Accuracy = 0.99800 

TABLE VII. EXTRA-TREES CLASSIFIER MODEL CONFUSION MATRIX 

 
Safe samples 

(Predicted) 

XSS samples 

(Predicted) 

Safe samples (Actual) 15463 0 

XSS samples (Actual) 272 15191 

TABLE VIII. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF EXTRA-
TREES CLASSIFIER MODEL 

 Recall Precision F-measure 

Safe samples 1.00000 0.98271 0.99128 

XSS samples 0.98241 1.00000 0.99113 

Accuracy = 0.99800 
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TABLE IX. GRADIENT BOOSTING MODEL CONFUSION MATRIX 

 
Safe samples 

(Predicted) 

XSS samples 

(Predicted) 

Safe samples (Actual) 15406 57 

XSS samples (Actual) 79 15384 

TABLE X. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF 

GRADIENT BOOSTING MODEL 

 Recall Precision F-measure 

Safe samples 0.99631 0.99490 0.99561 

XSS samples 0.99489 0.99631 0.99560 

Accuracy = 0.99800 

F. Histogram-based Gradient Boosting Classification 
(HGBC) 

Histogram-based gradient boosting classification is an 
ensemble boosting algorithm, which is better compared to 
gradient boosting for large datasets. HGBC can handle missing 
values. In HGBC, decision trees are base classifiers. Table XI 
shows the confusion matrix of the HGBC model, and Table 
XII shows recall, precision, F-measure, and the accuracy of the 
HGBC model in detecting XSS attacks and safe vectors. Cross-
validation scores of HGBC model are 0.99874, 0.99877, 
0.99851, 0.99871, 0.9989 and the mean is 0.99873. In the 
HGBC model, reached accuracy up to 0.9989. 

TABLE XI. HGBC MODEL CONFUSION MATRIX 

 
Safe samples 

(Predicted) 

XSS samples 

(Predicted) 

Safe samples (Actual) 15447 16 

XSS samples (Actual) 32 15431 

TABLE XII. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF HGBC 

MODEL 

 Recall Precision F-measure 

Safe samples 0.99897 0.99793 0.99845 

XSS samples 0.99793 0.99896 0.99845 

Accuracy = 0.99800 

V. RESULTS AND DISCUSSION 

This research evaluated the XSS detection rate in ensemble 
learning techniques. AdaBoost, bagging with SVM, Extra-
Trees, gradient boosting, random forest classification, and 
histogram-based gradient boosting models are trained on a 
large labeled dataset and evaluated these methods performance 
based on their accuracy, recall, precision, and the F-measure. 
Table XIII compares the performance metrics of all models, 
and Table XIV compares the cross-validation scores of all 
models, and Fig. 6 shows the mean score of cross-validations 
of models. From the results, it is concluded that all ensemble 
methods performed well and reached an accuracy of more than 
98% in all models. 

Form all tested ensemble machine learning algorithms, the 
histogram-based gradient boosting classification model is the 
best performed model with the highest possible accuracy of 
0.9989. 

TABLE XIII. COMPARISON OF PERFORMANCE METRICS 

Mod

el 

Recall Precision F-measure 
Accura

cy 

Safe XSS Safe XSS Safe XSS  

RF 
1.000

00 

0.995

99 

0.996

01 

1.000

00 

0.998

00 

0.997

99 
0.99800 

AB 
0.998

51 

0.997

03 

0.997

03 

0.998

51 

0.997

77 

0.997

77 
0.99777 

BC 
0.985

77 

0.977

11 

0.977

30 

0.985

65 

0.981

52 

0.981

36 
0.98144 

ET 
1.000

00 

0.982

41 

0.982

71 

1.000

00 

0.991

28 

0.991

13 
0.99120 

GB 
0.996

31 

0.994

89 

0.994

90 

0.996

31 

0.995

61 

0.995

60 
0.99560 

HGB

C 

0.998

97 

0.997

93 

0.997

93 

0.998

96 

0.998

45 

0.998

45 
0.99845 

TABLE XIV. COMPARISON OF CROSS-VALIDATION SCORES 

Model 
Fold 1 

score 

Fold 2 

score 

Fold 3 

score 

Fold 4 

score 

Fold 5 

score 

Mean 

score 

RF 0.99803 0.99774 0.99787 0.99796 0.99822 0.99796 

AB 0.9977 0.99793 0.99735 0.99764 0.99832 0.99779 

BC 0.98192 0.98228 0.98186 0.98264 0.98276 0.98229 

ET 0.99049 0.99088 0.99069 0.99192 0.99175 0.99115 

GB 0.99618 0.99573 0.99644 0.99609 0.99648 0.99618 

HGBC 0.99874 0.99877 0.99851 0.99871 0.9989 0.99873 

 

Fig. 6. Mean Score of Ensemble Learning Algorithms. 

VI. CONCLUSION 

We developed and analyzed supervised ensemble machine 
learning methods to detect XSS attacks in Web applications. 
Ensemble learning techniques are a collection of base 
classifiers, and these ensemble methods perform better than 
single classifiers. Existing solutions to detect XSS attacks by 
using machine learning methods have issues like single base 
classifiers, small datasets, and unbalanced datasets. We trained 
and evaluated proposed models on a large balanced dataset, 
and in this research, we detect XSS attacks in data submitted 
by the user. In this work, we evaluated the performance of 
random forest classification, AdaBoost, bagging with SVM, 
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Extra-Trees, gradient boosting, and histogram-based gradient 
boosting models in detecting XSS attacks and safe vectors. We 
compared the performance of models by using the confusion 
matrix metrics. The results show that all ensemble learning 
models performed exceptionally well in detecting XSS attacks 
and safe vectors. We reached the highest accuracy of 0.9989 in 
the histogram-based gradient boosting classification model. 

VII. FUTURE WORK 

In future, the work can be extend to detect other Web 
application attacks like SQL injection. The models can be 
tested by integrated into real world applications to detect 
attacks. 
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