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Abstract—Machine learning is now becoming a widely used 
mechanism and applying it in certain sensitive fields like medical 
and financial data has only made things easier. Accurate 
Diagnosis of cancer is essential in treating it properly. Medical 
tests regarding cancer in recent times are quite expensive and not 
available in many parts of the world. CryptoNets, on the other 
hand, is an exhibit of the use of Neural-Networks over data 
encrypted with Homomorphic Encryption. This project 
demonstrates the use of Homomorphic Encryption for 
outsourcing neural-network predictions in case of Acute 
Lymphoid Leukemia (ALL). By using CryptoNets, the patients 
or doctors in need of the service can encrypt their data using 
Homomorphic Encryption and send only the encrypted message 
to the service provider (hospital or model owner). Since 
Homomorphic Encryptions allow the provider to operate on the 
data while it is encrypted, the provider can make predictions 
using a pre-trained Neural-Network while the data remains 
encrypted all throughout the process and finally sending the 
prediction to the user who can decrypt the results. During the 
process the service provider (hospital or the model owner) gains 
no knowledge about the data that was used or the result since 
everything is encrypted throughout the process. Our work 
proposes a Neural Network model which will be able to predict 
ALL-Acute Lymphoid Leukemia with approximate 80% 
accuracy using the C_NMC Challenge dataset. Prior to building 
our own model, we used the dataset and pre-process it using a 
different approach. We then ran on different machine learning 
and Neural Network models like VGG16, SVM, AlexNet, 
ResNet50 and compared the validation accuracies of these 
models with our own model which lastly gives better accuracy 
than the rest of the models used. We then use our own pre-
trained Neural Network to make predictions using CryptoNets. 
We were able to achieve an encrypted prediction of about 78% 
which is close to what we achieved when validating our own CNN 
model that has a validation accuracy of 80% for prediction of 
Acute Lymphoid Leukemia (ALL). 

Keywords—CryptoNets; neural network; Acute Lymphoid 
Leukemia (ALL); homomorphic 

I. INTRODUCTION 
We are trying to make a system where there will be an 

assurance about privacy and will also give an initial prediction 
i.e. whether the patient has ALL (blood cancer) or not. This 
will also decrease the cost of the system because the initial 
tests are expensive and in our model the price will be less to 
give an initial prediction. This system can be used in case of 
banks, hospitals and other sectors. In our model we included 
Homomorphic encryption as mentioned earlier. In this system, 

it will allow one party to have a public key such as in hospitals 
where a lot of patients can send their data through the public 
key which will be encrypted and stored in local servers (cloud 
used in future works). The owner, in our case the hospital 
administration, lab technicians, doctors and patients can have 
policies to decrypt the data when necessary. This will ensure 
the encryption and decryption in a proper manner and will also 
ensure proper privacy of the user if they want to store or 
export their information. In the encryption process, the owner 
will only have the private key and will be able to decrypt the 
data, on the other hand, the service provider does not have any 
key and hence will not be able to decrypt the data and thus 
they won’t know about the data inside or be able to get any 
information about the predicted data. This will provide a better 
privacy and will also decrease the overall cost since there is 
only one private key. 

Existing works of running machine learning models on 
encrypted data include Grapel et al. [7], where they propose 
confidential algorithms for binary classification based on 
polynomial approximations to least-squares solutions found by 
a small number of gradient descent steps. They show 
experimental validation of the confidential machine learning 
pipeline and discuss the give and takes involving 
computational complexity, prediction accuracy and 
cryptographic security. Zhan et al. [8] works say that their 
paper considers how to conduct k-nearest neighbor 
classification in the following scenario: multiple parties, each 
having a private data set, want to collaboratively build a k-
nearest neighbor classifier without disclosing their private data 
to each other or any other parties. They intend to develop a 
secure protocol for multiple parties to carry out the desired 
calculation. All the parties take part in the encryption and in 
the calculation involved in learning the k-nearest neighbor 
classifiers. Qi &Atallah, [9] say that they use techniques to 
also solve the general multi-step k-NN search, and describe a 
particular expression of it for the case of sequence data. The 
protocols and correctness evidence can be extended to cope 
with other privacy-preserving data mining tasks, like 
classification and outlier detection. Aslett et al. [10][11] 
propose modified algorithms in application of extreme random 
forests, involving a new cryptographic stochastic fraction 
estimator, and naïve Bayes, involving a semi-parametric 
model for the class decision boundary, and demonstrate how 
they are useful in learning while predicting from encrypted 
data. They also exhibit that these methods perform 
competitively on several different classification data sets and 
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provide detailed information about the calculative 
practicalities of these and other FHE methods. 

In our project, the unencrypted data will be first used to 
train the neural network. The training data sets can be difficult 
to find for these types of projects because they always have a 
privacy issue and also, it’s not easily available. After training 
and validation, our Neural Network model can be used to give 
secure predictions regarding ALL to the target user. The 
problem of such type is also called Privacy Preserving Data 
Mining (Agrawal & Srikant) [23]. To come to the internal 
concept of our project, we used CryptoNets where we use 
Homomorphic Encryption on our own Neural Network to 
secure ALL predictions. This is also a work on running Neural 
Network and machine learning algorithms on encrypted data 
but what we have done is a practical implementation of the 
method in finding the secure predictions of a life threatening 
disease which is the first of its kind in terms of applying 
Neural Networks and Machine learning algorithms on 
encrypted data. 

We propose to make a Privacy Preserving Neural Network 
model which can predict Blood Cancer as well as maintain the 
privacy of the patient. In our research, at first, we have taken a 
blood cancer dataset and successfully ran it on various Neural 
Network and Machine learning models which would 
accurately predict Acute Lymphoid Leukemia. The results are 
then compared amongst them. Moreover, we then made our 
own Neural Network model which is run on the dataset that 
we are having which is modified at first in order to run on an 
encryption application. The results are again compared with 
that of the previous models to prove our NN model is better 
than the others here. The model is then encrypted and HE 
(homomorphic encryption wrapper) is implemented on it to do 
computations and give predictions in a secure format. We are 
in the process of having our own dataset collected from 
different labs which we kept for future work. We want to 
provide a system that will not only give the initial result of 
whether it is cancer or non-cancer but will also be encrypted 
and the result will only be known by the patient with the 
private key which will ensure privacy. 

Our objectives include detection of Blood Cancer 
(Leukemia) from imagery test samples after proper 
modification in order to run on the custom CryptoNets 
application. A homomorphic encryption scheme on the whole 
system which would be used to homomorphically encrypt the 
images from the Neural Network on which computations and 
predictions can be done even if the images are encrypted. 
Comparative analysis is done among the first several models 
run and then between them and our own NN model. The 
results are then compared. Work on CryptoNets is done 
currently in mainly 3 datasets: MNIST, CIFAR-10 and 
Caltech-101. CryptoNets has not been used in practical 
applications before. Thus, our contribution in detecting blood 
Cancer using imagery in a privacy preserving model 
(CryptoNets) will be the first of its kind. The process that we 
introduce will pave a way for implementations in various 
fields. This will ensure secure lives and provide customer 
satisfaction. 

II. BACKGROUND 

A. Literature Survey 
1) CNN Features: Shafique and Tehsin [1] used pre-

trained AlexNet and fine-tuning to classify ALL subtypes on 
ALL-IDB augmented with 50 private images. Rehman et al. 
[2] used a pre-trained AlexNet and fine-tuning to classify ALL 
subtypes on a private dataset of 330 images. On the other 
hand, Vogado et al [3] used different pre-trained CNNs as 
fixed feature extractors to classify ALL on ALL-IDB. 
Amongst all these, the most informative ones are selected 
using PCA and classification is performed with an ensemble 
of MLP, random forest and SVM. 

2) Handcrafted Features: Mohapatra et al. [4] and 
Madhloom et al. [5] use private dataset and classify using an 
ensemble of SVM, KNN, Naïve Bayes and a KNN classifier. 
Putzu and Ruberto [6] classify a number of features such as, 
compactness area and ratio between cytoplasm and the 
nucleus with an SVM using ALL-IDB. In the above case, the 
dataset used is small compared to others and also tough to 
compare the results. The private datasets are unavailable and 
the public ALL-IDB datasets are given on their own 
evaluation procedures. All these factors make comparisons 
difficult. 

Our project is divided into two parts of the programming 
languages Python and C#. The Neural network model building 
and comparisons of the ML and NN models are done in the 
python part of the project. The encryption part after that where 
the “CryptoNets” application created is done on C#. Grapel et 
al. [7] suggested a use of homomorphic encryption for 
machine learning algorithms where they focused on finding 
the algorithms where training can be done over encrypted data 
and hence were forced to use a learning algorithm where the 
training algorithm can be expressed in a low degree 
polynomial. Zhan et al. [8]; Qi &Atallah, [9] looked up for 
nearest neighbor divisions but they do not give the same level 
of accuracy as neural networks. Aslett et al. [10][11] presented 
both of the algorithms such as naïve Bayes classifiers and 
random forests but their model cannot work efficiently in 
recognizing objects in images. 

B. Homomorphic Encryption 
Homomorphic encryption algorithms that require one 

operation, such as addition, have been known for decades, 
such as for the ones based on the RSA or Elgamal 
cryptosystems. But a homomorphic encryption method that 
allows an infinite number of two operations, i.e. addition and 
multiplication, allows the computation of any circuit and thus 
a complete solution of homomorphic (FHE) is gained. FHE 
was first presented in Gentry [12]. In Gentry, the data 
encrypted in the bits and for each bit in the message, a 
separate ciphertext is produced. It is a sort of addition and 
multiplication module represented by Boolean circuits with 
XOR and AND gates. FHE in ciphertexts contain some 
inherent noise which grows during homomorphic encryption 
and it cannot be decrypted when it gets too large. To solve this 
problem, Bootstrapping is used where the ciphertexts are 
constantly refreshed and their noise is reduced [13][14]. The 
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parameters for Practical Homomorphic Encryption (PHE) 
should be chosen which would not only increase the efficiency 
but also preserve privacy and ensure security. In our project, 
we have implemented tools such as Noise Growth Simulator 
and Automatic Parameter Selection Module to help the user to 
achieve maximum performance [15]. Somewhat homomorphic 
encryption approaches can only evaluate a multiple but limited 
number of addition and multiplication activities. SWHE 
schemes refer to encryption systems that present certain 
homomorphic characteristics but lack full homomorphic 
capacity. The fully homomorphic encryption supported an 
arbitrary number of multiplications and additions, and hence 
compute any form of function on encrypted information. For 
all forms of computations on the information warehoused in 
the cloud, FHE must be embraced because it allows execution 
of operations on encrypted records without decryption. As 
such, the usage of FHE is a crucial step in enhancing cloud-
computing security. 

C. Encoding 
As described above, there is a discrepancy between the 

atomic structures in neural networks (real numbers) and the 
atomic structures in the homomorphic encryption schemes 
(polynomials in  Rn

t) [16]. An encoding scheme will map each 
other in a manner that preserves the operations of addition and 
multiplication. Such a scheme of encoding can be constructed 
in several ways. For example, real numbers can be converted 
to fixed precision numbers, and then their binary 
representation can be used to convert them into a polynomial 
with the binary expansion coefficients. This polynomial will 
have the property of returning the encoded value when 
evaluated at value 2. Another alternative is to encode as a 
constant polynomial the fixed number of precisions. This 
encoding is simple, but in the sense that only one polynomial 
coefficient is being used may seem inefficient. One problem 
with the scalar encoding is that when homomorphic operations 
are performed, the only coefficient of the message 
polynomials grows very rapidly. 

D. Encoding Large Numbers 
As we have already explained, in this encryption scheme, a 

major challenge for computation is to prevent the coefficients 
of the plaintext polynomials from overflowing, t. These forces 
us to pick large values for t, which allows the noise to grow 
faster in the cipher texts and reduces the total amount of noise 
tolerated (with q fixed). Therefore, for security reasons, we 
need to choose a larger q, and then a larger n. One way to 
overcome this problem partially is to use the Chinese 
Remainder Theorem (CRT). The concept of using multiple 
primes is t1…tk; given a polynomial ∑aixi we can convert it 
to k polynomials in such a way that the j-th polynomial is 
∑[ai(modtj)]xi. Each such polynomial is encrypted and 
manipulated identically. The CRT guarantees that we will be 
able to decode back the result, as long as its coefficient does 
not grow beyond ∏tj. Therefore, this method allows us to 
encode exponentially large numbers while increasing time and 
space linearly in the number of primes used. 

E. Plaintext Space and Homomorphic Operations 
Plaintext elements (messages encrypted by homomorphic 

encryption schemes) can be represented as a polynomial ring 

R, with coefficients minimalized modulo the integer, t.   
Cipher text elements (encrypted plaintext elements) on the 
other hand can be similarly represented but instead has 
coefficients minimalized modulo the integer, q [15]. Formally, 
this means that the plain-text space is the ring Rt   := R/tR  = 
Zt[X]/(Xn + 1), and the ciphertext space is  contained in the 
ring Rq  :=  R/qR   =  Zq[X]/(Xn  +  1).   However, some of 
the elements in Rq are invalid ciphertext. A ciphertext created 
by the function used for encryption in the scheme that we are 
using encrypts one plaintext message polynomial m in Rt. If a 
homomorphic addition (resp.   multiplication) is done on 
ciphertext that encrypts two plaintext messages for example 
m1, m2 in Rt, the output ciphertext will encrypt the 
summation of m1+m2 (resp. the product m1.m2). Plaintext 
element computations are done in the ring Rt. Thus, in case of 
homomorphic addition, the output ciphertext will encrypt the 
coefficient wise summation m1+m2, where the coefficients 
are likewise reduced modulo the plaintext modulus, t. In case 
of homomorphic multiplication, the output ciphertext will 
encrypt the product m1.m2 in Rt, meaning the polynomial 
will likewise be reduced modulo Xn+1 where –1 will 
substitute all powers of Xn and continued till no monomials of 
n degree or higher than that is remaining. Just like 
homomorphic addition, the coefficients of polynomial m1.m2 
will likewise be deducted modulo integer, t. 

F. Selecting Encryption Parameters 
The particular scheme that is used in SEAL is the more 

practical derivation of the YASHE scheme. Encryption 
parameters of the scheme are: degree n, the moduli q and t, the 
decomposition word size w, and distributions Xkey, Xerr. 
Thus, parameters: = (n,q, t, w, Xkey, Xerr). These parameters 
are explained in more details below. 

● n, here is used as the maximum number of terms in the 
polynomials used for showing the plaintext as well as 
ciphertext elements. SEAL shows n always as a power 
of 2.   Xn  +  1  polynomial  is  the  polynomial  
modulus,  shown  as polymodulus in SEAL. 

● q, the coefficient modulus, is an integer modulus 
operated in reduction of the coefficients of ciphertext 
polynomials. SEAL represents q as coeff modulus. 

● t, the plaintext modulus, is an integer modulus taken in 
reduction of the coefficients of plaintext polynomials. 
SEAL shows t, as plain modulus. 

● Integer coefficients are decomposed into smaller parts 
according to the integer base w.  The integer calculates 
the number w,q:=blogw(q)c+ 1 of parts when 
decomposing an integer modulo q to the base w.  
Practically, we take w, as a power of two, and take the 
decomposition bit count as log2w. SEAL shows log2w 
as decomposition bit count. 

● Xkey distribution is a probability distribution on 
polynomials of degree at most n-1 with integer 
coefficients implemented to sample polynomials with 
small coefficients that are taken in the key generation 
procedure. In SEAL, coefficients are sampled 
uniformly from [1,0,1]. 
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● Likewise, the distribution Xerr on polynomials of 
degree at most n-1 is used for sampling noise 
polynomials, essential in time of both key generation 
and encryption. SEAL has the distribution Xerr as a 
shortened discontinuous Gaussian centered at zero 
having standard deviation. SEAL has it called Noise 
Standard Deviation. 

G. Algorithms used 
The encryption scheme we use is a public-key, 

homomorphic encryption scheme, and consists of the 
following algorithms [15]: 

- A key generation algorithm KeyGen (parms) that, on 
input the system parameters “parms”, generates a 
public/private key pair (pk; sk) and a public evaluation 
key, evk, which is used during homomorphic 
multiplication. 

- An encryption algorithm Enc(pk;m), that encrypts a 
plaintext , m, using the public key, pk 

- A decryption algorithm Dec (sk; c), that decrypts a 
cipher text, c, with the private key, sk. 

- A homomorphic addition operation Add (c1; c2) that, 
given as input encryptions c1 and c2 of m1 and m2, 
outputs a ciphertext encrypting the sum, m1 + m2 

- A homomorphic multiplication operation Mult (c1; c2) 
that, given encryptions c1 and c2 of m1 and m2, 
outputs a ciphertext encrypting the product, m1. m2 

H. Neural Network Models used 
The term Neural Network is an artificial network which is 

composed of circuits or neurons or artificial nodes. These are 
leveled circuits and in layers and are usually found in an order 
where the last layer is the input layer and the first being the 
output layer. Each layer consists of nodes and they all are 
incorporated with a value of the features of the project. In 
these layers, the above or previous nodes of the layer compute 
a function based on the nodes of the layers under it and the 
first node in the stack becomes the output layer. 

On pre-trained CNN models as well as SVM (Support 
vector machine) models of our own. The CNN models that we 
used include VGG16 and VGG19, AlexNet and ResNet. After 
running these models with the mentioned dataset, we 
compared the accuracies (both train and test accuracies). 

1) VGG16 and 19: In VGG16 architecture, the images are 
passed through a sequence of convolutional layers which are 
of fixed size (224x224 RGB image). Thus, we use the default 
image size for this model in our dataset.  In one of the 
configurations, it also utilizes a 1×1 convolution filter. The 
convolution stride is fixed to 1 pixel. Spatial pooling is carried 
out by five max-pooling layers, which follow some of the 
convolutional layers (not all the convolutional layers are 
followed by max-pooling). Max-pooling is performed over a 
2×2 pixel window, with stride of 2. There are three fully 
connected layers which have different depths in different 
architectures. Amongst them, the first two have 4096 
channels, and the third performs 2-way classification of the 

Leukemia dataset and contains two channels for each 
individual class and the last layer is a soft-max layer. This 
configuration is the same in all the networks. We are using 
pre-trained VGG16 and VGG19 models of ImageNet dataset. 
Thus, in building our own VGG16 model we use the 
“Weights” of ImageNet. We then extract features of our 
dataset that are used through VGG16 and VGG19 
convolutional base. After the feature extraction, the data then 
passes through the layers described above (VGG 16 and VGG 
19). The models are then fitted and trained for 100 epochs. 

2) SVM: Supervised Vector Machine (SVM) is a 
supervised machine learning algorithm which divides the 
dataset into two classes and is mostly used for classification 
and regression purposes. In order to train a linear support 
vector machine, the machine learning approach is used. We 
can use K-fold cross-validation where we can estimate error of 
our mode. Since this will be used, we can enlarge our training 
data by concatenating the train and the validation sets. After 
the feature extraction using the convolutional base of VGG16, 
the output tensor [2] is used in the model fitting of the SVM 
model. Thus, no separate feature extractions of the pre-
processed images that are used are required. The model is run 
for 100 epochs. Lastly, we ensure that the SVM classifier has 
one hyper parameter which is a penalty parameter C of the 
error term. 

3) AlexNet: Classifying the image is a major problem and 
AlexNet fixes it by taking the input image of one of 1000 
different groups and generally giving output of a vector of 
1000 numbers. There are two groups here instead of 1000 so 
an output vector of only two will be present. The sum of all 
output vector elements is 1. AlexNet takes an RGB image size 
224x224 input picture from the preprocessed dataset. 
Nevertheless, unless the image is not in RGB or in grayscale, 
it is converted to RGB by replicating the single channel in 
order to get a 3 channel RGB picture. AlexNet has 3 Fully 
Connected Layers and 5 Convolutional Layers. 

- Multiple Convolutional Kernels: Multiple 
convolutional kernels are also many times called filters 
that extract the necessary features out of an image 
where the single convolutional layers consist of 
multiple similar size kernels. 

- The first two Convolutional layers: The third, fourth 
and fifth layers of convolution are joined directly. 
After the fifth convolutional layer comes an 
Overlapping Max Pooling layer, whose output goes 
through a sequence of two fully integrated layers. The 
second fully integrated layer feeds heuristic SoftMax 
labelling into two classes. 

- Max Pooling layers: The depth is kept unaltered by 
sampling the sample’s height and width. Overlapping 
Max Pool layers are compared to Max Pool layers, 
other than neighboring windows where the max is 
estimated to overlap. Makers of the model used to pool 
3x3 size windows between opposite windows, with two 
steps. This overlapping complexity of pooling has 
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helped to lower the top -1 error rate by 0.4 percent, the 
top-5 error rate by 0.3 percent, compared to using non-
overlapping 2x2 sized pooling windows with step 2, 
giving identical output dimensions. 

AlexNet’s use of the nonlinearity function within the 
layers is an important feature. Activation functions of sigmoid 
or Tanh functions used to be the traditional method of training 
a neural network model. AlexNet has displayed that deep 
CNNs can be trained much more rapidly using ReLU’s 
nonlinearity feature rather than using saturated activation 
functions such as tanh or sigmoid. Until feeding the data into 
the layers and constructing the model, various techniques such 
as image mirroring, shuffling and random cropping of images 
in data augmentation to minimize overfitting. This is stated 
earlier in this section, in which the data set explanation is 
present. 

In dropout, one neuron with a probability of 0.5 is 
removed from the network. If a neuron is lost, this does not 
lead to propagation which is either forward or backward. 
Thus, each input goes through different architecture of the 
network due to which the learned weight parameters are 
therefore more robust, and are not readily overfitted. There is 
no dropout during testing, and the entire network is utilized, 
but output is scaled by a factor of 0.5 to adjust for the neurons 
lost during training. Dropout raises the number of iterations 
required to converge by a factor of 2 but AlexNet will 
significantly overfit without it. 

4) ResNet50: Above is a pre-trained model of the 
ResNet50 architecture. The model has “50” layers with 
weights. Residual Networks or ResNet creates networks 
through models known as residual models and also known as 
the degradation problem. Although increasing depth increases 
the accuracy of the network, the problem increases when the 
vanishing gradient arises. Another issue that occurs while 
training the deeper network is greater training error as it adds 
the layers when performing optimization on large parameter 
space. The architecture of ResNet is identical to that of 
VGGNet which has 3x3 filters. The ResNet50 model we will 
use is a pre-trained model trained on the dataset ImageNet. 

III. PROPOSED MODEL 

A. Dataset Pre-Processing and Feature Selection 
In 2018, another dataset with in excess of 10,000 preparing 

pictures and a separate test set of ordinary B-lymphoid 
forerunners and threatening B-lymphoblasts has been 
discharged as an online test open to the general population. In 
2019, it was made available for general use [24]. The 
enormous size of this new dataset permits to make improved 
classifiers dependent on profound neural systems and 
furthermore gives an increasingly dependable correlation of 
contending approaches. In this work we present our way to 
deal with the arrangement of sound and dangerous cells on the 
referenced dataset utilizing a convolutional neural system. The 
test dataset [17,18,19,20,21], from now on alluded to as 
C_NMC dataset, contains pictures of white platelets taken 
from 154 individual subjects, 84 of which show ALL. Table I 
gives a nitty gritty breakdown of the quantity of subjects and 

cells in preparing and test sets. The dataset is imbalanced with 
about twice the same number of ALL cells as ordinary cells. 
Each picture has a goal of 450 × 450 pixels and contains just a 
solitary cell as a result of preprocessing steps applied by the 
dataset creators: A mechanized division calculation has been 
utilized to isolate the cells from the foundation. Every pixel 
that was resolved not to be a piece of the cell is hued totally 
dark. In any case, since the division calculation isn’t great, 
there are examples where parts of the cell are coincidentally 
shaded dark or pointless foundation is incorporated. 
Moreover, the sum total of what pictures have been 
preprocessed with a stain-standardization system that performs 
white-adjusting and fixes blunders acquainted due with 
varieties in the recoloring compound [17]. See Fig. 1 for 
instance pictures from the dataset. 

Table I shows Composition of the dataset. At the time of 
writing the ground truth for the final test set is not yet 
released, so some information is missing. 

Despite the fact that the dataset contains in excess of 
10,000 pictures, a few information enlargement strategies can 
be applied to build the measure of preparing information 
further and improve the preparation of our convolutional 
neural system. Since tiny pictures are invariant to flips and 
turns, we perform level and vertical flips with 50% likelihood 
each and pivots with an edge from [0, 360] degrees picked 
consistently at irregular. Since convolutional neural systems 
with pooling tasks or walks bigger than one are not flawlessly 
interpretation invariant, we additionally perform arbitrary 
interpretations of up to 20% of each side-length in flat and 
vertical ways. Also, the pictures are   further focus trimmed to 
100 × 100 pixels to diminish the dimensionality of the 
information. This will for the most part make learning a 
classifier quicker and simpler. Despite the fact that the editing 
disposes of huge pieces of the picture, it has no impact on the 
arrangement exactness in light of the fact that without a doubt, 
not very many cells are really bigger than this harvest. Much 
of the time, pictures that are not totally dark outside of the 
harvest are division disappointments that incorporate pieces of 
the foundation. The dataset is further trimmed, labeled and 
pre-processed into CIFAR-10 format so that we can run our 
CryptoNet model with ease. This part is explained further in 
the coming section. 

 
Fig 1. Images in the Training Set.  (a) ALL cell (b) Normal cell (c), ALL 

cell with Part of the Cell Cut Off Due to an Imperfect Segmentation (d) 
Normal cell with Superfluous Background Due to an Imperfect Segmentation. 
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TABLE I. TRAIN AND TEST SUBJECTS AND THE CORRESPONDING 
NUMBER OF SAMPLES 

Dataset part ALL 
subjects 

Normal 
Subjects 

ALL 
cells 

Normal 
cells 

Train 47 26 7272 3389 

Preliminary Test 13 15 1219 648 

Final test 9 8 ? ? 

B. Model Description 
According to the workflow diagram illustrated previously 

in Fig. 2, firstly the C_NMC Challenge 2019 dataset is 
modified, pre-processed to CIFAR-10 format, split into 
training and test and taken in numpy arrays accordingly. The 
conversion of the dataset to CIFAR-10 format is essential 
because previously CryptoNets model has been run on mainly 
three datasets, namely, Cifar-10,MNIST and Caltech-101 as 
mentioned earlier of which Cifar-10 is much more convenient 
in dealing with real-life image classification and has an 
organized “labeling” along with “classes” of images in binary 
format, all of which are convenient in running the CryptoNets 
application using the SEAL version 3.2 HE-wrapper in C and 
.NET framework version 4.6.2 [16]. 

The conversion of the dataset to numpy array and using it 
to train our own cancer predicting Convolutional Neural 
Network, generating encryption parameters and conversion of 
test samples to binary version of CIFAR-10 are done prior to 
building the CryptoNets wrapper around it is done using code 
of python version 3.5. 

1) Dataset Conversion and taking into Array 
- After the pre-processing has been done; our 10,000 

training images are at first separated equally and placed 
into two different folders with names: “Cancer” and 
“Normal”. 

- From each class sub folder, we are taking 80% of the 
images for training and 20% of the images testing. 
After placing the images, the class subfolders and the 
images inside the folder are iterated accordingly. An 
array is first created with dimensions of 32x32 images 
and an RGB value of “3”. Thus, the shape of the array 
would be (32,32,3). For each class subfolder, each 
image in the subfolder is sliced to obtain the “R”, “G” 
and “B” values which are then into that array that are 
concatenated as iteration is done over each image. The 
array is then appended. 

- For the “index” value, a separate array is declared. 
Each class folders in the input directory would 
correspond to an image label. Thus the “index” value is 
assigned to each class folder namely “0” for “Cancer” 
and “1” for “Normal”. Each class folder is iterated for 
images inside and the assigned “index” value is 
appended into an array for each iterated image in the 
subfolder. 

- The above steps are repeated for another class 
subfolder. 

- The above steps are repeated for the rest 20% of the 
training images. The test and train image arrays and the 
corresponding test and train image labels are saved in 
variables “X_train,Y_train” and “X_test, Y_test”. 
Since the label numpy array is being iterated and 
concatenated within the same loop as the same array, 
one-hot encoding is not necessary here. But we are 
doing it anyway just to be on the safe side. Thus, 
numpy arrays are then one-hot encoded where input, 
that is, list of a ground truth table where “0” is Cancer 
and “1” is Normal. Thus, the image data taken in the 
test and train arrays are in Cifar -10 format as with 
each image taken in “X” the corresponding “Y” label is 
inserted in the arrays accordingly. 

 
Fig 2. Overview of Proposed Approach. 
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2) Model Details 
Our Neural Network model has 14 layers in total of which 

3 are “Convolutional”, 3 are “Activation”, 2 “Dense” layers, 1 
“flatten” layer before the output layer and the rest are “Mean 
Pooling” and “Dropout” layers. 

The model is put into training for 100 epochs. Our own 
model is set to training using a different set of “Activation” 
layer functions twice. At first training, the first 2 “Activation” 
layers are “Relu” layers and the last “Activation” layer being a 
“Sigmoid” layer. The model is again trained this time with 
“Square” function instead of “Relu” and “Softmax” instead of 
“Sigmoid”. 

Below are the descriptions of the “Activation” functions 
mentioned. 

Sigmoid: Take the value of one of the nodes in the feeding 
layer and evaluate the function 

z ↦1/ (1+exp (-z)) 

Rectified Linear: Take the value of one of the nodes in 
the feeding layer and compute the function 

z ↦max(0,z) 

Square Activation Layer: This layer squares the value at 
each input node. 

Softmax Layer: This activation function forces the values 
of output neurons to take values between zero and one, so they 
can represent probability scores. 

“Sigmoid” and “Relu” activation functions are non-
polynomials. The fix was to estimate these functions with low-
degree polynomials but here we will be using a different 
method [15]. We tried to manipulate the trade-off between 
possessing a non-linear transformation required by the 
learning algorithm and also need to maintain the degree of the 
polynomials minimal to make the parameters of homomorphic 
encryption realistic. We opted to use the non-linear lowest 
degree polynomial function, which is the Square function: sqr 
(z):=z^2. It has been suggested by a theoretical study of a 
problem regarding neural networks with polynomial activation 
functions and dedicated the majority of their study to the 
square activation function [22]. For the training stage, the 
sigmoid activation function is used to get reasonable terms of 
error when running the gradient descent algorithm. However, 
in the encrypted world, we don’t have a reasonable way to 
deal with the sigmoid. Fortunately, once we have our weights 
set and would like to make predictions, we can just take it out. 
This is because the neural network’s prediction is given by the 
index of its output vector’s maximum value, and since the 
sigmoid function is increasing monotonously, whether we 
apply it or not will not affect the prediction. 

The validation accuracies for both the times are recorded. 
For the first time the accuracy is recorded to be 78% and the 
second time it is recorded to be 80%. 

3) Converting Weights and Biases to CryptoNets Format 
Once the model is training the next step is to convert the 

weights and bias vectors to a format that CryptoNets 
recognizes. CryptoNets expects the weights to be in a CSV 

file where the weights for each layer are in a separate line. 
One challenge is to collapse the immediate previous or next 
linear layers into a single linear layer. For each layer with 
trainable weights (a dense layer or a convolution layer) a bias 
file and a weights file should be generated. Once done for all 
the relevant layers, we combine all the weights into a one file 
and all the biases into a second file. Below is the code snippet 
of how the “weights” and “biases” of the “Convolutional” and 
“Dense” layers are obtained as a separate file. A total of 10 
files (5 for weights and 5 for biases) are generated for the 3 
“Convolutional” and 2 “Dense” layers. Values in the files are 
now in single columns. Thus, each column in each file of all 
the weights and biases for each layer is transposed into single 
rows. All the “weights.csv” and “bias.csv” files are combined 
to a single “all_weights.csv” and “all_bias.csv” file 

4) Building and Testing the Application without 
Encryption 

The model is first tested without any encryption 
parameters. Prior to that, the “test.tsv” file is created in 
python. At first we a create “.bin” file similar to the binary 
version of the CIFAR-10 dataset for our test samples of the 
cancer dataset which had been  trimmed, pre-processed and 
put into folders with labels “0” and “1” in order to work with 
CryptoNets like the Cifar-10 dataset. The test samples of the 
cancer dataset are thus arranged accordingly. The “.bin” file 
hence is a batch file created containing a binary version of the 
3527 test samples arranged in bytes in the .bin file. The model 
is first tested without any encryption parameters. Prior to that, 
the “test.tsv” file is created in python. At first we a create 
“.bin” file similar to the binary version of the CIFAR-10 
dataset for our test samples of the cancer dataset which had 
been trimmed, pre-processed and put into folders with labels 
“0” and “1” in order to work with CryptoNets like the Cifar-
10 dataset. The test samples of the cancer dataset are thus 
arranged accordingly. The “.bin” file hence is a batch file 
created containing a binary version of the 3527 test samples 
arranged in bytes in the .bin file. The “.bin” is then converted 
to “.tsv” file where should have one line per image where each 
line contains 1 + 33232 tab separated columns in which the 
first column is the label and the other column are the RGB 
values of a 32*32 image. The bytes in the “.bin” file is 
converted to strings when converting to “tsv”. This is done 
using C#. 

The application is coded in C# using “Visual Studio 2019” 
and was tested in the windows environment used .Net 
framework version 4.6.2. This project depends on SEAL 
version 3.2. Thus a “Nuget” package containing SEAL, is 
added as a reference which is essential. The “all weights” and 
“all biases” are passed in the “WeightsReader” function and 
the parameters are loaded. The string file is passed into the 
application. The project is then built in x64 architecture in 
release mode. 

Prior to “building” the project, the line of code: 

 
var Factory = new 
RawFactory((ulong)batchSize); 

is added. The use of the “RawFactory” function is 
explained further. 
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5) Selecting Encryption Parameters 
The theoretical process and mathematical formulae to 

calculate the correct parameters are given in the previous 
section “Parameter Selection”. To allow correctness the 
parameters should support large enough numbers to be 
processed. Much like in traditional programming where a 
program might fail if numbers are allocated with insufficient 
space (short integers vs. long integers or floats vs. doubles), 
the same thing may happen when using homomorphic 
encryption. Thus, the first step is to determine the amount of 
space needed. When running without encryption (using the 
RawFactory), CryptoNets keys track of the size of number 
processes in the line of code: 

Console.WriteLine("Max computed value {0} 
({1})", RawMatrix.Max, 
Math.Log(RawMatrix.Max) / Math.Log(2)); 

We print the maximum number used (in absolute value) 
and the number of bits this number required to encode this 
number. To determine the number of bits needed, we add 1 to 
this number since an additional bit is required to hold the sign 
of the number. 

To provide the required number of bits, a number of prime 
numbers is provided such that the product of these numbers is 
at least the required number of bits. For example, if 70 bits are 
needed, we can use 2 prime numbers with 35 bits each. 
Working with more prime numbers increases the running 
time. However, smaller primes allow more computation to be 
done before the noise budget exceeds. 

Noise budget is another important parameter of 
Homomorphic Encryption. In a nut-shell, a freshly encrypted 
number has a certain amount of noise budget. Every operation 
on such numbers (addition, multiplication, etc.) reduces this 
budget. Once this budget equals zero, the decryption will fail 
to provide correct results. The amount of noise budget 
available is determined by several parameters, the most 
important of them are the dimension used. (N) and the size of 
the prime numbers used as plaintext-modulus. The dimension 
N should be a power of two, the larger it is, the greater the 
noise budget is. However, the larger N is, the slower the 
program runs. Typical values for “N” range from 2^12 to 
2^15. On the other hand, a greater noise budget is available 
when the plaintext modulus is smaller. However, working 
with smaller plaintext modulus requires using more plaintext 
modulus to achieve the required number of bits and therefore 
slows down the application. Selecting a good set of parameters 
is currently done manually. 

After determining the required number of bits, select a 
value for N and the number of primes to be used. 3 parameters 
are specified to generate the encryption parameters that are to 
be passed in the application. The code in python 3 generates 
these parameters in the code, 3 parameters are set where “bits” 
is the minimal number of bits of each prime, “ndegree” is the 
number of bits in N and “count” is the number of primes to 
generate. The code above generates parameters of 
957181001729 and 957181034497.These parameters are 
passed into the application and the line of code for the 
CryptoNets build: 

  
  var Factory = new EncryptedSealBfvFactory(new ulong[] 
{ 957181001729, 957181034497 }, 16384); 

where 16384 is the value of “N”. Since 2 prime numbers 
were demanded with 39.8 bits each, these parameters can 
support 79.6 bits. 

The following is an output for a prediction sample 
generated after the CryptoNets model is run is as follows: 

 
Fig 3. Output for a Prediction Sample. 

Here in Fig. 3, label “0” is correctly predicted with an 
accuracy of 77.934% at an inference time of 55.20 ms. 

IV. EXPERIMENTS AND RESULT ANALYSIS 
Each model mentioned earlier in the paper is trained on a 

PC of GTX 750ti, 8gb Ram and a processor of core i5 4th 
generation. Each model is trained for100 epochs except for 
AlexNet and ResNet which are trained for approximately 20 
epochs since they are better CNN models with more 
convolutional layers and training them for more epochs may 
result in “overfitting”. The training and validation accuracies 
of the models are illustrated below: 

From Fig. 4, the VGG-16 model is trained for 100 epochs. 
The training accuracy increases at a decreasing rate whereas 
the validation accuracy decreases but is very much fluctuating. 
At 100 epochs approaching, both the accuracies tend to 
become constant. 

 
Fig 4. Training and Validation Accuracy for VGG16. 

 
Fig 5. Training and Validation Accuracies for SVM. 
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It can be seen from Fig. 5, that the training accuracy is 
always constant at 100% which is practically unrealistic in 
terms of machine learning. Hence, it can be stated that this is 
due to overfitting of the data and we should not take this result 
into account. 

The AlexNet model is trained for 20 epochs as depicted by 
the graph in Fig. 6. After 15 epochs, we see that the training 
accuracy is approximately 73% which is higher than the 
steady increasing validation accuracy of 68%. The model thus 
is not over-fitting. Both the model’s training and testing 
accuracy increases at a decreasing rate. 

The ResNet50 model is trained for 20 epochs. The graph 
depicts the Validation and Training accuracies of the model 
after 15 epochs Fig. 7. We see that the training accuracy is 
approximately 72.50% which is higher than the steady 
increasing validation accuracy of 67.80%. The model it seems 
is not overfitting. The model’s training accuracy increases at a 
decreasing rate but the validation accuracy remains constant. 

 
Fig 6. AlexNet Validation (Orange) and Train Accuracy (Blue). 

 
Fig 7. ResNet50 Validation (Orange) and Train Accuracy (Blue). 

 
Fig 8. Validation Accuracy using Square and Softmax. 

 
Fig 9. Validation Accuracy using Relu and Sigmoid. 

Our own Neural Network model is defined as above and is 
trained for 100 epochs. Like mentioned earlier our model is 
first fitted using the “Relu” function in the first two 
“Activation” layers and “Sigmoid” function in the last 
“Activation” layer and the Neural Network is trained. The 
same process is repeated using the “Square” function instead 
of “Relu” and “Softmax” instead of “Sigmoid”. The graph of 
the validation accuracy of our own model using different sets 
of functions twice is illustrated in Fig. 8 and 9. The graphs 
were obtained from Tensorflow. Although the models with 
different functions are trained for different numbers of epochs, 
they are trained with the same dataset. Thus, there won’t be 
much of a difference in accuracy. 

The model with the “Square” and “Softmax” activation 
functions have higher test or validation accuracy of 80% than 
the previous AlexNet and Resnet models when compared and 
also has more validation accuracy than that when the other 
two functions are used to build our own model (Fig. 9). 

Table II shows the comparison between all the other 
models. 

From Table II, we see that SVM has the most validation 
accuracy. It is surprising how an ML model had performed 
better than the rest of the Neural Network models. This may 
be due to “over-fitting” of the model after put into training 
taking the output tensor of the convolutional base of VGG16 
into the model for feature extraction. The VGG19 model also 
works the same way except that there are differences in layers. 
Since we have included the work of VGG19 in our workflow 
diagram, our implementation on this will be for future works. 

TABLE II. COMPARISON BETWEEN OUR MODELS 

 AlexNet ResNet50 VGG16 SVM CNN (our 
model) 

Training 
accuracy 

72.90% 
 
 

72.50% 
 

68.20% 
 

100% 
 

82.6% 
 

Validation 
Accuracy 

68% 
 

67.80% 
 

64.80% 
 

86% 
 

80% 
 

Encrypted 
Neural 
Network 
(Accuracy) 

    77.934 

358 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

V. CONCLUSION 
From the earlier validation accuracies of our current model 

using different “Activation” functions and taking the 
validation accuracies of the models into account, the model 
with the “Square” and “Softmax” activation functions have 
higher test or validation accuracy of 80% than the previous 
“AlexNet” and “ResNet” models when compared and also has 
more validation accuracy than that when the other two 
functions are used to build or own model. The prediction 
accuracy of our encrypted CNN model (77.934%) is slightly 
less than that of the un-encrypted CNN model (80%). This 
may be due to the noise generation which should reduce if 
correct encryption parameters are selected. In our future work, 
after creating the CryptoNet model, the model with the data 
will be stored in the cloud and hence the cloud can charge 
money for the storage and will also be financially beneficial 
for both the user and the supplier. The cloud system does not 
have any key and hence will not be able to decrypt the data 
and hence it won’t know about the data inside or be able to get 
any data about the predicted data. This will provide a better 
privacy and will also decrease the overall cost and since there 
is only one private key. The secure predictions of Acute 
Lymphoid Leukemia (ALL) can thus be carried out through 
the cloud and the particular patient can access the 
corresponding results with ease. 

According to our literature survey and our previous 
research, it can be seen that there are several works which 
used several machine learning and Neural Network algorithms 
in classification of Acute Lymphoid Leukemia, however our 
approach was different and we were able to attain a high 
accuracy while encrypting our dataset and using our CNN 
model. 

Moreover, the CryptoNet model that we implemented here 
is currently based on The Brakerski/Fan-Vercauteren (BFV, 
2012) scheme from the built in SEAL library. Our future 
works would also include implementing the CryptoNet model 
for real life applications using the faster Cheon-Kim-Kim-
Song (CKKS, 2016) scheme for better accuracy in the 
CryptoNet model used. We are currently in the process of 
developing the algorithm using the CKKS scheme to precisely 
suit our CryptoNets model and its calculations. Also, we are 
collecting ALL- Acute Lymphoid Leukemia images with 
“patient id”, “age”, and “gender”. For now, we have 290 
images which is more than the ALL-IDB dataset which is 
frequently used in detection of blood cancer using ML and NN 
models. Previous works done on ALL detection used ALL-
IDB dataset which has about 270 ALL blood cancer images. 
As of now, we are using the CNM-C dataset of our model 
which is significantly larger than the ALL-IDB dataset and 
has about 10000 training images of which we are using 3257 
images for testing. We are hopeful to successfully collect 
about 2000 images, label it and run it on our own CryptoNets 
model for secure prediction of Cancer. 

Moreover, it will provide a comparatively less expensive 
preliminary screening and will also ensure the proper privacy 
of the user. 
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