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Abstract—Since its launching as the standard language of the 
semantic web, the Resource Description Framework RDF has 
gained an enormous importance in many fields. This has led to 
the appearance of a variety of data systems to store and process 
RDF data. To help users identify the best suited RDF data stores 
for their needs, we establish a list of evaluation and comparison 
criteria of existing RDF management systems also called 
triplestores. This is the first work addressing such topic for such 
triplestores. The criteria list highlights various aspects and is not 
limited to special stores but covers all types of stores including 
among others relational, native, centralized, distributed and big 
data stores. Furthermore, this criteria list is established taking 
into account relevant issues in accordance with triplestores tasks 
with respect to the main issues of RDF data storage, RDF data 
processing, performance, distribution and ease of use. As a study 
case we consider an application of the evaluation criteria to the 
graph RDF triplestore AllegroGraph. 
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I. INTRODUCTION 
The primary goal of the W3C (World Wide Web 

Consortium) standardized ontology language RDF (Resource 
Description Framework, [24]) and its query language SPARQL 
(SPARQL Protocol and RDF Query Language, [25]) is to 
enrich the Web with semantics by structuring data through 
linking. This goal was set up with the aim to transform the web 
from a web of documents to a web of intelligent data in order 
to allow applications to easily extract semantics from data. 
With the web of documents, there is a difficulty to intelligently 
follow the semantics of the data because of the lack of structure 
in the documents content ([9]). For these reasons, there has 
been a massive use of RDF for publishing data on the web 
during the last decade. The use of RDF has paved the way for 
new features and use by scientists and businesses. RDF has 
indeed been used for modeling and publishing of data in 
various fields such as health services [3], smart city services 
[7], Internet of Things [8] and Geography Information Systems 
(GIS) [23]. This use of RDF has also been accompanied by a 
rapid development of a multitude of data management systems, 
also called triplestores, for the storage and processing of RDF 
data. In the first years of RDF, storage and processing solutions 
for RDF data were developed based on the use of relational 
based management systems because of the successful 
developments of such systems that had been reached over 
many years. However, these relational solutions present many 
limitations because of multiple problems such as, among 

others, SPARQL to SQL (Structured Query Language) query 
conversion overhead for RDF data querying, complex joins 
processing imposed by the relational schema proposals for 
modeling RDF data, integration of other data sources and the 
handling of big amounts of data. To come up with solutions to 
the relational problems with regards to RDF data handling, 
various RDF data management systems have been proposed 
during the past decade ranging from NoSQL (Not only SQL) 
based systems through native triplestores to Big Data solutions. 

The aim of this work is to give a complete list of evaluation 
and comparison criteria for RDF management systems. To this 
end, we first give a summarized categorization of existing 
triplestores while considering the motivations behind their use 
for handling RDF data. We identify the benefits of each 
identified category of systems and the challenges they are 
facing. In a second step, we establish and motivate an extended 
evaluation criteria list for triplestores taking into account their 
associated categorization and relevant aspects with respect to 
their tasks for handling RDF data. 

With the established criteria list, we aim to provide users 
with detailed insights of the various RDF management systems 
and comparison aspects with regards to the various relevant 
issues of dealing with RDF data. Users will be able to 
differentiate between RDF management systems and identify 
the best suited triplestore to their data for their specific use 
cases. 

Contrary to existing comparison works that mainly focus 
on response times of query processing for a limited number of 
RDF storage systems (e.g. [29], [32], [13]) our list of 
evaluation criteria for triplestores considers a large variety of 
aspects. Indeed, based on the categorization details we are 
considering, various issues related among others to storage 
models, data organization and data recovery, query processing, 
query optimization, concurrency, dynamicity, scalability, 
reasoning, data integration, data exchange, data portability, 
scalability, visualization and support of analytical 
functionalities. The detailed criteria list provides users with 
means to focus on the triplestores aspects that better fulfill their 
objectives while comparing triplestores. Users can indeed 
choose the right criteria to identify the drawbacks or the 
positive aspects of these triplestores. 

The following sections are structured as follows. Section 2 
presents the W3C standards RDF, RDFS (RDF Schema, [10]), 
OWL (Web Ontology Language, [18]) and SPARQL as well as 
a summary about triplestores categories. Sections 3 to 7 present 
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the main categories of comparison and evaluation criteria with 
motivations behind their associated criteria. Section 8 discusses 
the case of Allegrograph and Section 9 concludes this work. 

II. SEMANTIC WEB STANDARDS AND RELATED WORK 
In this section we present aspects of the semantic web 

standards RDF, RDFS, OWL and SPARQL ([24], [10], [18], 
[25]) as well as of associated existing management systems 
that help in guiding the identification of evaluation criteria for 
such systems. We also give an overview of research works that 
deal with comparison and evaluation of triplestores. 

A. RDF and SPARQL 
RDF semantic language revolutionized the research domain 

of creation, engineering and processing of ontologies for 
sharing information on the web. It uses a flexible model where 
statements in RDF are simply modeled as a set of triples 
having the form of (S,P,O):=(Subject, Predicate, Object) where 
a subject represents a resource, an object can be either resource 
or a literal value and the relation between the Subject and 
Object is expressed by the Predicate. An object may also be a 
set of either resources or literals grouped together using RDF 
grouping constructs such as “RDF:bag”, “RDF:seq” for an 
ordered list or “RDF:list”. Literal values may have a type and 
XML types may be used as types of literals. 

RDF data can be presented in different formats: XML, 
Turtle, N-Triples and the N3 (Notation 3). Fig. 1 gives an RDF 
example using N3 and XML formats. RDF resources and 
predicates may be endowed with URIs (Uniform Resource 
Identifiers) to separate data into groups and to allow linkage 
between graphs to get a web of data. 

With the RDF representation of data in form of triples such 
data can be considered as an oriented graph where nodes are 
either resources or literals and edges are labeled with 
predicates. There could be of course more than one edge 
between two nodes of the graph. 

As mentioned above, the W3C standardized query language 
of RDF data is SPARQL (SPARQL Protocol and RDF Query 
Language, [25]). A SPARQL query has a SELECT clause and 
a WHERE clause and may have a FILTER clause to filter the 
results according to some conditions. In the SELECT clause, 
attributes to look for are given as variables and these variables 
are used as substitutes of either subjects, predicates or objects 
in the triples to look for in the WHERE clause. 

@prefix fsts: <http://www.fsts.ma/studies#> . 
fsts:MachL a fsts:Course . 
fsts:MachL fsts:coursename "Machine Learning". 

(a) N3 Format 
<rdf:RDF xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
 xmlns:fsts="http://www.fsts.ma/studies#"> 
<rdf:Description rdf:about=”http://www.fsts.ma/studies#MachL”> 
 <fsts:coursename> 
  Machine Learning</fsts:coursename> 
</rdf:Description> 
</rdf:RDF> 

(b) XML Format 

Fig 1. Example of an RDF Triple. 

B. Schema Languages RDFS and OWL 
The RDF schema language RDFS [10]) is the meta-

language for RDF data. Statements in RDFS are also RDF 
triples. RDFS allows RDF resources to be grouped into classes, 
and allows the declaration of subclasses, properties, 
subproperties and domains and ranges for properties. An 
example is given in Fig. 2 where “BachelorStudent” is declared 
as a subclass of the class “Student”. 

Built on top of RDFS, OWL (Web Ontology Language 
[18]) extends RDFS by adding concepts of classes and 
properties equivalence, resources equality, symmetric 
properties, disjoint properties and cardinalities. 

 

<rdfs:Class rdf:ID="Student"> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID="BachelorStudent"> 

<rdfs:subClassOf 
rdf:resource="#Student"/> 

</rdfs:Class> 

(a) Graph 
representation 

(b) XML format 

Fig 2. Class Hierarchy in RDFS. 

OWL uses "ObjectPropertyDomain" and 
"DataPropertyDomain" to specify the domains of an object 
property and a data property. It also offers other inference 
constructs such as “owl:sameAs”, “owl:inverseOf” and 
“owl:TransitiveProperty”. Such OWL constructs have the 
advantage to induce inheritance between classes and similarity 
between properties and therefore allow reasoning over data 
through inference. 

C. RDF Triplestores 
Over the two past decades several systems for the storage 

and the processing of RDF data have been developed. Those 
systems called triplestores can be classified into several 
categories according to the aspects considered for data 
management [1]. The criteria we are giving in the following 
section take into account the category of the triplestore chosen 
for handling RDF data. 

RDF management systems can be broadly classified as 
being relational or non-relational, native or non-native, 
centralized or distributed and memory or disc based, as well as 
Map-Reduce based or not relying on Map-Reduce for the case 
of big RDF data. 

Relational RDF stores are solutions that exploit relational 
database systems to store RDF data. However, the dynamicity 
of the RDF data is generally not guaranteed by these 
triplestores. Object relational stores on the other hand provide 
the link between classic relational databases and object 
databases. Non-relational RDF stores are those stores that do 
not rely on relational database systems for handling RDF data. 
Native triplestores are those systems designed solely for the 
purpose of handling RDF data. Some of them are disk-based 
stores (e.g., 4Store [17]) and others are main-memory-based 
stores (e.g., Cliopatra [35]).  NoSQL triplestores are those RDF 
solutions that use column, document, Key-value or graph 
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NoSQL databases for handling RDF data. Among NoSQL 
triplestores we have CumulusRDF that is based on Cassandra 
([21]) and SHARD ([28]). 

RDF triplestores are also categorized as either centralized 
or distributed stores. Although centralized triplestores ensure 
efficient and scalable RDF query processing in a centralized 
way, they show limitations in storing and processing large 
amount of data. 

RDF management systems can further categorized in cloud 
based triplestores (e.g., 4Store [17], Amada [4], [11]), mobile 
solutions designed for mobile devices (e.g., RDF on the Go 
[22]), and P2P solutions (e.g., Rya [26], Atlas [20], Statustore 
[33], RAPID+ [27]). Another category of RDF management 
systems consists of Big Data triplestores that either use Hadoop 
Map-Reduce (e.g., SHARD [28], HadoopRDF [19], RAPID+ 
[27], PigSPARQL [30]) or other frameworks such as Spark 
framework (e.g., S2RDF [31], PRoST [12]). 

To be noticed is that a triplestore may belong to one or 
more of the given categories. The comparison and evaluation 
criteria given in following sections also considers the 
categorization of triplestores. Fig. 3 summarizes the list criteria 
and the classes they belong to. 

D. Related Work 
As already mentioned, this is the first times a research 

paper addresses the topic of evaluation and comparison criteria 
for RDF management systems. Many works mainly dealt with 
the comparison of some triplestores only with respect to either 
the amount of RDF data they can store, the loading times of 
such data or the execution times of SPARQL queries on these 
data. This is done for example for the comparison of some Big 
Data and some NoSQL RDF in [6]. 

 
Fig 3. Comparison Criteria with Associated Categories. 

Also such type of comparison has also been done in the 
context of the specific application domain of smart city 
services, RDF data loading times and query response times 
were compared in [7] principally for some NoSQL and 
relational triplestores using data benchmarks related to smart 
city services. 

III. CRITERIA RELATED TO RDF DATA STORAGE 
In this section we list some important criteria dealing with 

the capabilities of triplestores to handle RDF data storage. Such 
criteria involve the respect of RDF data model, RDF data 
validation, storage capacity, Data portability and serialization 
and integration of other data sources. 

A. Compliance with RDF Data Model 
RDF storage solutions have to preserve the flexibility and 

dynamicity of RDF data. The “-Subject, Object, Predicate” 
data model and the graph structure of RDF data is beneficial 
for querying the semantic information and also for adding new 
predicates without the need to change the schema. It also 
allows partitioning of the data for the efficient storage and 
processing of the queries. 

B. RDF Data Validation 
For triplestores it is also necessary that they provide the 

possibility for users to validate their RDF data against the 
constraints and the structures they provide in associated 
RDFS/OWL schemas. Through validation, not only data 
conformity with such schemas will be guaranteed but also data 
exchange and integration will be facilitated. 

C. Storage Capacity 
The storage capacity for RDF data management systems 

refers to the possible amount of RDF triples such systems can 
store and handle. AllegroGraph can handle RDF datasets with 
more than 1 trillion RDF triples. The Stardog triplestore can 
handle up to 50 billion triples [31], and GraphDB and Virtuoso 
triplestores cab handle up to 15 billion [34]. Such information 
are naturally of great importance for RDF users because of its 
crucial role in choosing the best suited triplestore for managing 
their RDF data. 

D. Data Portability and Serialization 
Data portability would give the opportunity for users to 

exchange information and content between the services. This 
requires representation portability mechanisms to be 
implemented in triplestores. Among such mechanisms, at least 
export functionalities of RDF data into portable formats such 
as XML or Json formats are of great importance. In this way, 
exported RDF data will be machine-understandable and 
extensible. Furthermore, switching from a triplestore to another 
one can be easily done. 

E. Integration of Other Data Sources 
Integration functionalities expected from a triplestore 

concern above all adding new RDF graphs into the triplestore 
as well as merging graphs. Also adding non RDF data source is 
of great importance to allow interoperability with other 
database systems that are not RDF based. Many existing 
transformation techniques of other non RDF data sources such 
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as UML, relational and XML already exist and can be 
incorporated into triplestores to realize such interoperability. 

IV. RDF DATA PROCESSING CRITERIA 

A. Support for SPARQL Constructs 
Without SPARQL support by a triplestore such a triplestore 

will of course be useless. Triplestores should offer SPARQL 
querying to extract the desired information in an efficient way 
while providing support for all constructs of SPARQL 1.1. It is 
an important requirement to efficiently process queries, 
especially interactively. Also querying with the use of 
SPARQL should be possible also for massive amounts of data. 

B. Data Retrieval and Modification Time Costs 
When considering triplestores, we consider the data, its size 

and how it is processed. The first thing to consider is how long 
the triplestore needs to load the data. 

Another point to consider is the storage and the retrieval 
time of the data. Generally, native triplestores are more 
efficient than existing relational database based triplestores 
because of the difficulty they face when trying to map the 
graph based models to SQL. 

C. Indexing 
The main objective of data indexing is to sort data in order 

to make its querying easier and faster. Indexing plays an 
important role especially when managing large amount of data 
to increase the performance for a large-scale analysis. Indeed, 
though indexing involves some space overhead, it lets focus 
only on the portions of data involved by the analysis so that 
loading these data can be faster and memory space and 
execution time will be reduced. 

The major problem faced by RDF data stores, is how they 
can build an index data structure over RDF triples. Because of 
the performance problems related to loading RDF files, or 
creating suitable indexes, an RDF triplestore must also provide 
a memory efficient data representation that leaves enough 
space for the operation of SPARQL querying algorithms. 

With regards to indexing, both automatic indexing through 
the system and the possibility for users to set indexes on 
specific resources or literal values of triples are of great 
importance. The former solution will let users not care about 
indexation and the latter will give them the possibility to index 
items dependently of their needs. 

Triplestores that are relying on relational database 
management systems have naturally profited from indexing 
techniques these systems offer. 

D. Reasoning 
Reasoning allows inferring logical consequences and 

checking the consistency of a database. It allows a better 
interpretation and processing of the information for the users. 

As mentioned above, RDFS and OWL offer constructs 
(e.g., “rdfs:subClassOf”, “rdfs:subPropertyOf”, “owl:sameAs”, 
“owl:inverseOf”, “owl:TransitiveProperty”) for modeling the 
relations between RDF classes or properties to better structure 
RDF data in order to avoid problems related for example to 

redundancies, updates or deletion. However, structuring of 
information using such constructs will have no sense if the 
system does not have algorithms for an automatic reasoning 
that can infer, with the use of such constructs, the hidden 
information which is implicitly deducible from RDFS/OWL 
schemas. Concerning AllegroGraph, it allows RDFS reasoning 
with its built-in reasoned as well as temporal reasoning. 

E. Support for ACID Properties 
The well-known properties of atomicity, consistency, 

isolation and durability are of course of great importance for 
transactions handling [15]. RDF systems that use relational 
database management systems to store RDF triples have 
profited from implementations of these properties in these 
systems. However there is still a lack for support of such 
properties in non-relational triplestores. Users should therefore 
be aware of supported properties to ensure that operations of 
transactions are performed in the right sequence to avoid 
problems related to inconsistencies, to incomplete executions 
of such operations or to conflicting operations. 

V. PERFORMANCE CRITERIA 

A. Query Optimization 
The query optimizer as a component of triplestores, 

attempts to find the best way to execute a given query 
efficiently. It simplifies the query and removes redundant 
computation. In [5] a methodology using the BGPs and 
OPTIONALs query optimization techniques for the queries 
with a mix of UNION and FILTER clauses is proposed. 

In term of query optimization, relational based RDF 
triplestores offer better solutions due to the efforts done on 
making relational query processing efficient over the last three 
decades. 

B. Support for Programming Languages 
It is also to consider if the triplestore serves most modern 

programming languages (e.g., Java, C++, C#, Python). Within 
the associated programming APIs RDF Formats and SPARQL 
query languages should also be supported. 

AllegroGraph, for example, offers a Java and Python APIs 
that implement most of the Sesame and Jena interfaces to 
access RDF data. It also provides the possibility to Lisp 
programmers to interact with its RDF repositories. 

C. Support for BI 
Nowadays, we deal with a huge amount of data and 

businesses are aware that analyzing and processing those data 
can generate new opportunities and improvements of the 
processes. Business intelligence (BI) tools are therefore to be 
supported by triplestores in order to provide analytical 
functionalities for users to analyze their data and extract useful 
information from these data. 

D. Streaming Capabilities 
Real time processing of data is becoming of high 

importance, due to the increased sources of real time data (e.g. 
weather sensors, social networks, IoT tools). 

The ability for a triplestore to provide support for streaming 
will have a crucial role in applications. To this end, the 
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triplestore should support SPARQL querying to be done 
dynamically over the streams with results given as a 
continuous streams. 

E. Crash Recovery 
A important requirement that is be considered, when 

considering comparison criteria, is the robustness of 
triplestores toward the system components failure while 
processing RDF data and the ability to restore the accidently 
loosed, deleted or corrupted data. 

We consider here, as an example, HadoopRDF ([19]) 
which provides an architecture that stores triples on HDFS. It 
replicates the triples on multiple machines and decomposes a 
user query into partial queries with an independent evaluation 
of these queries without any communication overhead between 
the partitions. 

VI. CRITERIA FOR DISTRIBUTED TRIPLESTORES 

A. Data Replication and Partitioning 
Due to the quick increase of the scale of RDF data, various 

distributed storage systems have been developed. For such 
systems partitioning and replication capabilities while handling 
RDF data is necessary to distribute both data and processing 
among RDF nodes. For the distribution of data, partitioning 
techniques should be efficient enough to achieve a reasonable 
query processing performance together with efficient data 
transfers between the nodes. 

There are two types of data partitioning in existing RDF 
stores. The first type is the static graph partitioning, which 
creates partitions with a minimum of edges. The second type is 
the workload aware partitioning, which faces however the 
complex problem of choosing the right decisions regarding 
space and workload [2]. 

On the other hand, replication refers to the storage of the 
same data in several different locations. Of course, such 
replication requires the availability of synchronization 
mechanisms between the data sources to guarantee consistency 
between the replicated data. To this end, good strategies are to 
be provided by triplestores to select the RDF data to be 
replicated, to control the storage availability and to handle data 
changes related to updates, insertion or deletion. For example, 
the distributed triplestore DREAM [16] does not partition data 
over nodes but simply replicates the whole data in every node, 
which necessitate updating the same data each time changes 
occur. 

B. Scalability 
A distributed triplestore should have the ability to scale 

either vertically with the possibility to add data resources to the 
nodes, or horizontally with the possibility to add more nodes to 
the system. This is a relevant property for handling large 
amounts of data that are gathered from various sources as well 
as for integrating data from classical databases (e.g., XML, 
relational or file systems). 

Because of the graph nature of RDF data, good strategies 
are needed to achieve both arts of scalability in order to 
achieve efficient SPARQL search, delete or update queries. 
Indeed, such queries may involve complex joins of subgraphs 

and therefore an extra time complexity. The development of 
Big Data technologies and frameworks (e.g., Hadoop, Map 
Reduce and Spark) has also favored the development of 
various scalable triplestores based on such technologies (e.g., 
SHARD [28], HadoopRDF [19], PRoST [12] and 
CliqueSquare [14]). 

VII. EASE OF USE CRITERIA 

A. Data Visualization and User APIs 
With APIs (Application Programming Interfaces) we 

mainly mean those APIs that make it easier for triplestores 
users to interact with their data easily to query their RDF data 
and to have their data presented in a user friendly way. The list 
should also include APIs for programming languages or for the 
use existing RDF/SPARQL programming packages such as the 
use of Jena. 

Visualization of RDF in several ways has also to be taken 
into account for the understanding of different RDF data 
structures. Principally, a triplestore, because of the nature of 
RDF data, should support RDF data presentation in form of 
graphs. 

With regards to APIs, relational databases based 
triplestores have largely profited of existing APIs developed 
for relational database systems. 

B. Acquisition costs, Documentation, Maintenance and 
Extensibility 
Two other points to consider are the product costs and the 

learning costs that are associated of a triplestore and its 
implementation. 

Also the development conditions of a triplestore are also to 
be considered, together with its documentation, maintenance, 
accessibility and performance. 

As stated, it is important to check how long a triplestore is 
used, and to also get an overview of possible updates, releases 
development and dedicated extensibility mechanisms.  This 
will provide an idea about the triplestore, if it is an individual 
initiative, an active or a non-active project, if it is dependent to 
a third party application and if it is an open source system. 

It is also important to consider, if the store is brightly used, 
in which domains it is used and how long it is being in use. 
These factors play an important role in the decision regarding 
the adoption of such a triplestore or not. 

VIII. CASE STUDY: ALLEGROGRAPH 
It is absolutely evident that an evaluation of triplestore 

should be done in the context of its comparison with other 
stores belonging to its category using associated established 
criteria. However for specific applications, the triplestore could 
also be compared with stores not belonging to its category and 
in this case such comparison needs to only be conducted with 
respect to some specific criteria pertaining to the specific use in 
applications. Both types of comparison will lead to further 
research papers and constitute one of our future perspectives. 

However, to illustrate the application of the established list 
of criteria, we discuss in this section the case of AllegroGraph 
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triplestore with the NoSQL triplestore XX and with the Big 
Data triplestores HadoopRDF. As mentioned, a thorough 
comparison of AllegroGraph with other triplestores from 
Graph stores and other types of stores using the 
aforementioned criteria will be the subject of another research 
paper. 

AllegroGraph is an efficient RDF native graph database 
that uses disk storage, which allows it to scale up to billions of 
triplets.  It was developed to meet RDF standards and It has 
been continuously further improved since its appearance in 
2004. It also offers interfaces for many programming 
languages such as Java, Python, Ruby, C#, and Scala. 

Inference is also supported by AllegroGraph under two 
angles. On one hand, AllegroGraph offers the so-called 
“dynamic RDFS++ reasoned” that implements a set of RDFS 
inference rules and also OWL2resoner. The first reasoner 
generates inferred triples during inference execution without 
saving inferred triples. However, the OWL2 reasoner adds 
generated triples to the considered triples database. 

AllegroGraph also has components for the analysis of 
social network and geospatial data. It also supports visual 
generation of SPARQL queries as well as visualization of 
graphs using Gruff. A free, developer and enterprise versions 
of Allegrograph with storage capacities of respectively 5, 50 
and 50+ million triples are provided for users. 

In comparison with other Graph oriented triplestores and 
even to other kind of RDF stores, AllegroGraph fulfills by far 
many of the criteria mentioned above. We can say that many of 
such RDF management systems are still at their infancy phase 
since they are still limited to RDF storage and SPARQL 
processing functionalities. 

For example, HadoopRDF is a Big Data triplestore [19] 
that uses the Hadoop file system for the distributed storage of 
RDF data in a cluster of nodes and Map Reduce framework for 
SPARQL query processing. In comparison of HadoopRDF 
with AllegroGraph, HadoopRDF also shows a high failure 
tolerance and reliability. Indeed, Hadoop based triplestores can 
be easily implemented on clusters of so called commodity 
computers and the cluster can continue functioning after node 
failure. Therefore HadoopRDF can also handle very large 
amounts of RDF data. With regards to RDF querying, 
processing of SPARQL queries is done in HadoopRDF 
efficiently since it partitions the RDF data not in a single file 
but in a set of small files and Map Reduce jobs are simply run 
on small portions that are of concern [19]. 

Apart from RDF data modeling compliance, storage and 
querying, HadoopRDF has not been further developed since its 
appearance and show strong limitations with respect to the 
other criteria already listed in comparison with AllegroGraph. 
However, because of the Hadoop architecture of HadoopRDF, 
HadoopRDF can also be easily extended and further yields 
other research perspectives. Indeed, this fact will let 
HadoopRDF benefice from the analytical technologies and 
APIs already developed within the framework of Hadoop. 

IX. CONCLUSION 
We have established a list of criteria for the comparison 

and evaluation of RDF triplestores. To achieve this task, we 
provided a methodology relying on the identification of 
expected key characteristics for triplestores. This is done by 
categorizing the criteria according to: - RDF data storage (e.g., 
Compliance with RDF data model, RDF Data validation, 
Storage capacity, Data portability and serialization, Integration 
of other data sources), - RDF data processing (e.g., support for 
SPARQL constructs, data retrieval and modification times, 
indexing, reasoning, support for ACID properties), - 
performance (e.g., query optimization, support for 
programming languages, support for BI, streaming capabilities, 
crash recovery), - distribution  (e.g., data replication, 
scalability), - and ease of use (e.g., user APIs, visualization, 
acquisition costs, documentation, maintenance and 
extensibility). As an illustration of the criteria list, we 
considered the case of AllegroGraph triplestore and showed 
that AllegroGraph fulfills many of these criteria. 

The criteria will play an important role in supporting users 
to make accurate decisions for the adoption of the appropriate 
triplestore that best suit their objectives and will help in 
identifying the strength and weaknesses of existing triplestores. 

This research work is as far as we know the first work that 
addresses comparison and evaluation criteria for triplestores. 
Because of the increasing use of RDF in many application 
domains, the established list of comparison and evaluation 
criteria will surely pave the way for more research works that 
deal with further improvements of the functioning of existing 
triplestores or with the development of new ones. 
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