
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

708 | P a g e
www.ijacsa.thesai.org

Feature Selection and Performance Improvement of

Malware Detection System using Cuckoo Search

Optimization and Rough Sets

Ravi Kiran Varma P1, PLN Raju2, K V Subba Raju3, Akhila Kalidindi4

MVGR College of Engineering

Vizianagaram, AP, India

Abstract—The proliferation of malware is a severe threat to

host and network-based systems. Design and evaluation of

efficient malware detection methods is the need of the hour.

Windows Portable Executable (PE) files are a primary source of

windows based malware. Static malware detection involves an

analysis of several PE header file features and can be done with

the help of machine learning tools. In the design of efficient

machine learning models for malware detection, feature

reduction plays a crucial role. Rough set dependency degree is a

proven tool for feature reduction. However, quick reduct using

rough sets is an NP-hard problem. This paper proposes a hybrid

Rough Set Feature Selection using Cuckoo Search Optimization,

RSFSCSO, in finding the best collection of reduced features for

malware detection. Random forest classifier is used to evaluate

the proposed algorithm; the analysis of results proves that the
proposed method is highly efficient.

Keywords—Cuckoo search; rough sets; feature optimization;

malware analysis; malware detection; feature reduction; clamp

dataset

I. INTRODUCTION

From the past, many years’ malware has become a
significant security threat for systems and networks. Malware
is defined as software or malicious code injected into a target
system or network to make the system work abnormally [1].
Virus, Trojans, backdoors, worms, rootkits, spyware, adware,
etc. are several forms of malware. In general, any malware is
commonly termed as a virus, which was first framed by Fred
Cohen [2] in the year 1983. Every malware is designed with a
common intention of destroying or doing some illegitimate
access on the system or gain access or retrieve some sensitive
information from the system. The type of malware and the anti-
malware or malware detection systems depends on the
hardware/software platforms and the operating system. The
main goal of attackers is to infect or morph malware to evade
from the malware detectors.

The increase in the volume of the datasets has resulted in a
decrease in performance and increased the complexity of the
classification model, thereby resulting in need of feature
reduction (FR). Feature reduction was defined by [3] as the
“subset of features for enhancing the accuracy and at the same
time decreasing the complexity of the classification model.” A
reduced subset is proved to be a useful subset if the number of
features is reduced without the decrease of accuracy. In
general, any FR techniques follow mainly two steps [4]. In the

initial step, the candidate subset is selected using a search
technique, and in the final step, the selected subsets are
evaluated using an objective function.

The existing feature selection algorithms are classified into
two approaches based on the Objective function used. They are
wrapper-based [5] and filter-based [6]. Filter-based techniques
use statistical methods like the dependency degree or
information measurement to evaluate the candidate subset and
do not depend on the classification algorithm. In contrast,
wrapper-based algorithms depend on the classification
algorithm to evaluate the selected features. Hall & Lloyd, [7]
applied both wrapper-based methods and filter-based methods
and proved that filter based technique is faster and utilizes less
CPU utilization. But the main drawback is that they did not
provide any accuracy after implementing the techniques.

Shabtai et al. [8] extracted features from the Linux OS and
compared a total of 10 datasets. The authors implemented a
feature reduction method. He compared selection methods such
as chi-square, fishers score, and information gain, and at last,
they proved that information gain would produce better results
and obtained an accuracy of 96.8%. It used a filter-based
technique, which is the main advantage of that project. The
work proposed by [9] makes use of Ant Colony Optimization
and Rough Sets as a filter-based feature reduction for web
phishing detection and achieved good results.

Rough sets (RS) is a mathematical approach that was first
discovered by [10] in the year 1982. Because of its unique
method, RS has become the most widely used technique in
many fields of information technology [11]. The working
strategy of RS is that it first generates all possible subsets, and
from among those subsets, it selects the one with the minimum
number of features and, at the same time, having a maximum
dependency.

The author of [12] and [13] has included in their work the
advantages and primary reasons for RS being used extensively.
The authors of [14] have developed a malware dataset whose
features are extracted from the API call sequences. The author
used RS as the feature selection algorithm along with SVM as
the classifier and has achieved more significant results. Many
researchers have combined meta-heuristic algorithms along
with RS to improve the accuracy and to obtain an effectively
reduced subset.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

709 | P a g e
www.ijacsa.thesai.org

Optimization of a dataset is also very essential to reduce the
complexity of the classification model. Optimization
algorithms are classified mainly into Traditional and heuristic
methods. Most of the malware detection systems use heuristic
methods. Meta-heuristic algorithms are divided again into
different categories. One that is inspired by natural behaviors
such as Ant colony optimization [15], Bee colony optimization
[16] that is inspired by the natural behavior of bees, Cuckoo
search (CS) [17] technique which is inspired from the natural
behavior of Cuckoo bird. Second are evolutionary algorithms
and, finally, logical search algorithms. A taxonomy of
optimization algorithms is shown in Fig. 1.

Thanushkodi and Suguna [18] have combined rough sets
along with Bee-Colony Optimization (BCO) for analyzing a
medical dataset. The author also applied various combinations
with rough sets and proved in the results that BCO, along with
RS, work best for his dataset. Though BCO, along with RS
would produce effective results than others, the only weakness
is that it consumes more time in finding the reductant subset.
Liang [19] have employed a Genetic algorithm, along with RS
in the marketing application. The author concluded that this
hybrid approach would work effectively for clustering datasets
but failed to provide the results after the application of the
algorithm. Rough sets can also be used along with other meta-
heuristic algorithms such as Ant Colony Optimization, Cuckoo
Search, Ant bee colony optimization, etc.

Cuckoo Search (CS) is one of the optimization technique
which is extensively used by the present researchers. This
Optimization technique was developed by Yang and Deb [20]
in the year 2009, which is based on the reproduction strategy of
a cuckoo bird. The first cuckoo search algorithm was modified
by [17], works effectively for non-linear problems; they used
the cuckoo search algorithm along with rough sets. The author

used different datasets and different optimization techniques to
evaluate the datasets and provided the results. But the major
drawback is that it is a wrapper based method and consumes
longer run times. The author proved through his results that the
modified algorithm, when used with SVM as the classifier,
resulted in an average accuracy of 93.94%. Kumar and Shampa
[21] used cuckoo search in the multi-reliable objective function
and concluded that CS is effective when compared with that of
other heuristic algorithms.

Ajit et al. [22] have used the claMP dataset to create an
integrated feature set. The author tried a total of 5 classifiers
and compared against each other and obtained a result of 98%
by using the J48 decision tree. However, not many features are
reduced. Mouhammad & Samail [23] have also used the claMP
dataset and made a comparison of the results of all the
classifiers. Among all the classifiers, this author has proved
that the decision tree would give the best results. The author, at
the end of his work, recommended that the extraction can be
done much more effectively by using a genetic algorithm.

In this work the features are extracted from the PE header,
which is present in all Windows executable files. The PE
header has four sections embedded within it [24].

 The DOS header.

 PE file header or The Common object file format

(COFF) header (also known as the File Header).

 The optional header.

 The section header.

The following are the features that can be extracted from
different headers in the PE header.

Fig. 1. A Taxonomy of Optimization Algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

710 | P a g e
www.ijacsa.thesai.org

A. DOS Header Features

Table I describes the features that can be identified with the
help of the DOS header. The feature e_magic is a fundamental
feature that generally starts with the hex value 4D5A, which
means ‘MZ’ [25] at the beginning and indicates that the file is
an MS-Dos executable file.

B. PE Header Features

This header is present in front of the object file or
immediately after the signature of the image file [26]. Table II
describes the features which can be extracted from the PE file
header. The principal analysis lies in the feature
Timedatestamp. The people responsible for making a malware
file first tries to change this feature.

C. Optional Header Features

This header field describes the logical structure of the PE
header. Every image file would have this optional header and
would provide with the loader information. This header is not
optional in case of image files whereas it is optional in case of
other files. This header is again subdivided into the version and
size attributes. The optional header contains a version attribute
that is further subdivided. They are briefly described in
Table III. The optional header contains a size attribute that is
divided into the features as described in Table IV [27]. The
optional header includes a location attribute that is subdivided
into the features that are described in Table V.

D. Section Header

The number of entries in the section table is predefined in
the PE header by the Number of sections feature [28]. The
features that can be extracted from a section header are
mentioned in Table VI.

TABLE I. FEATURES EXTRACTED FROM DOS HEADER

Feature Description Type

e_magic Magic number. Numeric

e_cblp Bytes on the last page of file Numeric

e_cp Number of pages in the file Numeric

e_cparhdr Header size in paragraphs Numeric

E_maxalloc
Maximum extra number of

paragraphs needed
Numeric

E_sp Initial sp value Numeric

E_lfanew File address of new exe header Numeric

e_csum Checksum value Numeric

e_minalloc
Minimum extra number of

paragraphs needed
Numeric

TABLE II. FEATURES THAT CAN BE EXTRACTED FROM THE PE FILE

HEADER

Feature Description Type

Timedatestamp Date and time of file creation Numeric

Numberofsections
Size of the section table.

Windows limits this size to 96
Numeric

Symbol attribute
Define location and size of

COFF header
Numeric

DLL Characteristics
This field contains a combination

of 16 different features
Numeric

TABLE III. OPTIONAL HEADER VERSION ATTRIBUTES FEATURES

Feature Description Type

MajorLinkVersion Linkers major version number Numeric

MajorLinkVersion Linkers minor version number Numeric

MajorOperatingsyste

mVersion
Major version number of OS Numeric

MajorOperatingsyste

mVersion
Minor version number of OS Numeric

Majorsubsystem Major version number of Subsystem Numeric

Majorsubsystem Minor version number of Subsystem Numeric

TABLE IV. OPTIONAL HEADER SIZE ATTRIBUTES FEATURES

Feature Description Type

SizeofCode

Size of code sections. If multiple

sections are present then sum of all

those sections

Numeric

SizeofIntializedData

Size of initialized data or if multiple

data sections are present then the sum

of all those sections

Numeric

SizeofuninitializedDat

a

Size of uninitialized data or if multiple

data sections are present then the sum

of all those sections

Numeric

SizeofImage Size of the image Numeric

Sizeofheader Size of all section headers Numeric

SizeofStackreserve Number of bytes reserved by stack Numeric

SizeofStackcommit
Number of bytes required to commit

the stack
Numeric

SizeofHeapreserve Number of bytes reserved for heap Numeric

SizeofHeapcommit
Number of bytes required to commit

the heap
Numeric

SizeofOptionalHeader
Indicates the size of the optional

header. This size is not fixed.
Numeric

TABLE V. SECTION HEADER FEATURES

Feature Description Type

Raw size Size of section when stored on disk Numeric

Virtual size Size of section when stored on memory Numeric

Virtual address Address of virtual memory Numeric

Physical address Address of physical memory Numeric

Entropy
This value is not present in PE file but

calculated by an external header
Numeric

TABLE VI. FEATURES EXTRACTED FROM THE OPTIONAL HEADER

Feature Description Type

Section Alignment
Alignment of section loaded into

memory
Numeric

File Alignment
Alignment of raw data section in the

image file
Numeric

Baseofcode
A pointer at the beginning of code

section
Numeric

BaseofData Pointer at the beginning of data section Numeric

Image Base
Address of first byte when image is

loaded in the memory
Numeric

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

711 | P a g e
www.ijacsa.thesai.org

This work aims at reducing the feature set to optimize the
Malware detection system. Through feature reduction we can
automatically minimize the classification model complexity
and lower the computational complexity.

II. ROUGH SET FEATURE SIGNIFICANCE AND CUCKOO

SEARCH OPTIMIZATION (RSFSCSO)

A. Rough Set Theory (RST)

RST is an effective mathematical approach for selecting the
best candidate feature subset [29]. RST has its advantages and
disadvantages. RST is a pair of upper approximation and
lower-approximation. These approximations can be calculated
by using the equation.

�̂�𝑝 = {𝑝[𝑝]𝑎 ⊆ 𝑝} (1)

�̂�𝑝 = {𝑝[𝑝]𝑎 ∩ 𝑝 ≠ 0 (2)

The certainty of samples and the uncertainty of samples is
defined by the positive region and negative region. The sum of
both regions is defined by the bounded region.

RP(D) = �̇�𝑎∈𝑢|𝐷̈ �̂�𝑝 (3)

RN(D) = �̈� − 𝑈𝑎∈�̈��̂�𝑝 (4)

RB(D) = 𝑈𝑎∈�̈��̂�𝑝 − �̇�𝑎∈𝑢|𝐷̈ �̂�𝑝 (5)

Before performing any feature selection algorithm, it is
very important to calculate how much an attribute depends on
another attribute. Dependency degree helps in calculating the
amount of dependency of an attribute on another. In this work,
the dependency degree plays a vital role in the calculation of
the objective function.

𝔇𝑑 =⋎ (𝑑) =
|𝑅𝑃(𝐷)|

|𝑈|
 (6)

B. Cuckoo Search Optimization Technique

Cuckoos have a different style of breeding behavior, as
shown in Fig. 2. Cuckoo search is inspired by the natural
response of the cuckoo bird. Cuckoo lay their eggs in host
nests of other birds and depend on the host birds for hosting
their eggs. Sometimes the host bird discovers the cuckoo bird
eggs and either abound them or change their nests to a new
place. But cuckoos have the talent of producing eggs of the
same color and shape as that of the host eggs. In general,
cuckoo bird eggs hatch first and have more probability of
getting more food. Levy’s flight [4]is one mechanism that is
used by the cuckoo bird to effectively search for their food.
This levy’s flight depends upon the levy’s distribution function
which is calculated by using the equation.

𝑙𝑒𝑣𝑦~𝑈 = 𝑣−⋋ (7)

Where ⋋ ranges from 0 <⋋< 3 and v are the step size.

In cuckoo search initially, the number of population nests
and the iterations are initialized. After each iteration, the hybrid
search is used to update the population of nests. It updates the
population nest based on the conditions that the lowest quality
nests are updated randomly based on the global search, and the
remaining nests are updated locally using levy’s flight. The
new nest is updated using equation 8.

𝑎𝑡+1 = 𝑎𝑡+∝⊙ 𝑙𝑒𝑣𝑦(⋋) (8)

Where 𝑎𝑡+1 is the updated solution

∝ is the step size which is equal to 1 in most of the cases.

𝑙𝑒𝑣𝑦(⋋) is given by the equation (7)

Binary cuckoo search [30] is a modified version of the
cuckoo search which uses binary vectors in which 1 represents
the selected features, and 0 represents the remaining. In this
search, the nests represent the solution, and each egg represents
a feature. The search initially starts by generating an initial
population randomly, and then after each iteration, it updates
the worst nests using levy’s flight. To develop a binary vector,
the equations (9) and (10) are used,

𝑣(𝑎𝑥,𝑦
𝑡) =

1

1+𝑒(𝑥,𝑦)
−𝑎𝑡 (9)

𝑎(𝑥,𝑦)
𝑡+1 = {

1, 𝑣(𝑎𝑥,𝑦
𝑡) >⊺

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

Where ⊺ belongs to [0,1] and 𝑎(𝑥,𝑦)
𝑡+1 represents new eggs.

Every cuckoo search algorithm makes use of a fitness
function, which helps in evaluating the fitness of cuckoo as
well as nests.

Fig. 2. Flow Chart of Cuckoo Breeding Behaviour.

The fitness function corresponding to this work is
represented in equation (11)

𝐹(𝑅) =
𝔇𝑑

|𝐿|
 (11)

Where |L| represents the cardinality of the redundant set,
and 𝔇𝑑 is obtained from equation 7.

C. Rough Set Feature Significance and Cuckoo Search

Optimization (RSFSCSO)

In this algorithm, 𝑝𝑎 value is taken as 0.25 which means
that the final solution depends 75% on the global best solution

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

712 | P a g e
www.ijacsa.thesai.org

and 25% on the local best solution (lbest). The fitness function
is calculated for every cuckoo and each value is compared with
the global best solution (gbest). When the current fitness value
is better than the global best solution then the gbest value is
replaced and updated. This process is repeated iteratively until
the stop criteria is met. The stop criteria in our algorithm is a
maximum number of iterations which is given as input at the
start of the algorithm. The max_iteration value is taken as 5;

RSFSCSO Algorithm
Input:

1) number of nests N

2) Maximum number of iterations i(max_iteration)

3) Step length α=1

4) 𝑝𝑎 = 0.25

Output:
5) An optimized subset of features(RS)

Procedure:
6) The population of N host nests are initialized as

𝑥𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3 … 𝑁

7) r=1; //random number

8) While stopping criteria not met do

9) for (i=0 to N)

10) {

11) RS= feature subset corresponding to 𝑥𝑖.

12) // generate a new cuckoo(𝑥𝑖) with the help of levy

flight using equation 7.

13) //evaluate the fitness function 𝑓𝑒𝑣𝑎𝑙(𝑥𝑖) using

the equation (11)

14) if(𝑓𝑒𝑣𝑎𝑙(𝑥𝑖) < gbest)

15) {

16) lbest=𝑥𝑖

17) gbest= (𝑓𝑒𝑣𝑎𝑙(𝑥𝑖))

18) RS= 𝑥𝑖

19) Break;

20) }// end if;

21) } // end for;

22) r=r+1;

23) Sort 𝑥𝑖 by order of fitness function in descending

order.

24) Pick a random nest j such that j! =i;

25) for all Abandon a fraction of worst nests by comparing

with 𝑝𝑎 and update the nests using levy flight (equation

7)

26) Let the new egg generated is 𝑥𝑙

27) RS= feature subset corresponding to 𝑥𝑙

28) again evaluate the fitness function 𝑓𝑒𝑣𝑎𝑙(𝑥𝑙) using

equation 11.

29) Sort the nests according to their fitness function in

descending order.

30) Choose a random nest k

31) if(𝑓𝑒𝑣𝑎𝑙(𝑥𝑖) >= feval(𝑥𝑘)) // solutions are

ranked according to current best.

32) {

33) 𝑥𝑘 = 𝑥𝑙

34) 𝑓𝑒𝑣𝑎𝑙(𝑥𝑘) = 𝑓𝑒𝑣𝑎𝑙(𝑥𝑙)

35) } //end if;

36) end for;

37) end while;

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this work, the analysis has been carried out on the clamp
dataset [31] comprising of 55 features in the raw dataset and 72
features in the integrated dataset that are extracted from the PE
header of an executable file. The proposed algorithm was
implemented using 5184 samples Table VII makes a
comparison of classification accuracies and Fig. 3 shows a
graphical representation of accuracies in both integrated and
raw datasets.

The proposed algorithm was implemented on the Java
platform, and WEKA 3.9 tool is used for classification. A
Windows ten operating system with 8GB RAM is used for
experimentation.

The dataset used in our work, before feature selection, is
analyzed with other feature selection algorithms along with the
proposed algorithm. The resulted accuracies are tabulated in
Table VII, and the pictorial representation of these accuracies
is represented in Fig. 3. Using random forest classifiers on both
raw and integrated datasets, we have obtained an accuracy of
98.3% and 99.25%, respectively. Therefore random forest
classifier is selected for evaluation of our feature reduction
algorithm.

TABLE VII. COMPARISON OF CLASSIFICATION ACCURACY BEFORE

FEATURE SELECTION

classifier
Accuracy

(Raw Dataset)

Accuracy

(integrated Dataset)

J48 97.2% 97.8%

Random forest 98.3% 99.25%

Naïve Bayes 62.78% 65.20%

Random Tree 96.27% 96.18%

Decision table 93.5% 95.0%

IBK 96.9% 97.98%

Fig. 3. Graph Representing Accuracies.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

J48 Random
forest

Naïve
Bayes

Random
Tree

Decision
table

IBK

Accuracies

Accuracy (Raw Dataset) Accuracy (integrated Dataset)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

713 | P a g e
www.ijacsa.thesai.org

The proposed algorithm has just produced three features for
the raw dataset and only two features for the integrated dataset.
The critical features that were identified for the Integrated
dataset are FH_characteristics and OH_Dll characteristics. The
characteristics field of the file header is recognized as an
essential feature by the proposed algorithm. Malware is
differentiated by calculating the mean value of files. The mean
value of malware files is lesser than that of benign data. The
second feature identified is the DLL characteristic feature of
the optional header. This feature is linked with the import table
which consists of the names of files that are imported and
exported. Malware files will have strange import tables when
compared with regular data. Table VIII gives detailed results of
accuracies after feature selection, and Fig. 4 shows the pictorial
representation of the comparison of accuracies.

The features that were identified crucial for Raw dataset are
characteristics, checksum and DLL characteristics. As
mentioned above characteristics and DLL characteristics play a
very effective role in the identification of malware file. The
checksum is one other characteristic extracted from the DOS-
Header. The checksum is a crucial feature because it validates
at load time. It helps in preventing the entry of any damaged
files or binaries. To evaluate and compare the performance of
the proposed algorithm with other existing feature reduction
algorithm, the same number of features are considered in all
the cases. Table IX gives a brief description of other related
works which used the same clamp dataset in their work.
According to table IX, the proposed work produced better
results than others.

Fig. 4. Comparison of Accuracies after Feature Selection.

TABLE VIII. COMPARISON OF ACCURACIES ON RANDOM FOREST

CLASSIFIER, AFTER FEATURE SELECTION

Feature selection

algorithm

Accuracy

(Raw Dataset)

Accuracy

(Integrated Dataset)

Gain Ratio 77.19% 84.24%

CFS 91.45% 78.21%

RELIEF 91.62% 86.92%

Information Gain 94.6% 80.24%

Proposed Algorithm 94.71% 91%

TABLE IX. COMPARISON OF PROPOSED WORK WITH PREVIOUS WORKS

Dataset Reference
No of features after

reduction
Feature selection Algorithm(if used any)

Accuracy

(before feature selection)

Accuracy

(after feature selection)

Mouhammad and

Samail [23]
NA NA 99.1%(integrate dataset) NA

Kumar et al. [22] 15 (raw dataset)
ExtraTree

Classifier
98.3% (raw dataset) 98.3%

Proposed algorithm
3(raw dataset)

2 (Integrated Dataset)

Rough Set feature significance and

Cuckoo search

Optimization(RSFSCSO)

98.3%(Raw dataset)

99.25%(Integrated dataset)

94.71%(Raw dataset)

92%(Integrated dataset)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Accuracies after feature selection

Raw Dataset Integrated dataset

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

714 | P a g e
www.ijacsa.thesai.org

V. CONCLUSION

The PE file header features are extracted from Windows
executables in the process of identifying malware using
machine learning techniques. Feature reduction is a quite
essential pre-processing phase in machine learning to improve
the performance and reduce the space complexity. This paper
presents the implementation of a rough-set based dependency
degree as an objective function in cuckoo search optimization
applied to the malware detection system. A massive 94.54%
reduction of data size concerning raw dataset and 97.22%
reduction of data size concerning the integrated dataset is
achieved at a loss of marginal 3.59% and 7.52% accuracies for
raw and integrated datasets, respectively. The advantage of
RSFSCSO is that it is a filter-based feature reduction, and the
final model does not depend on the classifier for feature
reduction. However, since the cuckoo search optimization is a
population-based solution selection, it normally takes more run
time than dynamic search techniques like the ACO. A
comparison of various optimization techniques with RS for
feature selection can be made in future work.

REFERENCES

[1] M. Christodorescu, S. Jha, S.A. Seshia, D. Song and Bryant R.E,
"Semantics-aware malware detection," in 2005 IEEE Symposium on

Security and Privacy (S&P'05), Oakland, CA, USA, USA, 2005.

[2] Sadia Noreen, Shafaq Murtaza, M. Zubair Shafiq and Muddassar Farooq,
"Evolvable Malware," in 11th Annual conference on Genetic and

evolutionary computation, Canada, 2009.

[3] Koller Daphne and Sahami Mehran, "Toward Optimal Feature Selection,"
in Proceedings of the 13th International Conference on Machine

Learning, 1996.

[4] Ahmed F. Alia and Adel Taweel, "Feature Selection based on Hybrid

Binary Cuckoo Search and Rough Set Theory in Classification for
Nominal Datasets," I.J. Information Technology and Computer Science,

vol. 9, no. 4, pp. 63-72, 2017.

[5] Sebastián Maldonado and Richard Weber, "A wrapper method for feature
selection using Support Vector Machines," Information Sciences, vol.

179, no. 13, pp. 2208-2217, 2009.

[6] S L Shiva Darshan and C D Jaidhar, "Performance Evaluation of Filter-
based Feature Selection Techniques in Classifying Portable Executable

Files," Procedia Computer Science, vol. 125, pp. 346-356, 2018.

[7] Mark A Hall and Lloyd A Smith, "Practical Feature Subset Selection for
Machine Learning," in In C. McDonald(Ed.), Computer Science ’98

Proceedings of the 21st Australasian Computer Science Conference
ACSC’98, Perth, 1998.

[8] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer and Yael

Weiss, "“Andromaly”: a behavioral malware detection framework for
android devices," Journal of Intelligent Information Systems, vol. 38, p.

161–190, 2012.

[9] Ravi Kiran Varma P and Padmaprabha K, "Web phishing detection:
feature selection using rough sets and ant colony optimisation,"

International Journal of Intelligent Systems Design and Computing, vol.
2, no. 2, pp. 102-113, 2018.

[10] Zdzisław Pawlak, "Rough sets," International Journal of Computer &
Information Sciences, vol. 11, no. 5, p. 341–356, 1982.

[11] Qinghua Zhang, Qin Xie and Guoyin Wang, "A survey on rough set

theory and its applications," CAAI Transactions on Intelligence
Technology, vol. 1, no. 4, pp. 323-333, 2016.

[12] Mert Bal, "Rough Sets Theory as Symbolic Data Mining Method: An

Application on Complete Decision Table," Information Science Letters,
vol. 2, no. 1, pp. 35-47, 2013.

[13] Rafael Bello and Rafael Falcon, "Rough Sets in Machine Learning: A

Review," in Thriving Rough Sets, Studies in Computational Intelligence,
vol 708, Cham, Springer, 2017, pp. 87-118.

[14] Zhang Boyun, Yin Jianping, Wensheng Tang, Jinbo Hao and Dingxing

Zhang, "Unknown Malicious Codes Detection Based on Rough Set
Theory and Support Vector Machine," in The 2006 IEEE International

Joint Conference on Neural Network Proceedings, Vancouver, 2006.

[15] Vittorio Maniezzo and Antonella Carbonaro, "Ant Colony Optimization:
An Overview," Essays and Surveys in Metaheuristics. Operations

Research/Computer Science Interfaces Series, vol. 15, pp. 469-492, 2003.

[16] Anil Kumar, Gaurav Kabra, Eswara Krishna Mussada, Manoj Kumar
Dash and Prashant Singh Rana, "Combined artificial bee colony

algorithm and machine learning techniques for prediction of online
consumer repurchase intention," Neural Computing and Applications,

vol. 31, pp. 877-890, 2017.

[17] Mohamed Abd El Aziz and Hassanien Aboul Ella, "Modified cuckoo
search algorithm with rough sets for feature selection," Neural Computing

and Applications, vol. 29, p. 925–934, 2016.

[18] N Suguna and K Thanushkodi, "A Novel Rough Set Reduct Algorithm
for Medical Domain Based on Bee Colony Optimization," Journnal of

Computing, vol. 2, no. 6, pp. 49-54, 2010.

[19] Wen-Yau Liang W, "The Genetic Algorithm Incorporates with Rough Set

Theory—An Application in Marketing," International Journal of e-
Education, e-Business, e-Management and e-Learning, vol. 3, no. 3, pp.

271-273, 2013.

[20] Xin-She Yang and Deb Suash, "Cuckoo Search via L´evy Flights," in
2009 World Congress on Nature & Biologically Inspired Computing

(NaBIC), Coimbatore, India, 2009.

[21] Anil Kumar and Shampa Chakarverty S, "Design Optimization for
Reliable embedded system using Cuckoo Search," in IEEE 3rd

International Conference on Electronics Computer Technology,
Kanyakumari, India, 2011.

[22] Ajit Kumar, K.S. Kuppusamy and G. Aghila, "A learning model to detect

maliciousness of portable executable using integrated feature set," Journal
of King Saud University - Computer and Information Sciences, vol. 31,

no. 2, pp. 252-265, 2017.

[23] Mouhammd Alkasassbeh and Samail Al-Daleen, "Classification of
malware based on file content and characteristics," in arXiv:1810.07252,

2018.

[24] Yibin Liao, "PE-Header-Based Malware Study and Detection,"
Department of Computer Science, The University of Georgia, Athens,

2012.

[25] Zatloukal Filip and Znoj Jiri, "Malware Detection Based on Multiple PE

Headers Identification and Optimization forSpecific Types of Files,"
Journal of Advanced Engineering and Computation (JAEC), vol. 1, no. 2,

pp. 153-161, 2017.

[26] R. Vyas, X. Luo, N. McFarland and C. Justice, "Investigation of
Malicious Portable Executable File Detection on the Network using

Supervised Learning Techniques," in IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), Lisbon, Portugal,

2017.

[27] D. Devi and S. Nandi, "PE File Features in Detection of Packed
Executables," International Journal of Computer Theory and Engineering,

vol. 4, no. 3, 2012.

[28] Jakub Ács, "Static detection of malicious PE files," Department of
Computer Systems, Czech Technical University in Prague, Prague, 2018.

[29] P.Ravi Kiran Varma, V. Valli Kumari and S. Srinivas Kumar, "A novel

rough set attribute reduction based on ant colony optimisation," Int. J.
Intelligent Systems Technologies and Applications, vol. 14, no. 3/4, pp.

330-353, 2015.

[30] L. A. M. Pereira, D. Rodrigues, T. N. S. Almeida, C. C. O. Ramos, A. N.
Souza, X.-S. Yang and J. P. Papa, "A Binary Cuckoo Search and Its

Application for Feature Selection," Studies in Computational
Intelligence,Springer, vol. 516, pp. 141-154, 2014.

[31] "GitHub," [Online]. Available: https://github.com/. [Accessed 28 01
2019].

