
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

521 | P a g e
www.ijacsa.thesai.org

A Survey on Detection and Prevention of Web

Vulnerabilities

Muhammad Noman
1

Department of Computer Science

Bahria University Karachi Campus

Muhammad Iqbal
2

Department of Computer Science

Bahria University Karachi Campus

& School of Information Sciences & Technology

Southwest Jiaotong University, Chengdu, China

Amir Manzoor
3

Department of Management Science

Bahria University Karachi Campus

Abstract—The Internet provides a vast range of benefits to

society and empowers the users in a variety of ways to use web

applications. Simply, the internet has become the most

transformative and fast-growing technology ever built, but it also

brings new security challenges to web services in internet

applications because of the scattered and open nature of the

internet. A simple vulnerability in the program code could

favor/benefit an attacker to obtain unauthorized access and

perform adversary actions. Hence, the security of web

applications from a hacking attempt is of paramount importance.

This paper focuses on a literature survey recapitulating security

solutions and major vulnerabilities to promote further research

by systemizing the existing methods, on a bigger horizon. The

data is collected from an absolute of 86 primary studies that are

taken from well-known digital libraries. Different methods

comprising secure programming, static, Dynamic, Hybrid

analysis, and machine learning classify the data from articles.

The quantity of references or the significance of a developing

strategy is kept in account while selecting articles. Overall, our

survey suggests that there is no way to alleviate all the web

vulnerabilities therefore more studies is desirable in the area of

web information security. All methods’ complexity is addressed

and some recommendations regarding when to use the

application of given methods are provided. Finally, we typify the

experience gained and examine future research openings in web
application security.

Keywords—Web security survey; web vulnerabilities; detection

and prevention techniques

I. INTRODUCTION

Web-based applications are the best network-based solution
to provide standard facilities. It has revolutionized the way
standard facilities can be offered. Developing modern web
applications is now the best mode. These applications are
developed with the combination of a client and server-side
development. The server-side portion uses different
programming languages (.Net, PHP, Python, and Ruby) and
front-end is a client-side portion, which runs on the user‘s web
browser with different programming languages such as
JavaScript and CSS/HTML. These two portions are frequently
interconnected through HTTP or HTTPS protocol through

asynchronous XML (AJAX) and JavaScript [1]. Fig. 1
describes the architecture of server-side and client-side of the
website.

The availability of web applications has made them an
integral part of everyone‘s daily life. This is because of their
primarily free and internet-accessible availability and ability to
handle sensitive data such as banking and payment for e-
commerce. Because of their increased popularity, web
applications are also the primary focus of hackers [2]. The
popular uses of web applications, such as web blogs, social
media, banking, and e-commerce, and their vulnerabilities are
the focus of hackers to hack web applications with
vulnerabilities. The weakness, bug, and loophole in the web
application that can be exploited by hacker are called
vulnerability [3].

Fig. 1. Overview of Web Architecture.

The most critical vulnerabilities are cross-site scripting
(XSS), SQL injections (SQLI), and cross-site request forgery
(CSRF) that are listed in the top 10 web vulnerabilities by
OWASP. The hackers can use the information of these
vulnerabilities to compromise the website. Therefore, website
requires security countermeasures to secure web application. A
variety of techniques is being used around the globe to
overcome these vulnerabilities and these techniques assist to
identify the website vulnerabilities. There is a strong need for
frequent testing to prevent and minimize web vulnerabilities.
However, it requires that the tester have adequate experience

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

522 | P a g e
www.ijacsa.thesai.org

given that the testing procedure itself is an extended manual
process [4]. Therefore, some other approaches need to be
explored to prevent vulnerabilities.

The methodology to cope with security issues is to find out
the bugs before discovery and exploitation by hackers. One of
the keen approaches is the use of a white-box Technique. It
consists of an analysis of website source code. However, there
is a problem with massive false positives and the web
application's source code may not be available. There is
another procedure called black-box testing to help analyzers
and overcome the method of white box testing. The strategy is
to examine the vulnerabilities of the application by giving
some input for specific vulnerability output. Many researchers
have effectively analyzed black box scanner in vulnerability
detection. Furthermore, they find out its constraints by
repeatedly testing numerous black-box scanners against a wide
range of vulnerable applications. A lot of work in this direction
is focused on fuzzing. It deals with testing (semi)-random
values [5]. Another important method to prevent web
vulnerabilities is data mining and machine learning. These
learning methods with a variety of web applications are
considered a unique approach. However, it can also be used in
source code to identify vulnerabilities [6].

We tend to survey the last ten years of existing web
vulnerabilities in this study. The goal is to systematize the
present methods into a vast picture that supports future
research. We categorized the review of web vulnerability
detection methods using hybrid analysis, dynamic analysis,
static analysis, data mining, and techniques of machine
learning. Initially, with traditional approaches, we outline the
web vulnerability discovery and analysis difficulty. We also
briefly explain the web vulnerabilities and their types. Hybrid
analysis, dynamic analysis, Static analysis, and machine
learning are different approaches to prevent web
vulnerabilities. After that, we discuss each method in detail
with the definition, prevention, advantages, and challenges.

We structured the paper as follows. We initially explained
the working of a web application with distinctive qualities.

Section II describes the classification of web vulnerabilities
along with the methods to secure it. Then, discuss
and categorize each existing countermeasures in Section III.
Section IV, we arrange the analysis method to detect
vulnerabilities with the table and discussion. At that point, in
Section V, The connected work is debated. In Section VI
conclusion of this survey.

II. BACKGROUND: WEB VULNERABILITIES ANALYSIS AND

METHODS

We describe the classification of web vulnerabilities and
methods to secure web applications. A term vulnerability is a
defect referred to error and bug that arises due to defects in
the coding of a web application. This result in a severe type of
damage to web application upon exploitation [4, 7]. Table I
present five types of web vulnerabilities and we categorized
these vulnerabilities into three main sections such as improper
authentication, improper input validation, and improper session
management and. It has been further divided into four web
vulnerability categories: Query manipulation, Client-side, Path
injection, and session management.

The main issue in security for web applications may be an
inappropriate validation of user input. This Input enters into a
web application via entry points ($_GET in the PHP language)
and hackers can utilize web vulnerability through MySQL
query. The major number of attacks occur with the
combination of simple input and metadata like ‗And, OR‘.
Therefore these websites can frequently ensure the input of the
user and validate the path and entry points [8].

A. Improper Input Validation

The web application is must validate or sanitize user input
properly before its utilization in the web servers. Usually, web
developers exercise sanitizing practices (i.e., sanitizers) for the
transformation of inputs by the user into trusted data through
filtration. For example, an HTML page may include JavaScript
code (a PHP document may contain static HTML labels just as
PHP declaration [2, 9].

TABLE I. VULNERABILITY CLASSES SPLIT BY VULNERABILITY CATEGORIES

VULNERABILITY

Class

VULNERABILITY

CATEGORY
OVERVIEW VULNERABILITY Name

Improper input

validation

Query

Manipulation/injection

Vulnerabilities that are related to structures that are store

information in the databases.

SQL Injection,

NoSQL Injection,

Xpath and LDAP Injection

Client-side injection
Vulnerabilities associated with malicious code injected by a

client-side such as JavaScript and processed by the server-side.

Cross-site scripting

File and Path injection
Class of vulnerabilities that manipulate the relative path and

redirect to a different location.

Remote document \local record

consideration, Path/Directory

Injection and Remote Code

infusion

Improper session

management

Session Management
Sort of malicious exploit of a site where unapproved directions

are transmitted from a client that the web application trusts.

Cross-site request forgery

Improper authentication

and authorization (Logic

Flaw)

Logic Flaw
Vulnerabilities that can be manipulated with the coding of web

application and changing them.

Unreliable Direct Object

Reference, missing Functional

access Control, Invalidated

Redirects and Forwards or

application rationale

susceptibilities

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

523 | P a g e
www.ijacsa.thesai.org

1) Query Manipulation
Query manipulation is a vulnerability related to structures

that store data like databases and where malicious code
manipulates queries and changing them. With the help of these
web vulnerabilities, a hacker easily manipulatesthe parameter
of user input. As a result, the attacker becomes able to change
the query‘s syntax. When the validation of these parameters is
not proper, the maliciously infected parameters enter the
reliable website due to which unsafe and unreliable
information enters the web applications and damage its
security. Hence, the missing or improper affirmation of
controllable user data is the leading causee for injection
vulnerability. There are different types of web vulnerabilities
such as SQLi, LDAPI, and NoSQL. These vulnerabilities are
related to the construction of filters and queries that are
operated by some kind of engine example DBMS. SQL
injection is considereda famous and exploited vulnerability.
The other vulnerabilities are the same as SQLi, i.e. If a query
involves sanitized user inputs with malicious characters then
the behavior of the query performed can be altered [2, 9].

B. Client-Side Injections

Client-side injection enables malicious code to be executed
by an attacker like JavaScript payloads on victim browsers
without a server request. There are different vulnerabilities in
this category such as XSS, remote code execution (RCE), and
email injection (EI) [6].

1) File and Path Injection Vulnerability
In this class of vulnerability, a hacker manages the entrance

to records from web applications or a document framework and
URL areas not quite the same as the web application. These are
the weakness which has a place with this gathering are RFI,
LFI, and Directory traversal (DT) otherwise Path Traversals
(PT) [6]. In this category, we have only considered Local file
inclusion and remote file inclusion for this study.

C. Improper Authentication and Authorization (Logic Flaw)

Improper authenticating and authorizing procedures imply
the invalid exercise of protocols like access control policies
also known as ―ACPS‖ as well as functions of authenticating.
The logic of web application is generally executed by applying
the application‘s control flow and saving by protecting
sensitive information. One can achieve this situation or
condition directly by keeping safety measures and checks to
the coding of source or indirectly by the path directions
provided to users like interface screening. Unsuitable
implementation of business logic represents the logic errors,
which force the application to behave in different ways as
expected from it which results in dropping standard in ―QOS‖
known as quality of service, losing both finance and

information through the leakage. Three out of 10 top security-
related hazards about applications of web [OWASP Top 10] be
able to refer missing Insecure Direct Object Reference,
Functional access Control, and Invalidated Readdresses and
simply application logic susceptibilities [2, 9].

D. Improper Session Management

Web applications use the web session to recognize and
associate multiple web entries from a single user within a
specific period. A collection of web sessions is referred to as a
session of a web, it may be utilized by the website for keeping
the details, path of states from the past web requests and may
change the further operations. In web application development,
the management of the session is achieved by the cooperation
of the client and the server with each other. The general tactic
to do this is that an exclusive identifier (like a session ID) sent
to the client by the server after the successful verification of the
user. Securing alone the session ID will not be enough for
managing the protected session. Session hijacking is performed
by hackers through a malicious request linked to the authentic
session ID. CSRF is a well-known outbreak in this category as
listed in OWASP top 10 web vulnerabilities. The vulnerable
web application on risk could not identify if web requests are
infected or malicious until these are associated with valid
session information [2, 9].

1) Session Management
Website use web session to recognize and associate

multiple web entries from a single user within a specific period
[2, 9]. The vulnerabilities that belong to this group are
clickjacking, CSRF, Session fixation, and the hijacking of a
session[10]. In CSRF, hacker submitsa malicious request as a
legitimate user to web application.Clickjacking is a type of
attack that invites a person to click or appeal on objects placed
in infected pages and by doing this, some undesirable actions
may happen without any consensus of the authentic person .
Session fixation and hijacking are those attacks that aim for the
user‘s session ID, on the other cross-Site request forgery and
hand clickjacking also CSRF focus on the fact that illegal
request on behalf of user [2, 11].

III. RELATED WORK

Existing secondary studies on the topic of securing web
applications are discussed (survey papers, review articles). Fig.
2 presents relevant reviews of the literature published over the
past 13 years. Much work has been published to identify a
taxonomy for vulnerabilities in software. Delgado et al. [12]
built up a scientific classification for ordering the runtime
programming flaw observing methodologies and monitoring
them in light of three elements: component utilized for
checking program execution and language.

Fig. 2. Related Work.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

524 | P a g e
www.ijacsa.thesai.org

Tsipenyuk et al. [7] arranged common flaws causing web
vulnerabilities, seven out of eight categories are related to
environmental and configuration issues. Many attacks and
vulnerabilities are classified with various taxonomies
developed and submitted in Igure and Williams'
comprehensive survey[13]. Krsul [14] classifications classify
vulnerabilities in software. The examinations by Halfond et al.
[15], Chandrashekhar et al. [16], and Garcia-Alfaro and
Navvaro-Arribas [17] give an audit on the strategies for
relieving the most dangers vulnerabilities such as SQLI and
XSS. The study by Cova et al. [18] features the advantages and
disadvantages of weakness examination instruments accessible
to secure the website. Fonseca et al. investigation [19] outline
the coding flaws that should be avoided in C#, Java, and PHP.
In another study, Shahriar and Zulkernine [20] gave the best in
class approaches accessible for discovery and the aversion of
hack attempts on applications under operation. Furthermore,
they discussed the methodologies for moderating web
vulnerabilities atthe program level In their study, Hydara et al.
[21] discuss the methods of cross-site scripting vulnerability.
The XSS systematic literature review highlights various
systems for discovering and avoiding XSS attacks.

Wedman et al. [10] presented a definite survey of
vulnerabilities aimed at launching session hijacking attacks and
available mechanisms to protect users from such attacks for the
protection of web applications from vulnerabilities, various
methods are utilized and described in Li and Xue [9]. All the
previously mentioned audits concentrate on any of the
accompanying perspectives such as (I) building up a scientific
categorization for characterizing attacks and vulnerabilities, (ii)
detect the coding flaws that are abused for propelling attacks,
and (iii) categorizing the flaws checking methodologies. The
survey on SQLI distributed in 2012 does not take after a
methodical strategy that confines the range of their
investigation.

Deepa and Santhi [2] provided up-to-date approaches to
web vulnerability prevention. This paper is divided into
different phases of the software development life cycle with 86
primary studies. There is different web vulnerabilities research
paper such as in case of XSS is thirty-five, in case of SQL
injection is seventeen and in case of logical bug is thirty-five.
Buczak, Anna, and Erhan [22] describe a literature survey on
data mining and machine learning for intrusion detection. The
latest review by Ghaffarian, Seyed, and Hamid [23] provided a
detailed review of the many different methods based on
machine learning that analysis and discovery of software
vulnerabilities.

IV. CATEGORIZE EXISTING COUNTERMEASURES

Numerous researchers around the globe are working on
several different ways to detect web vulnerabilities. The
following sections present different technique/methods to find
web vulnerabilities, such as static analysis, fuzzing and
dynamic analysis, hybrid, machine learning technique, and
secure programming,

The basic significance of the issue of web vulnerabilities is
that many methodologies are researched and proposed. The
suggested approaches are not absolute; All of them either need
soundness or they are incomplete. Subsequently, all research is

working to urge an enhanced approach contrasted with past
works, referring to a particular part of the procedure of web
vulnerability examination and revelation/discovery; like
coverage of vulnerability, discovery exactness, runtime
efficiency. Shahriar and Zulkernine [24] presents an extensive
review to prevent web vulnerabilities reported during 1994 to
2010.

A. Secure Programming

Secure programming allows programmers to follow secure
practices when they are developing the web application. Secure
Programming protects coding practices by coding properly,
checks the input data; encode correctly the user input, its type
further by setting the query‘s parameter, also by bringing
stored procedures to work. Query statements are named to
those queries whose parameters are set with placeholders like
―?‖ for referring to user data. SQL code handling placeholders
in the string, which is attacking just like input. Queries that are
parameterized and procedures already saved bear the same
outcome however great measures are considered when
programmed. Moreover, in developing of website, SQLIA‘s
still a problem[2, 9].

To protect web apps from attackers, it is important to keep
a close eye on the security features at every stage of the
lifecycle while developing the web application. It is referred to
as SDLC. After setting up a web application we must furnish
the secondary security layer [2, 3]. Now day‘s operating
systems are even more secure from the systems years back.
The reason for this is the placement of automatic tools of
safeguarding and protection within the compilers, core library
alike DEP, and .NET respectively. In Linux and windows,
stack or canaries cookie may also be used frequently [25].
These tools or systems stops a wide range of attacks without
considering about the programmer practicing secure
programming practices or not.

The writing of a safe program code has made clear on
developers by the deployment of the website. Furthermore, due
to the utilization of the stones library, it would be resolved in
Java-based applications and Juillerat [26] that applies this
technique. This library allows hackersto use databases using
OOP and JavaScript payload instead of SQL payloads. The
direct replacement of input data provided by the user as a string
cannot be possible because it only goes via suitable procedures.
Hence the programmers don‘t have to do much, limiting the
additional work as the security features are controlled by the
library. It can easily get rid of unsafe string code practice and
when the number of queries framed. It can be performed by
placing in the data and code a visible partition and Johns et al
[27] accomplished. They achieved this by representing query
syntax by the ELET (embedded language encapsulation type)
introduction. To prevent attacks of XSS, Grabowski et al. [28]
The created type system used in Java programming, implement
directions of secure and safe programming.

A study was carried out by [29] to allow safe web
development by using swift programming model language
formed on the Jif language. This language confirms the
integrity and confidentiality of information within the program
code or declaring annotations description. The locations of the
server or client can be recognized to secure placement data.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

525 | P a g e
www.ijacsa.thesai.org

Another study proposed by Vikram et al., [30]. They give a
new method Ripley, a replacement of Swift programming, to
evade irregularities within the logic of business across both
ends an impression of computational logic is the site on the
side of the server that is present on the position of the client.
Ripley confirms the reliability of RIAs and prevents from the
extra work of within code annotation addition. However,
information privacy cannot be guaranty and also it enforces
memory, network overhead, and the reason for this is that it
moves and positions from client to server every event. A
language runtime used for the applications based on the PHP
and python known as ―Resin‖ permits the developers to use the
already present code of application again to generate assertions
that allocate the security policies. A comprehensive study
conducted by Yip [31] to avoid Missing Access Control, XSS,
and SQLI like multiple issues.

To develop new and secure web application an enormous
frameworks of coding are created to preserve the data and
important information present in web application with their
reliability. To support authorizing rules or directions of web
applications as acting like interpreting authority. Additionally,
type checker an intermediate coding language created by Jia et
al. [32] called ―AURA‖. To allocate and verification that
security policies applied properly or not by the integration of
information flow and access control for web application
Swamy et al. [33] enforced a system kind known as Apologue.
To build a secure and safe multi-level web app a coding
language is created as SELinks by incorporating language links
with a fable type system and this is done by Corcoran et al.
[34]. In this type, SELinks compiles the code relating to the
implementation of policy to functions within the database
defined by the user while fable finds the missed authorization
checks. It does not guarantee the security policies relating to
the state of the web application is tackle by Swamy et al. [35].
They give stateful approval approaches to the application.
Krishnamurthy et al. [36] Proposed a method capluse to secure
the web application with secure practices.

Another method proposed by [37] is the intelligent static
examination that coordinates static investigation into the

Integrated Development Environment (IDE). Additionally,
provide secure programming support in-situ that helps
developers stop vulnerabilities while building code. There is no
need for further training and there are no hypotheses as to how
programs are being developed. His work is inspired in portion
from the observations that are the number of vulnerabilities
introduced because many knowledgeable developers fail to
practice secure programming. They have employed an
interactive tool for prototype static investigation similarly as a
module for Java in Eclipse. Kang and Park [38] suggested a
smart fumigation system made in connection with the black
box and white box test that could effectively detect/distinguish
software weaknesses.

Na Meng [39] study served a wide reception of the
validation and approval highlights gave by Spring Security - an
outsider system intended to make sure about big business
applications. They found that programming difficulties are
generally identified with APIs or libraries, including the
entangled cross-language information treatment of
cryptography APIs. Moreover, discoveries uncover the
deficiency of secure coding help and documentation, just as the
gigantic hole between security hypothesis and coding
rehearses.

The most recent study conducted by Bangani, S et al [40]
proposes the educating of secure programming through a bit by
bit approach. Our methodology incorporates the distinguishing
proof of utilization hazards and secure coding rehearses as they
identify with one another and to fundamental programming
ideas. We explicitly mean to control instructors on the most
proficient method to show secure programming in the .Net
condition.The most recent study conducted by Agrawal, A et
al [41] proposes an integrated and prescriptive framework
intended to identify and mitigate vulnerabilities and provide
suggestions for writing a more secure code.The detailed
research review on a secure programming method to find XSS,
SQLi, CSRF, LFI/RFI, and some other vulnerabilities
presented in Table II.

TABLE II. SECURE PROGRAMMING EXISTING STUDIES

 Area of Focus Web Vulnerabilities

Research Article

Language/Framework/Tool

Year

V
u

ln
e
ra

b
il

it
y

D
e
te

c
ti

o
n

V
u

ln
e
ra

b
il

it
y

P
re

v
e
n

ti
o

n

A
tt

a
c
k

D
e
te

c
ti

o
n

A
tt

a
c
k

P
re

v
e
n

ti
o

n

V
u

ln
e
ra

b
il

it
y

P
re

d
ic

a
ti

o
n

Q
u

e
ry

M
a

n
ip

u
la

ti
o

n
/i

n
je

c
ti

o
n

C
li

e
n

t
si

d
e

in
je

c
ti

o
n

F
il

e
 a

n
d

 P
a

th

in
je

c
ti

o
n

S
e
ss

io
n

M
a

n
a

g
e
m

e
n

t

Chong, Vikram [29] Swift 2007

Jia et al. [32] Aura 2008

Swamy et al. [33] Fable 2008

Vikram et al. [30] Riply 2009

Corcoran et al. [34] SELinks 2009

Swamy et al. [35] FINE 2010

Krishnamurthy et al. [36] Capsules 2010

Zhu et al. [37] ASIDE 2014

Kang and Park [38] WVF 2017

Na Meng et al. [39] Empirical Study 2018

Bangani, S et al. [40] Study 2019

Agrawal, A et al[41] Framework 2019

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

526 | P a g e
www.ijacsa.thesai.org

1) Discussion
There are numerous existing studies on preventing and

detecting vulnerabilities in web applications through secure
programming. Developers and firms need to focus on testing
each bit of software and each application in their portfolios. By
doing this right on time in the website improvement process,
both can decrease, the expenses related to security. Application
firewalls can be utilized as countermeasures to those
attempting to hack information from an IP address. Other
encryption, antivirus, antispyware, and confirmation software
can be particularly utilized. To protect web applications from
attackers its important keeping close eye on the security
features at every stage of lifecycle while developing the
application software. It is also referred as SDLC further after
setting up website and it must be furnished with secondary
security layer. XSS, LFI/RFI, RCE, SQLI and CSRF [2]. There
are some different approached for safe coding which are
distrust user input, input validation and magic switches and
some tools to perform automatic source code analysis Rats,
Flawfinder and ITS4. From the existing studies we conclude
that Agrawal, A et al [41], Kang and Park [38], Zhu et al. [37]
useful approaches in secure programming. The methods of
secure programming is summarized year wise shows in the
Fig. 3.

B. Analysis Method to Detect Web Vulnerabilities

There are different methods to prevent web vulnerabilities
such as white box testing, blackbox, and fuzzing methods.

1) WHITE Box Testing
In the white box, the tester accesses the software code and

knows the web source code's internal process. While it is
possible to check how the input value of the software deduces
the result value, however. This test allows access to possibly
hidden source codes and code errors. The benefit of this
process is that the input value can be easily predicted and a test
scenario can be made. However, the white box test requires
experienced skills and it is not possible to guarantee that the
test specifications are met [38]. The method proposed by
Jovanovic et al. [42] is suggested pixy tool.

2) Black-box Testing
The black box test depends on the software for the tester.

The tester is unaware of how the software operates internally.
It only tests with the result value deduction corresponding to
the function-based input value. This method is advantageous
for the tester as it does not require source code information or
technical skills. However, while testing input values for a short
time, some limitations that can not deduce logical errors and
make a test case difficult without the knowledge of clear
functional specifications [38].

C. Static Analysis

Mechanism of static analysis tools inspecting either binary
or intermediate source code. Static examination means to look
for potential vulnerabilities by inspecting the code of web
applications without executing it [43]. The principal papers
right now center around old vulnerabilities, for example, race
conditions and buffer overflow. Later this kind of investigation
has stretched out for executable programming without source
code [44].

Programmers typically use static analysis tools during the
development of software, checking if the code does not have
vulnerabilities. In any case, these instruments just pursuit and
identify the vulnerabilities. These apparatuses are program to,
scanning for examples and utilizing rules for the sort of
examination that they execute. As a result of this reality, the
devices don‘t distinguish newfound classes of vulnerabilities in
source code, potentially imaging the applications with bugs,
creating false negatives – a weakness that exists not detailed.
The false positives are additionally a worry, however in the
feeling of causingwaste of time, since the software engineers
need to review the code looking for non-existent bugs. Static
investigation procedures arranged in two primary classes, to be
specific lexical examination and semantic examination [43].
Next, these strategies are displayed, with more accentuation on
taint analysis, a type of semantic examination. Lexical
Analysis is a strategy to discover web vulnerabilities from
source code. It‘s examined to scan for library capacities or
framework calls that are not viewed as dependable touchy
sinks.

Fig. 3. Methods of Secure Programming.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

527 | P a g e
www.ijacsa.thesai.org

This investigation includes a lot of three principal methods:
control stream examination, type checking, and information
stream investigation. In a study by [45], they established a
static Analysis scanner WebSSARi to find vulnerabilities in
web applications. This scanner provides intra-procedural and
flow-sensitive reports established on the base of the lattice
model. This broadens the PHP coding including two type
states, known as tainted and untainted, also finds every type
state of variables in it. Runtime sanitizing objects are
introduced at the place the tainted data approaches the sinks.
Numerous language features, like recursive functions and array
elements, have not been supported, however.Using string taint
analysis suitability of sanitizing procedures can be confirmed.
Furthermore, Issermann and Su [46] to enhance Minamide[47]
string analysis with taint support utilize this. It has analyzed the
info string to perceive spoiled substring esteems to prevent any
suspicious content from running by the JavaScript mediator. As
it needs an understanding of the semantics of the site page the
strategy can't discover DOM-based XSS.

In another study by Xie and Aiken [48] to do a reverse
interpretation of fundamental blocks, methods, and the
complete program to detect SQL vulnerabilities due to
injection. The method they have is capable of automatically
deriving the set of variables and sanitized after which function
invocated by utilizing symbolic execution. Nevertheless, their
static analysis technique is bound to a specific set oflanguage
features. In a study done by Halfond and Orsob[49] Suggested
method AMNESIA to joins static analysis and runtime
monitoring to prevent SQL injection web vulnerabilities. In
one more study, Shahriar and Zulkernineb[26] put forward an
information-theoretic method to prevent SQL injection web
vulnerabilities. The entropy of each SQL statement is
calculated based on the tokens probability.

In their study, Thomas and Williams [50] SAFERPHP
utilizes static analysis to find specific semantic vulnerabilities
in PHP code: nullification of administration on account of vast
circles, and approving tasks in databases [51]. According to the
disavowal of administration, the device utilizes corrupt
examination to discover circles, and afterward utilizes
representative execution investigation to decide whether
assailants can forestall the end of the circles. PHPSAFE
(Fonseca and Vieira, [52].; Nunes et al., [63].) taints
examination to scan for vulnerabilities in PHP code.Shahriar
and Zulkernine [53] proposed a method to detect the
vulnerabilities based on static anaylysis. Another study
proposed by Shar and Tan [54] to prevent the cross-site
scripting XSS method is called XSSsafer and Scholte et al. [55]
proposed an IPAAS method to detect the web vulnerabilities.

Yunhui& Zhang [56] describes another use of static
analysis. His approach to finding vulnerabilities in remote code
execution (RCE) using the inter-procedural path and setting
delicate investigation. RCE assaults require as a rule the
difference in the string and non-string portions of the customer
side data sources; hence, they propose an investigation that
handles these parts in a composed and productive manner with
the number of PHP contents and demands. They built up a
calculation that comprehends these obliges in an iterative and
elective style, so endeavors can be made from this

arrangement. In one more study, Doup´e et al. [57] created
deDacota, an automated tool that gives a clear partition
between code and data in web pages. Amira et. al.,[58]
proposes another static examination of web applications
affirming the program's protection from meeting fixing
ambushes called SAWFIX, a PHP static analyzer that outputs
web applications for vulnerabilities in meeting fixation. To the
best of our understanding, SAWFIX is the principle analyzer
that checks extensively for this kind of powerlessness, while
exchange strategies simply ensure half-precision that is limited
to a modest quantity of plausible executions.

Khalid et al. [59] proposed and built up a WUM
defenselessness examining apparatus (web interesting
technique) to recognize and forestall every single significant
weakness and tells the best way to distinguish unapproved
access by recognizing vulnerabilities. The designers can
discover possibly defenseless web applications with the
assistance of wum Tool. WUM has created an elevated level of
accuracy and similarity that is created underneath. Test's
outcome shows proposed WUM helplessness scanner
apparatus that gives less false positive and more vulnerabilities
are identified. Another study is conctducted by Viega et al [60]
on static vulnerability scanner for C and C++ code.

They developed Deepa et. al. [61] for recognizing various
kinds of rationale vulnerabilities, for example, parameter
control, get to control, and work process sidestep
vulnerabilities. DetLogic utilizes the discovery approach and
models the planned conduct of the application as a clarified
limited state machine, which is thusly utilized for determining
requirements identified with input parameters, get to control,
and work processes. The recent study Nunes and Medeiros [62]
the problem of consolidating various ASATs to improve the
general identification of vulnerabilities in web applications,
considering four advancement situations with various
criticality objectives and limitations. These situations run from
low spending plans to top of the line (e.g., business basic) web
applications. The study of Long et. al, [64] has described some
of the major widespread web-based vulnerabilities. These
include SQLI, XSS, FI, SI etc. This study proposes an
algorithm and improvements that are aimed at increasing
efficiency of detecting these web-based vulnerabilities. The
algorithm used to develop scanning tool use several software
including UTLWebScanner. The algorithm can be compared
with software providing similar functionality such as Nesus.
The recent study in 2020 conducted by Aliero et al [65] to
detect and minimize the occurrence of false positive and false
negatives, they focus on enhancing the effectiveness of
SQLIVS. They propose an object-based approach for
developing SQLIVS. Three different web applications were
used to test the accuracy of this approach. Each application had
different types of vulnerabilities. The validity of proposed
scanner was established using an experimental approach.
Analytical evaluation was also used to compare the proposed
scanner with other available scanners developed by various
academicians. The results of experiments showed significant
improvement as evidenced by high level of accuracy. The
detailed research review on a secure programming method to
find XSS, SQLi, CSRF, LFI/RFI, and some other
vulnerabilities presented in Table III.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

528 | P a g e
www.ijacsa.thesai.org

TABLE III. STATIC ANALYSIS OF EXISTING STUDIES

 Area of Focus Web Vulnerabilities

Research Article

Language/Framework/Tool

Year

V
u

ln
e
ra

b
il

it
y

D
e
te

c
ti

o
n

V
u

ln
e
ra

b
il

it
y

P
re

v
e
n

ti
o

n

A
tt

a
c
k

D
e
te

c
ti

o
n

A
tt

a
c
k

P
re

v
e
n

ti
o

n

V
u

ln
e
ra

b
il

it
y

P
re

d
ic

a
ti

o
n

Q
u

e
ry

M
a

n
ip

u
la

ti
o

n
/

in
je

c
ti

o
n

C
li

e
n

t
si

d
e

in
je

c
ti

o
n

F
il

e
 a

n
d

 P
a

th

in
je

c
ti

o
n

S
e
ss

io
n

M
a

n
a

g
e
m

e
n

t

Huang et al. [45] WebSSARI 2004

 Minamide [47] analysis 2005

Halfond and Orso [49] AMNESIA 2005

Xie and Aiken [48] method 2006

Jovanovic et al. [42] Pixy 2006

Wassermann and Su [46] analysis 2007

Thomas and Williams [50] model 2007

Shahriar and Zulkernine [54] method 2009

Son and Shmatikov [51] SAFERPHP 2011

Shar and Tan [54] XSSsafer 2012

Shahriar and Zulkernine [24] Program 2012

Scholte et al. [55] IPAAS 2012

 Yunhui & Zhang [56] script 2013

Doup´e et al. [57] deDacota 2013

Fonseca & Vieira [52] tool 2014

NUNES et al. [63] phpSAFE 2015

Khalid et al. [59] WUM 2017

Amira et al. [58] SAWFIX 2017

Deepa et al [61] DetLogic 2018

Nunes and Medeiros ss[62] ASAT Study 2019

Long, et al. [64] UTLWebScanner 2020

Aliero et al [65] Scanner 2020

1) Discussion
Static analysis tools, either source, binary, or intermediate,

mechanize code inspection. The objective of the static
examination is to look for vulnerabilities in the source code
without running it [43]. Because in the development process,
static application security testing tools are used early. Before
software is deployed, they can identify vulnerabilities. These
tools test line by line the source code, prevent flaws and
provide the opportunity to fix them before becoming a true
vulnerability on the web. It requires access to source code or
binaries that certain organizations or individuals may not want
to abandon application testers. In order to detect vulnerabilities
before deployment into the live environment, it usually needs
to be integrated into the system development lifecycle, which
can make implementation difficult.

Each SAST tool tends to focus on a subset of possible
weaknesses. The advantages are the ability to detect
vulnerabilities that are not visible without access to the source
code.The capacity to reveal to you the specific area of any
source code shortcomings, including the line number. Probably
the greatest test to choose the correct instrument when utilizing
SAST is the number of false positives produced. From the
current, valuable methodologies in the static examination are
NUNES et al [63] Khalid et al. [59] and Nunes, P et al. [62].
The methods of secure programming are summarized year-
wise as shown in the Fig. 4.

D. Fuzzing and Dynamic Analysis

Fuzzing and dynamic analysis is another method to identify
web vulnerabilities In this method does not analyze web
application code for vulnerability detection from static analysis
but verifies in runtime whether injected data triggers some
vulnerability in application specifications [38]. In this way, it is
viewed as a testing procedure that finds bugs in programming
by taking care of a program with s unexpected inputs
(Evron&Rathaus, [66]; Sutton et al., [67]. In their study,
NguyenTuong et al. [68] altered PHP transcriber to exactly
infected data of the user on the character‘s granularity and it
traces tainted user data at runtime. In another examination,
Haldar et al. [69] formulated the arrangement of Java bytecode
that can grow the Java framework with inadequate following
assistance. These systems will in general be easy to apply in
light of the fact that it doesn't require information about the
program to test. Its cooperation with the program is constrained
to the program's entrance focuses Jimenez et al. [70]. Mill
operator et al. [71] that depicted how they took care of UNIX
program utilities with irregular data sources, such as SPIKE
[72], improve this thought by giving to the applications
distorted sources of info, utilizing a conventional information
structure to speak to various information types [67].

In an examination done by Huang et al. [73] utilized a
system named as WAVES distinguish both SQLI and XSS
vulnerabilities in web applications. Another utilization of
Dynamic investigation Huang et al. [45] created white-box
instrument b same group called WebSSARI, though WAVES.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

529 | P a g e
www.ijacsa.thesai.org

Fig. 4. Methods of Static Analysis.

perceive vulnerabilities with the assistance of a discovery
approach In 2006, Kals et al. [74] built up a discovery
defenselessness scanner, Secubat, to perceive vulnerabilities.
The tool utilizes a crawler to perceive the site pages of the
application, possess the structure fields on pages with assault
vectors, and afterward break down vulnerabilities to
distinguish them.

It is possible to classify fuzzers into two categories:
blackbox and whitebox [67]. A blackbox fuzzer executes the
method portrayed as yet. As the blackbox approach is generally
free of the application and doesn't require setting up the
application. Regardless of black-box fuzzers being helpful,
they will, in general, find just shallow (bugs that are anything
but difficult to discover) and as a rule have low code inclusion
(don't practice every conceivable incentive for a given
variable), missing numerous pertinent code ways and in this
way numerous bugs. KameleonFuzz is a blackbox fuzzer that
scans for cross-site scripting. It creates malignant contributions
to control cross site sciprting XSS [75].

Another technique of dynamic analysis proposed by
Antunes et al., [76] is related to the black box fuzzing in a
certain way that is attack injection. A tool that implements this
technique intends to mimic the behavior of an attacker, and
continuously inject malformed inputs while monitoring the
application. The procedure is rehashed to assemble all
conceivable execution ways and checking a few properties in
runtime [66, 67]. This is a form of white-box fuzzing that is
actualized in the SAGE utilizing emblematic execution to
practice all conceivable execution ways of the program. Since
representative execution is moderate, in any case, it doesn't
reach out to huge projects, it is difficult to find profound and
complex bugs [84].

In a different study, Ciampa et al. [77] chose the result of
the different advance tests on pattern matching the valid and
error messages. Data stored in the form of tables and fields are
tested by an empirical tactic to evaluate the gathered

information. After all the computation, the compiled data is
utilized to check attack inputs that are useful to recognize the
vulnerabilities. In another study by Lekies et al. [78] used a
taint-aware JavaScript engine to sense DOM-based XSS.
Whereas, it is out of bound the other available methods to
perceive these vulnerabilities. Whitebox fuzzers apply
symbolic execution and imperative tackling to the source code
Duchène et al., [75]. The working rule of some white-box
fuzzers is to produce and to perform dynamic representative
execution in an occurrence. It accumulates information stream
ways and requirements on contributions from contingent
branches that are experienced along with the execution. Then,
the collected constraints are negated (constraint solving) and
new inputs are injected to collect new execution paths. To deal
with this difficulty, Dowser is a combination of symbolic
execution with dynamic taint analysis to identify vulnerabilities
in buffer overflow buried deep within Haller et al. [79]
Programs implemented in their study.

In one, more study Duchene et al. [5] In order to get the
auto production of unwanted inputs to access XSS
vulnerabilities, the author used a genetic algorithm. Whereas,
most of the available techniques do not have such an ability to
reach the cause of DOM-based XSS vulnerabilities. In their
study, Dohse, and Holz [80] purposed a very first known
automatic testing method that uses static code to notice second-
order vulnerabilities and correlate more than one step attacks in
web applications. The flow of unattended data can be detected
by checking the incomings and outgoings from the webserver.
It has been a successful identification of unsensitized data
streams by linking input and output points of data in databases.
Another dynamic Analysis study by Weissbacher.et al., [81]
gave a system to strengthen the JavaScript-based web
application to protect them from the used side attacks named
ZigZag. It is a tool of client-side code. It produces a model that
tells how and with whom the client-side section is in the
network. It is efficient enough to perform dynamic security
code invariant detection by the respective models as well as it

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

530 | P a g e
www.ijacsa.thesai.org

has the ability to handling templated JavaScript bypassing
overall re instrumentation in cases where the JavaScript
programs are structurally identical.

RanWang et al. [82] propose a unique recognition structure
(TT-XSS) for DOM-XSS by methods for the pollute following
at the customer side. They modify all JavaScript highlights and
DOM APIs to corrupt the rendering procedure of programs and
vectors are inferred to check the vulnerabilities naturally. In the
recent study Park, et al. [83], a vulnerability detection
technique is proposed that develops and manages safe
applications and can resolve and analyze these problems. They
developed a prototype analysis tool using our technique to test
the application‘s vulnerability–detection ability, and show our
proposed technique is superior to existing ones. The recent
study in 2020 conducted by Falana [85] used Dynamic
Analysis and Fuzzy Inference. The combination of these two
techniques allowed them to come up with a hybrid mechanism
that can be used for detection of XSS attacks. This approach
used scans of website for possible SQL injections. Once this

scan was done, they launched an attack vector using a HTTP
request. The approach was used to test some active web
applications. The results showed a large number of
vulnerabilities were detected successfully. the detailed research
review on dynamic analysis to prevent web vulnerabilities
shown in Table IV.

1) Discussion
Dynamic analysis is a useful technique to prevent web

vulnerabilities and does not analyze the source code of the
website but verifies in runtime whether injected data triggers
some vulnerability in the application. With this strategy, DAST
tools offer risk examination and aids in the remediation
endeavors, engineers do not generally know where precisely
the vulnerabilities are found, nor do they generally know what
countermeasures to execute. DAST approach detailing is not as
much as agreeable in various examples. From the existing
study RanWang et al.[82], Park et al. [83] are useful
approaches in dynamic Analysis. The methods of dynamic
analysis are summarized year-wise shows in Fig. 5.

TABLE IV. DYNAMIC AND FUZZING ANALYSIS EXISTING STUDIES

 Area of Focus Web Vulnerabilities

Research Article

Language/Framework/Tool

Year

V
u

ln
e
ra

b
il

it
y

D
e
te

c
ti

o
n

V
u

ln
e
ra

b
il

it
y

P
re

v
e
n

ti
o

n

A
tt

a
c
k

D
e
te

c
ti

o
n

A
tt

a
c
k

P
re

v
e
n

ti
o

n

V
u

ln
e
ra

b
il

it
y

P
re

d
ic

a
ti

o
n

Q
u

e
ry

M
a

n
ip

u
la

ti
o

n
/i

n
je

c
ti

o
n

C
li

e
n

t
si

d
e

in
je

c
ti

o
n

F
il

e
 a

n
d

 P
a

th

in
je

c
ti

o
n

S
e
ss

io
n

M
a

n
a

g
e
m

e
n

t

Huang et al. [73] WebSSARI 2005

Haldar et al.[69] For java 2005

Kals et al. [74] Secubat 2006

Antunes et al. [84] Tool 2010

Ciampa et al. [77] Tool 2010

Lekies et al. [78] Approched 2013

Duchene et al. [5] black-box fuzzer 2014

Dahse and Holz [80] Tool 2014

Weissbacher et al. [81] ZigZag 2014

RanWang et al.[82] TT-XSS 2018

Park et al. [83] TOOL 2019

Falana et al.[85] approach 2020

Fig. 5. Methods of Dynamic Analysis.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

531 | P a g e
www.ijacsa.thesai.org

E. Hybrid Method (Static + Analysis)

Extracts of static and dynamic analysis are mixed to be
named as hybrid analysis and provide a path toward precision
analysis. In a study by Di Lucca et al. [86] identified
vulnerable web pages by studying the application's source code
by arrangement control flow graphs. XXS attacks are chiefly
because of wrong input sanitization functions. Some web
applications are also not successful to separate the suspected
entries in the inputs. In another study by Balzarotti et al. [87]
claimed various elusive defects could be introduced in the web
application due to defective sanitization. These subtle flaws
cannot be detected by the static and dynamic practices. The
hybrid analysis is utilized by Saner to identify the validity of
built-in and customized sanitization procedures. Saner is the
first to implement the conventional static string investigation to
model the working of user input sanitization. Saner first applies
conventional static string analysis to model the sanitization of
user input. In order to mark frail or wrong sanitization, a big
series of malicious inputs are introduced into the test
sanitization procedure.

Livshits et al [88] and Lam et al., [89] studied model
checking, static and dynamic inspection, and runtime detection
to purpose a holistic method. Which enhances the precision of
static analysis by specifically using model checking. Model-
checking can analytically search the space of a limited state
system. It confirmed the authenticity of the system in reference
to the provided conditions or characteristics. As well as this
method of checking is capable to automatically produce
tangible attacks, produce no false positives in vectors, and
exploit path. Another technique of hybrid analysis study by
Van Acker et al. [90] found the XSS vulnerabilities in flash
applications by setting up Flashover. Whereas, the previous
works up until focused on the discovery of conventional XSS
web application vulnerabilities, Flashover identifies
vulnerabilities in RIAs (Rich Internet Applications).

Another research is led in 2012 Lee et al. [91] struggles for
finding SQLIAs by adopting both the static and dynamic
methods. He examined the source code then the model of query
is deduced from it. It removes the characters involved in SQL
queries. After identifying and removing miscellaneous values,
the obtained syntax is stored. The syntactic structure of quires
is analyzed and compared with the already saved structure, this
is how attacks are perceived in the runtime. The pros of using
this scheme are that it can identify attach during the process.
Another research Lee et[92], also applied both static and
dynamic analysis methods for vulnerabilities of web
applications. Along with the combination of these other
techniques that are also being utilized for the specific
application, dynamic black-box testing based on a fuzzing
method is included in it. Vogt et al. [93], and Stock et al. [94]
deploy the method to prevent the client-side browser from
scripting XSS cross-site.

They propose He, X et al [95] a crossover examination
strategy consolidating static and dynamic investigation for
recognizing noxious JavaScript code that works by first
directing grammar examination and dynamic instrumentation
to remove inward highlights that are identified with malignant
code and afterward performing characterization based
identification to recognize assaults. In particular, MJDetector
can distinguish JavaScipt assaults in current website pages with
high precision 94.76% and de-jumble muddle code of explicit
sorts with exactness 100% though the gauge strategy can just
identify with exactness 81.16% and has no limit of de-
obscurity. The recent study proposes Le et al. [96] E-THAPS
which actualizes a novel discovery component, an improved
SQL infusion, Cross-site Scripting, and helplessness
identification capacities. For vindictive web shell
identification, pollute examination, and example coordinating
techniques are picked to be actualized in GuruWS. the detailed
research review on hybrid analysis to find XSS, SQLi, CSRF,
LFI/RFI, and some other vulnerabilities shown in Table V.

TABLE V. HYBRID (STATIC AND DYNAMIC) ANALYSIS EXISTING STUDIES

 Area of Focus Web Vulnerabilities

Research Article

Language/Framework/Tool

Year

V
u

ln
e
ra

b
il

it
y

D
e
te

c
ti

o
n

V
u

ln
e
ra

b
il

it
y

P
re

v
e
n

ti
o

n

A
tt

a
c
k

D
e
te

c
ti

o
n

A
tt

a
c
k

P
re

v
e
n

ti
o

n

V
u

ln
e
ra

b
il

it
y

P
re

d
ic

a
ti

o
n

Q
u

e
ry

M
a

n
ip

u
la

ti
o

n
/i

n
j

e
c
ti

o
n

C
li

e
n

t-
si

d
e

in
je

c
ti

o
n

F
il

e
 a

n
d

 P
a

th

in
je

c
ti

o
n

S
e
ss

io
n

M
a

n
a

g
e
m

e
n

t
Di Lucca et al. [86] WA 2004

Livshits et al. [88] TOOL 2005

Vogt et al. [93] novel 2007

Balzarotti et al. [87] Saner 2008

Lam et al. [89] * 2008

Van Acker et al. [90] Flashover 2012

Lee et al. [91] * 2012

Stock et al. [94] * 2014

He, X et al [95] MJDetector 2018

Le et al. [96] GuruWS 2019

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

532 | P a g e
www.ijacsa.thesai.org

Fig. 6. Methods of Hybrid Analysis.

1) Discussion
Extracts of static and dynamic analysis are mixed to be

named as hybrid analysis; it provides a path toward precision
analysis. Hybrid Analysis (also called correlation) combines
DAST and SAST to correlate and verify the results. Issues
identified using dynamic analysis that will be traced to the
offending line of code. SAST issues can be automatically
prioritized using DAST information. The challenge with hybrid
analysis is that DAST relies on data being reflected in the
browser, so if a SAST data flow is not reflected in the browser
as a DAST issue. From the existing study, Le et al. [96] and
Stock et al. [94] are useful approaches in hybrid Analysis. The
methods of hybrid analysis are summarized year-wise shows in
Fig. 6.

F. Machine Learning Technique

This Technique is utilized in a few application zones (e.g.,
computer games and robotics). Application security on the web
is based on a diverse package of techniques as presented in
Fig. 7. It empowers PCs to learn information without
programming (coding) it, and afterward to utilize the obtained
information to take activities/choices. PCs must be guided to
learn before taking activities. They need an informational index
of models – preparing informational collection – from which to
remove information, gaining from that point. An undertaking is
called arrangement on the off chance that it expects to appoint
input objects into classes. A classifier is a programmed
technique that does classification. A classifier proceeds the
dataset to collect the features and classify the dataset and
provide the result based on machine learning. Email spamming
is a basic example to filter the emails [97]. Machine learning is
a different method to prevent web vulnerabilities.

1) Vulnerability Prediction Models in light of Software

Metrics
Characterization is a type of information investigation

wherein models predict the result. Model is used to predict
input data class labels because each training instance's class
label is referred to as supervised learning [2].

2) Anomaly Detection Approaches
To extract a program source code model & recognize

vulnerabilities as separate from the usual dominant parts and
principles, this work class uses unsupervised learning. This
technique model isn't utilized to the class in the dataset to
prevent web vulnerabilities [2].

3) Vulnerable Code Pattern Recognition
This is another machine learning method that selects the

specific patterns of vulnerable code from the data set and
utilizes the pattern matching to prevent web vulnerabilities on
web applications [2].

4) Miscellaneous Paths
This method is used in the area of AI and data science for

programming weakness in software programming and
disclosure, which are not suitable other previously mentioned
classes

The dataset has some attributes that the set of all instance
forms of a training dataset.Attributes are divided into two
categories first is numerical and the second type is categorical.
Illustrating the first category, it is either discrete of continuous
and named as numerical attributes. Whereas, categorical
attributes possess non-numerical and distinct values.
Categorical attributes have a special kind of binary attributes.
Binary attributes have two expected values that are either true
or false [98]. Therefore, dividing and arrangement in the form
of classes is a type of data examination. It includes extracting
models that specify data categorically discrete or unordered
class labels, these models are known as classifiers.
Classification of data involves two phases: (1) learning, where
the classification model is made; (2) classification, where class
labels for given input data are predicted by the respective
model. Supervised learning is a class in which each training
instance is labeled. For example, the input of the classifier is
managed in the sense that it is programmed to identify each
training instance belongs to which class. An alternative type of
machine learning is where each class is unidentified to any
attributive vector such a type is known as unsupervised
learning. Moreover, the process does not know the set of
learned classes prior. [99]. each classifier utilizes an AI
calculation that relies upon the learning type (supervised or
unsupervised). Furthermore, the training data set is used to
classify correctly about the input data. the selection of
classifiers depends on the data set factors [100].

Fig. 7. Machine Learning-based Vulnerability Analysis.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

533 | P a g e
www.ijacsa.thesai.org

Many researched have focused their studies to enhance the
efficiency and precision of different techniques to detect web
vulnerabilities. Support Vector Machines (SVM), J48,
Artificial Neural Network, and many other classifications of
techniques such as C5.0, Naïve Bayes, and linear regression
are tested to train different datasets in order to detect web
vulnerabilities. They are majorly grouped in two categories:
probabilistic and machine learning. These techniques provided
algorithms that are proved fruitful to cope with web
vulnerability issues. Selected algorithms are analyzed by four
metrics of, precision, recall, F1-score, and accuracy.

Suggested vulture tool in a study by Neuhaus et al. [101].
This unique tool will automatically explore existing
vulnerabilities in archives for databases and versions. Vulture
uses mine information to identify past component
vulnerabilities. In addition, the components identified are
classified by the most vulnerable to at least one type. This
ranking of these components serves as a ground for
investigations of the factors, which causes vulnerability to the
targeted component. For instance, the study on the history of
Mozilla vulnerability reveals an unexpected outcome that the
components have one past vulnerability are mostly not affected
by more vulnerabilities. In addition to it, those components that
have the same functions calls are prone to vulnerabilities.

Machine learning has been utilized in certain attempts to
quantify programming quality by gathering traits that uncover
the nearness of software defects. Code type, counts of code
lines, code metrics complication, and objected-oriented
topographies are attributed in various studies. Some studies
move ahead to consider the same type of metrics to guess the
presence of vulnerabilities in source code. Moreover, other
factors like past vulnerability events, called function and
complication in codes are also used to conduct various other
studies. These studies are not focused to identify bugs and
mark their respective location but aim to examine the software
codes according to the frequency of defect and vulnerabilities
code[102].

Wang Yanya et al. [103] studied rapid density clustering
called DSVRDC and intended methods to identify
vulnerabilities in software using DCVRDC. Density-dependent
clustering of vulnerability orders detected. The classifications
examined are determined by the s-order difference. The density
clustering methodology based on Rd-entropy is used to create
vulnerability sequences in the first stage. Secondly, the
respective vulnerabilities of the software are compared by s-
order variation. Each order is dedicated to every cluster to
calculate the difference in s-order as well as clusters comprises
of under investigation software vulnerabilities are also
computed.

In their study, Yamaguchi, Lindner, and Rieck [104]
proposed a method to examine source code to detect
vulnerabilities. This method schematically recognizes the API
symbols of each function using lexical analysis. Then by the
principal component analysis technique API symbols are
introduced in vector space, and in dimension data in order to
calculate the usage of API mode. Later on, the API usage
mapping is created along with the estimated functions,
supervisory code evaluation to classify likely vulnerabilities by

utilizing known vulnerability functions as a standpoint.
Another research is led in 2012. In order to protect SQLI and
XSS vulnerabilities, Scholte et al [55]. combined static analysis
and machine-learning and established IPAAS. This collection
of information is utilized to deduce authentication policies
about input fields that are helpful to save in-process attacks.

In another study by Wijayasekara et al. [105], a text mining
technique was studied to remove potential vulnerabilities in the
public bug database. This method creates a matrix for the term
document. The mentioned process uses a text-mining technique
to reach to the final task of classification of feature vectors into
normal bug or vulnerability. The author has also purposed the
increasing proportion of concealed vulnerabilities influence
occurred during the past two years which is 53% for 53% for
Linux and 10% for MySQL.

Another research is led in 2012 Nunan et al. [106], [107].
Likewise, recuperate web record and URL based highlights
from an enormous box of an assortment of XSS assaults to
examine how to depict the assaults and sort new potential XSS
vector assaults as vindictive. Due to this enormous assortment,
they perceived a lot of highlights (obscurity based, far fetched
examples, and HTML/JavaScript plans) that license the
specific arrangement of XSS in pages. At that point, they
investigate consequently website pages to distinguish XSS
assaults. These are the three stages process: one is
identification and extraction of muddled highlights, the second
one is unraveling of the website pages and includes, and the
last one is the arrangement of pages by methods for an AI
calculation.

Standard classifiers and other normal information-digging
methods just search for the nearness of qualities, without
relating them or thinking about their request. This can startthe
wrong order and forecast. In earlier years, this perspective has
been contemplated for improving exactness. Khosronejad [108]
also aim to reduce the time of training during the construction
of the HMM. They propose to assemble a model dependent on
separated regular normal examples in follow occasions as
opposed to taking each follow all alone. The follows are
standard calls, since they can recognize the likelihood of
deformities, by abnormal capacity call or by illicit utilization of
assets as a result of assaults.. Bhole et al. [109] contrast the
aftereffects of HMM and standard classifiers for the
identification of oddities performed by an IDS. They infer that
the HMM performs superior to the others. Another significant
investigation shar and Tan [110]set forward their endeavors to
recognize web vulnerabilities and to order different info
sterilization methods in various classes as a lot of static code
and a device called PHPMINER-1. In an investigation by Shar,
Tan and Briand [111], they evaluated dynamic ascribe
helplessness to supplement static traits. What's more, they
utilized directed learning and estimation maps that are made
together on the course of action and bunching to figure
vulnerabilities. Both of these can perform exclusively in the
nearness or nonattendance of marked preparing information.
Creator presumed that they are appropriate without marked
preparing information also.

In another examination by Soska and Christin [112]. The
purpose of the study is to foresee the status of the site that will

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

534 | P a g e
www.ijacsa.thesai.org

get vindictive later on or not before it is truly undermined. This
is extremely useful by utilizing AI since they are effectively
recovered includes about the server of site and the facilitating
subtleties of sites. The highlights removed about the sites are,
for example, the structure of record framework (e.g., catalog
names that show that the site is made by CMS), the structure of
the page (e.g., if the site page is made by a CMS format), and
the catchphrases (e.g., presence of some HTML labels). It
depends on the event of these highlights; they perceive whether
a site will be undermined. In another study using the machine
learning technique, Howard et al. [25] proposed the Psigene
system to retrieve features from a large SQL injection attack
collection box to study how to describe them.

Another study led in 2014 [113], Fabian et al. purposed a
technique for efficient big source code data analysis to find the
vulnerabilities. The author presented a code property graph for
illustration of source code in a new way. These graphs
combined the idea of standard program analysis that includes
abstract syntax trees, managed flow graphs, and graph of
programs into a collective data assembly. We can characterize
integer overflows, buffer overflows, vulnerabilities in format
strings, or memory disclosures. The purposed collective
informative structural model for vulnerabilities in addition to
their graphs representation makes a person aware of all the
above-mentioned factors. The creditability of this technique is
identified by real-time application in some well-known graph
database, it is successful in the Linux kernel to find eighteen
unfamiliar vulnerabilities in the source code. A technique for
detecting RCE, XSS, LFI/RFI, and SQLi was developed by
Singh et al. [114]. This study proposed a work to improve the
accuracy of the current vulnerability finding scheme. Grieco et
al.'s [115] recent study, suggested a method for estimating a
vulnerability by blurring. This approach deduces topologies
that negate memory by analysis of a binary program. In the
consequence of this analysis, all the extracted results are
classified to assist machine learning. VDISCOVER is used to
check if the test category has vulnerabilities. 1039 program are
observed using bug hunter to extract 138308 performance sets
in order to statistically investigating 76083 different function
calls. Methods are proven effective as the test results have been
detected and certain memory leaks have been confirmed.

In another study, Medeiros et al. [116] proposed a new
approach to deduce by extraction algorithm the basic and
context structure of source code to identify vulnerabilities in
web applications. The author also stated context-sensitive
security flaws in the prevailing most distinguished XSS (cross-
site scripting) technique to find the vulnerability. It is found
that the XSS methodology is unable to include user input in the
output statements. In Walden, Stuckman, and Scandariato,
[117], compared two important feature software metrics and
text mining of web vulnerabilities. The author tried to establish
a prediction model comprising for PHP. Both the techniques
are cross-validated. Application with a version named as
Drupal 6.0, PHP My Admin 3.3, and Moodle 2.0. are selected
for cross-validation test. Validity test is performed twice;
software metrics and term frequency parameters are used
respectively to guess vulnerability. After this, results are
compared and eminence of guess parameters is analyzed.

In their study YUN et al., [118], gave a new technology
VULPREDICTOR that investigates metrics and text mining to
guess vulnerable files. At last, it purposes a compound
prediction model. First VULPREDICTOR builds 6 basic
classifiers on a file under observation in order to produce
constructs a Meta classifier. These files are classified according
to their text parameters and software algorithms. This method
run in two stages firstly it constructs a model then comes
prediction stages. In the model construction stage,
VULPREDICTOR constructs a composite structure from
training source code files with (vulnerable or not) known
labels. While in assuming point, this model works as to guess,
whether a new source code file is vulnerable or not. In another
study, Abunadi, Ibrahim, and mamdouh [119] developed an
empirical study method that examines the effectiveness of
cross-project prediction to guess vulnerabilities in software.
The open-source datasets are incorporated and five famous
classifiers are tested. The results of these classifiers are
compared to check them in cross-project vulnerability
prediction situations.

A study Anbiya et al. [120], focused on using PHP native
token and Abstract Syntax Tree (AST) as features then
manipulate them to get the best feature. We pruned the AST to
dump some unusable nodes or subtrees and then extracted the
node type token with Breadth First Search (BFS) algorithm.
They were able to get the highest recall score at 92% with PHP
token as features and Gaussian Naïve Bayes as a machine
learning classification method. Another study in 2018, Kronjee
et al [121] built a tool called WIRECAML a contrasted
instrument with different devices for powerlessness
identification in PHP code. The apparatus performed best for
web vulnerabilities. They likewise gave approach a shot
various open-source programming applications.

In this study Smitha et al. [122], work investigates the
exhibition of calculations like choice woodland, neural
systems, bolster vector machine, and strategic relapse. Their
exhibition has been assessed utilizing standard execution
measurements. HTTP CSIC 2010, a web interruption
identification dataset is utilized right now. Test results
demonstrate that SVM and LR have been predominant in their
exhibition than their partners. Prescient work processes have
been made utilizing Microsoft Azure Machine Learning Studio
(MAMLS), a versatile AI stage that encourages an
incorporated improvement condition to information
researchers.

The study conducted by Noman et al. [123], fabricates 6
classifiers on a preparation set of named records spoke to by
their product measurements and content highlights.
Furthermore, they manufacture a Meta classifier, which
consolidates the six hidden classifiers. NMPREDICTOR is
assessed on datasets of three web applications, which offer 223
prevalent quality vulnerabilities found in PHPMyAdmin,
Moodle, and Drupal. In their study Kudjo et al. [124], directed
an observational examination on three open-source
helplessness datasets, to be specific Drupal, Moodle, and
PHPMyAdmin utilizing five AI calculations. Shockingly, they
found that in all instances of the 3 datasets considered, models
gave a critical increment in accuracy and precision against the
benchmark study. Zhou et al. [125] study presents an improved

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

535 | P a g e
www.ijacsa.thesai.org

algorithm that generates test cases. This algorithm uses a new
mutation method to divide test cases into various functional
units to preserve their semantic structure. The results showed
their algorithm not only generated better cases as compared
with standard genetic algorithm and the adaptive genetic
algorithm but also detected web vulnerabilities with high
accuracy. Another study in machine learning is conducted by
Tang et al. [126] that The statistical analysis of normal and
SQL injection data was used to design eight feature types and
train a machine-learning model. The accuracy of this model
was 99%. The study proposed by Williams et al. [127] an
integrated framework of data mining. This framework was

capable of detecting evolution of web vulnerabilities. This
framework three specific techniques i.e. Topically Supervised
Evolution Model and Diffusion-Based storytelling technique,
and prediction models. Through a series of experiments, it was
shown this proposed framework not only discovered the
evolution of web vulnerabilities and predict them with high
level of accuracy. The methodology proposed by Calzavara et.
al., [128] utilized machine learning to detect web application
vulnerabilities. They used this methodology in Mitch. Mitch
was the first machine-learning based solution to detect cross-
site request forgeries.the detailed research review on machine
learning to prevent web vulnerabilities shown in Table VI.

TABLE VI. MACHINE LEARNING EXISTING STUDIES

Research

article

Language

/Framework

Metrics /

Feature

Yea

r
Dataset Classifier

ML

Metho

d

Web

Vulnerabilitie

s

Performanc

e

Parameters

Application

Neuhaus et

al. [101]
vulture tool

14

components

importing

nsNodeUtils.h

2007

Mozilla with

134

vulnerabilities

SVM A1
Security

vulnerabilities

Precision,

Recall
Mozilla Firefox

Wang

Yanya et al.

[103]

DSVRDC

67 series

software

Apache

2011

open-source

web server

software

Apache httpd

2.2.8

Rd-entropy. A2
Security

vulnerabilities
Accuracy

C++

programming

language

Yamaguchi

et al. [104]
*

Extracting

AST with a

parser

2011 * * A2 * *

C++

programming

language

Wijayasekar

a et al. [105]

open

bug database
Feature Vector 2012

Linux kernel

vulnerabilities

(Redhat

Bugzilla)

Bayesian A3 SQLi Accuracy
hidden impact

bugs

Nunan et al.

[107]

Experimental

study

obfuscation-

based,

doubtful

patterns and

html/JavaScrip

t schemes

2012

15.366

websites

XSSed

database,

dmoz.org and

(2) 158.847

NB And

SVM
A1 XSS

Detection

rate,

Accuracy

rate and

False alarm

rate

HTML/JavaScrip

t and PHP

Shar and

Tan [110]
PHPMINER-1.

bytecode

rewriting
2012

Java-based

open source

applications,

Events,

Classifieds,

Roomba,

PersonalBlog,

and JGossip

* A2 XSS, SQL *
HTML/JavaScrip

t and PHP

Soska and

Christin

[112]

complementary

approach

structure of the

file system,

the structure of

the webpage

and the

keyword

2014

PhishTank,

search

redirection

attacks,

C4.5 A1 all accuracy all

Fabian et al.

[113]

Code Property

Graph

Extracting

AST with a

parser

2014

central

vulnerability

database by

MITRE of

CVE

* A2

BO, Memory

Mapping,

Zero-byte

Allocation

* all

Howard et

al. [25]

Psigene system

Framework

SQL reserved

words, SQLi

signatures

from the Bro,

Snort IDS and

the

ModSecurity,

web of WAF

and SQLi

reference

documents

2014

the Exploit

Database,

PacketStorm

Security, and

the Open

Source

Vulnerability

Database

Logistic

regression
A2 SQL injection

Accuracy,

Precision
PHP

http://www.dmoz.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

536 | P a g e
www.ijacsa.thesai.org

Grieco et al.

[115]

VDISCOVER

method

N-gram

analysis on the

function

call sequences

2016
bag-of-words,

word2vec

Logistic

Regression

MLP

A2

vulnerabilities

in operating

systems

Accuracy *

Medeiros et

al. [116]
Method

Aggregate

function,

Numeric entry

point,

Complex

query,

Extract

substring,

String

concatenation,

Add char,

Replace string,

Error/exit,

Remove

whitespaces,

Type

checking,

An entry point

is set,

Pattern

control,

2016
Custome

Dataset

ID3,

C4.5/J48,

RF, K-NN

NB, MLP,

SVM

,Logistic,

Forest

Tree, Bayes

Net

* SQLi, XSS,

Accuracy,

Precession,

Recall

PHP

Walden,

Stuckman,

and

Scandariato

[117]

Dataset Created

Software

metrics, text

mining

2014

Drupal,

PHPMyAdmin

, and Moodle

with 223 web

vulnerabilities

Random

Forest
*

SQL injection,

XSS, CSRF,

and others

Accuracy,

Precession,

Recall

PHP

YUN et al..,

[118]

VULPREDICTO

R

Software

metrics, text

mining

2016

Drupal,

PHPMyAdmin

, and Moodle

with 223 web

vulnerabilities

Random

Forest,

Naïve

Bayes, J48

*

SQL injection,

XSS, CSRF

and others

Accuracy,

Precession,

Recall

PHP

Abunadi,

ibrahim, and

mamdouh

[119]

Proposed Method

Software

metrics, text

mining

2016

Drupal,

PHPMyAdmin

, and Moodle

with 223 web

vulnerabilities

RF,

LR, SVM,

J48, and

NB

*

SQL injection,

XSS, CSRF

and others

Accuracy,

Precession,

Recall

PHP

Anbiya et

al[120]
Proposed Method PHP Tokens 2018 NVD SVM, DT A1

SQL injection,

XSS,and

others

Accuracy,

Precession,

Recall

PHP

Kronjee et

al[121]
WIRECAML All Features 2018

National

Vulnerability

Database and

the SAMATE

probabilisti

c classifiers
A1

SQL injection,

XSS,
Accuracy, PHP

Smitha et al

[122]

Comparative

study ss
All Features 2019

HTTP CSIC

2010

SVM and

LR
A1

QLI, XSS,

LDAP, and

Buffer

overflow

Accuracy,

Precession,

Recall

PHP

Noman et

al[123]
NMPREDICTOR

Software

metrics, text

mining

2019

Drupal,

PHPMyAdmin

, and Moodle

with 223 web

vulnerabilities

. J48, Naive

Bayes and

Random

forest

A2

SQL injection,

XSS, CSRF

and others

Accuracy,

Precession,

Recall

PHP

Kudjo et

al[124]
Model

Software

metrics, text

mining

2019

Drupal,

PHPMyAdmin

, and Moodle

with 223 web

vulnerabilities

RF, SVM,

KNN,

MLP, C4,5

A2

SQL injection,

XSS, CSRF

and others

Accuracy,

Precession,

Recall

PHP

Zhou et al

[125]
Proposed Method All Features 2020 Test cases

genetic

algorithm
A3

SQL injection,

XSS,
Comparative PHP

Tang et al

[126]
Model eight Features 2020

Normal

Dataset

MLP model A1 SQL injection accuracy *

Williams et

al [127]
framework All Features 2020 * *

A1 &

A2
Vulnerabilties * *

* Missing in Paper A1:Vulnerability Prediction Models based on Software Metrics: A2: Vulnerable Code Pattern Recognition

 A3 Miscellaneous Approaches A4: n-grams extraction algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

537 | P a g e
www.ijacsa.thesai.org

1) Discussion Machine learning is considered very

different approach with a wide range of web applications.

However, it can also use to find out web vulnerabilities in

source code. It is a very important area in today's collaborative

work environment to detect 0day web vulnerabilities and new

approaches are always desirable including the current and

existing once. Many researched have focused their studies to

enhance the efficiency and precision of different techniques to

detect web vulnerabilities. Support Vector Machines (SVM),

J48, Artificial Neural Network, and many other classifications

of techniques such as K-Nearest Neighbor, C5.0, Naïve Bayes,
and linear regression are tested to train different datasets in

order to detect web vulnerabilities. Furthermore, mostly

researcher evaluate their result with machine learning

parameters such as precision, recall, F1-score, and accuracy.

From the existing, study noman et al. [127], Medeiros et al.

[12] are useful approaches in Machine learning.

V. CONCLUSION

This study provides a comprehensive survey of existing
methods in the research area of web applications
vulnerabilities. We highlighted several open issues that still
needs to be addressed. In this paper, we reviewed classification
and detection of web vulnerabilities with different approaches
like static analysis, dynamic analysis, hybrid analysis,
combined three analyses for scanners and machine learning.
We also reviewed various types of web vulnerabilities with
different classification. The input validation vulnerabilities and
improper session management and methods to perceive web
vulnerabilities. There are lot of works that have been
performed to cater to such issues. The best approach we
identified to secure a web application is concluded such as for
secure programming is Agrawal et al (2019), Kang and Park
(2017), Zhu et al. (2014), in case of Static analysis is Nunes, P
et al. (2019) Khalid et al. (2018) and NUNES et al (2015).
Furthermore, in case of Dynamic analysis is Park et al. (2019),
Kang and Park (2017) and Zhu et al. (2014), in case of Hybrid
analysis is Le et al. 2019 and Stock et al. (2014), however, in
case of machine learning is noman et al (2019), Medeiros et al.
(2016).

REFERENCES

[1] Pop, D. P., & Altar, A. (2014). Designing an MVC model for rapid web
application development. Procedia Engineering, 69, 1172-1179.

[2] Deepa, G., & Thilagam, P. S. (2016). Securing web applications from
injection and logic vulnerabilities: Approaches and

challenges. Information and Software Technology, 74, 160-180.

[3] Awoleye, O. M., Ojuloge, B., & Ilori, M. O. (2014). Web application
vulnerability assessment and policy direction towards a secure smart

government. Government Information Quarterly, 31, S118-S125.

[4] Bozic, J., & Wotawa, F. (2015, August). PURITY: a Planning-based
secURITY testing tool. In Software Quality, Reliability and Security-

Companion (QRS-C), 2015 IEEE International Conference on (pp. 46-
55). IEEE.

[5] Duchene, F., Rawat, S., Richier, J. L., & Groz, R. (2014, March).

KameleonFuzz: evolutionary fuzzing for black-box XSS detection.
In Proceedings of the 4th ACM conference on Data and application

security and privacy (pp. 37-48). ACM.

[6] Medeiros, I., Neves, N. F., & Correia, M. (2014, April). Automatic
detection and correction of web application vulnerabilities using data

mining to predict false positives. In Proceedings of the 23rd
international conference on World Wide Web (pp. 63-74). ACM.

[7] Tsipenyuk, K., Chess, B., & McGraw, G. (2005). Seven pernicious

kingdoms: A taxonomy of software security errors. IEEE Security &
Privacy, 3(6), 81-84.

[8] Mitropoulos, D., Louridas, P., Polychronakis, M., & Keromytis, A. D.

(2017). Defending Against Web Application Attacks: Approaches,
Challenges and Implications. IEEE Transactions on Dependable and

Secure Computing.

[9] Li, Xiaowei, and Yuan Xue. "A survey on server-side approaches to
securing web applications." ACM Computing Surveys (CSUR) 46, no. 4

(2014): 54.

[10] Wedman, S., Tetmeyer, A., & Saiedian, H. (2013). An analytical study
of web application session management mechanisms and HTTP session

hijacking attacks. Information Security Journal: A Global
Perspective, 22(2), 55-67.

[11] Shahriar, H., & Zulkernine, M. (2010, November). Client-side detection

of cross-site request forgery attacks. In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on (pp. 358-367).

IEEE.

[12] Delgado, Nelly, Ann Q. Gates, and Steve Roach. "A taxonomy and

catalog of runtime software-fault monitoring tools." IEEE Transactions
on software Engineering 30, no. 12 (2004): 859-872.

[13] Igure, Vinay M., and Ronald D. Williams. "Taxonomies of attacks and

vulnerabilities in computer systems." IEEE Communications Surveys &
Tutorials 10, no. 1 (2008)

[14] Krsul, Ivan Victor. Software vulnerability analysis. West Lafayette, IN:

Purdue University, 1998.

[15] Halfond, William G., Jeremy Viegas, and Alessandro Orso. "A
classification of SQL-injection attacks and countermeasures."

In Proceedings of the IEEE International Symposium on Secure
Software Engineering, vol. 1, pp. 13-15. IEEE, 2006.

[16] Chandrashekhar, Roshni, Manoj Mardithaya, Santhi Thilagam, and

Dipankar Saha. "SQL injection attack mechanisms and prevention
techniques." In International Conference on Advanced Computing,

Networking and Security, pp. 524-533. Springer, Berlin, Heidelberg,
2011.

[17] Garcia-Alfaro, Joaquin, and Guillermo Navarro-Arribas. "A survey on

cross-site scripting attacks." arXiv preprint arXiv: 0905.4850 (2009).

[18] M. Cova, V. Felmetsger, G. Vigna, Vulnerability analysis of web-based

applications, in: Test and Analysis of Web Services, Springer Berlin
Heidelberg, 2007, pp. 363–394.

[19] NUNES, P., FONSECA, J. & VIEIRA, M. (2015). phpSAFE: A security

analysis tool for OOP web application plugins. In Proceedings of the
45th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks.

[20] Shahriar, Hossain, and Mohammad Zulkernine. "Taxonomy and
classification of automatic monitoring of program security vulnerability

exploitations." Journal of Systems and Software84, no. 2 (2011): 250-
269.

[21] Hydara, Isatou, Abu Bakar Md Sultan, Hazura Zulzalil, and Novia

Admodisastro. "Current state of research on cross-site scripting (XSS)–
A systematic literature review." Information and Software

Technology 58 (2015): 170-186.

[22] Buczak, Anna L., and Erhan Guven. "A survey of data mining and
machine learning methods for cyber security intrusion detection." IEEE

Communications Surveys & Tutorials 18, no. 2 (2016): 1153-1176.

[23] Ghaffarian, Seyed Mohammad, and Hamid Reza Shahriari. "Software
Vulnerability Analysis and Discovery Using Machine-Learning and

Data-Mining Techniques: A Survey." ACM Computing Surveys
(CSUR) 50, no. 4 (2017): 56.

[24] Shahriar, H., & Zulkernine, M. (2012, October). Information-theoretic
detection of sql injection attacks. In High-Assurance Systems

Engineering (HASE), 2012 IEEE 14th International Symposium on (pp.
40-47). IEEE.

[25] Howard, G. M., Gutierrez, C. N., Arshad, F. A., Bagchi, S., & Qi, Y.

(2014, June). psigene: Webcrawling to generalize sql injection
signatures. In Dependable Systems and Networks (DSN), 2014 44th

Annual IEEE/IFIP International Conference on (pp. 45-56). IEEE.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

538 | P a g e
www.ijacsa.thesai.org

[26] Juillerat, N. (2007, October). Enforcing code security in database web

applications using libraries and object models. In Proceedings of the
2007 Symposium on Library-Centric Software Design (pp. 31-41).

ACM.

[27] Johns, M., Beyerlein, C., Giesecke, R., & Posegga, J. (2010). Secure
Code Generation for Web Applications. ESSoS, 5965, 96-113. Chicago

[28] Grabowski, R., Hofmann, M., & Li, K. (2011). Type-Based

Enforcement of Secure Programming Guidelines-Code Injection
Prevention at SAP. Formal Aspects in Security and Trust, 7140, 182-

197.

[29] Chong, S., Vikram, K., & Myers, A. C. (2007, August). SIF: Enforcing
Confidentiality and Integrity in Web Applications. In USENIX Security

Symposium (pp. 1-16).

[30] Vikram, K., Prateek, A., & Livshits, B. (2009, November). Ripley:
automatically securing web 2.0 applications through replicated

execution. In Proceedings of the 16th ACM conference on Computer
and communications security (pp. 173-186). ACM.

[31] Yip, A., Wang, X., Zeldovich, N., & Kaashoek, M. F. (2009, October).
Improving application security with data flow assertions. In Proceedings

of the ACM SIGOPS 22nd symposium on Operating systems
principles (pp. 291-304). ACM.

[32] Jia, L., Vaughan, J. A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., &

Zdancewic, S. (2008, September). Aura: A programming language for
authorization and audit. In ACM Sigplan Notices (Vol. 43, No. 9, pp.

27-38). ACM.

[33] Swamy, N., Corcoran, B. J., & Hicks, M. (2008, May). Fable: A
language for enforcing user-defined security policies. In Security and

Privacy, 2008. SP 2008. IEEE Symposium on (pp. 369-383). IEEE.

[34] Corcoran, B. J., Swamy, N., & Hicks, M. (2009, June). Cross-tier, label-
based security enforcement for web applications. In Proceedings of the

2009 ACM SIGMOD International Conference on Management of
data (pp. 269-282). ACM.

[35] Swamy, N., Chen, J., & Chugh, R. (2010, March). Enforcing Stateful

Authorization and Information Flow Policies in Fine. In ESOP (pp. 529-
549).

[36] Krishnamurthy, A., Mettler, A., & Wagner, D. (2010, April). Fine-

grained privilege separation for web applications. In Proceedings of the
19th international conference on World wide web (pp. 551-560). ACM.

[37] Zhu, J., Xie, J., Lipford, H. R., & Chu, B. (2014). Supporting secure
programming in web applications through interactive static

analysis. Journal of advanced research, 5(4), 449-462

[38] Kang, J., & Park, J. H. (2017). A secure-coding and vulnerability check
system based on smart-fuzzing and exploit. Neurocomputing.

[39] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo

Arango-Argoty. Secure coding practices in java: Challenges and
vulnerabilities. In 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE). IEEE, 372--383, 2018.

[40] Bangani, S., Futcher, L., & van Niekerk, J. (2019, July). An Approach to
Teaching Secure Programming in the. NET Environment. In Annual

Conference of the Southern African Computer Lecturers'
Association (pp. 35-49). Springer, Cham.

[41] Agrawal, A., Alenezi, M., Kumar, R., & Khan, R. A. (2019). A source

code perspective framework to produce secure web
applications. Computer Fraud & Security, 2019(10), 11-18

[42] Jovanovic, N., Kruegel, C., & Kirda, E. (2006, May). Pixy: A static

analysis tool for detecting web application vulnerabilities. In Security
and Privacy, 2006 IEEE Symposium on (pp. 6-pp). IEEE.

[43] Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE
Security & Privacy, 2(6), 76-79.

[44] Durães, João, and Henrique Madeira. "A methodology for the automated

identification of buffer overflow vulnerabilities in executable software
without source-code." In Latin-American Symposium on Dependable

Computing, pp. 20-34. Springer, Berlin, Heidelberg, 2005.

[45] Huang, Y. W., Yu, F., Hang, C., Tsai, C. H., Lee, D. T., & Kuo, S. Y.
(2004, May). Securing web application code by static analysis and

runtime protection. In Proceedings of the 13th international conference
on World Wide Web (pp. 40-52). ACM.

[46] Wassermann, G., & Su, Z. (2008, May). Static detection of cross-site

scripting vulnerabilities. In Proceedings of the 30th international
conference on Software engineering (pp. 171-180). ACM.

[47] Minamide, Y. (2005, May). Static approximation of dynamically

generated web pages. In Proceedings of the 14th international
conference on World Wide Web (pp. 432-441). ACM.

[48] Xie, Y., & Aiken, A. (2006, July). Static Detection of Security

Vulnerabilities in Scripting Languages. In USENIX Security
Symposium (Vol. 15, pp. 179-192).

[49] Halfond, W. G., & Orso, A. (2005, November). AMNESIA: analysis

and monitoring for NEutralizing SQL-injection attacks. In Proceedings
of the 20th IEEE/ACM international Conference on Automated software

engineering (pp. 174-183). ACM.

[50] Thomas, S., & Williams, L. (2007, May). Using automated fix
generation to secure SQL statements. In Proceedings of the Third

International Workshop on Software Engineering for Secure Systems (p.
9). IEEE Computer Society.

[51] SON, S. & SHMATIKOV, V. (2011). SAFERPHP: Finding semantic
vulnerabilities in PHP applications. In Proceedings of the ACM

SIGPLAN 6th Workshop on Programming Languages and Analysis for
Security.

[52] J. Fonseca, N. Seixas, M. Vieira, H. Madeira, Analysis of field data on

web security vulnerabilities, IEEE Transactions on Dependable and
Secure Computing 11 (2) (2014) 89–100.

[53] Shahriar, H., & Zulkernine, M. (2009, May). Mutec: Mutation-based

testing of cross site scripting. In Proceedings of the 2009 ICSE
Workshop on Software Engineering for Secure Systems (pp. 47-53).

IEEE Computer Society.

[54] Shar, Lwin Khin, and Hee Beng Kuan Tan. "Automated removal of
cross site scripting vulnerabilities in web applications." Information and

Software Technology 54, no. 5 (2012): 467-478.

[55] Scholte, T., Robertson, W., Balzarotti, D., & Kirda, E. (2012, July).
Preventing input validation vulnerabilities in web applications through

automated type analysis. In Computer Software and Applications
Conference (COMPSAC), 2012 IEEE 36th Annual (pp. 233-243). IEEE.

[56] Zheng, Y., & Zhang, X. (2013, May). Path sensitive static analysis of

web applications for remote code execution vulnerability detection.
In Proceedings of the 2013 International Conference on Software

Engineering (pp. 652-661). IEEE Press.

[57] Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C., &

Vigna, G. (2013, November). deDacota: toward preventing server-side
XSS via automatic code and data separation. In Proceedings of the 2013

ACM SIGSAC conference on Computer & communications
security (pp. 1205-1216). ACM.

[58] Amira, Abdelouahab, Abdelraouf Ouadjaout, Abdelouahid Derhab, and

Nadjib Badache. "Sound and Static Analysis of Session Fixation
Vulnerabilities in PHP Web Applications." In Proceedings of the

Seventh ACM on Conference on Data and Application Security and
Privacy, pp. 139-141. ACM, 2017.

[59] Muhammad Noman khalid, Muhammad Iqbal, Muhammad Talha Alam,

Vishal Jain, Hira Mirza and Kamran Rasheed, ―Web Unique Method
(WUM): An Open Source Blackbox Scanner for Detecting Web

Vulnerabilities‖ International Journal of Advanced Computer Science
and Applications(IJACSA), 8(12), 2017.

[60] Viega, John, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw.

"ITS4: A static vulnerability scanner for C and C++ code." In Computer
Security Applications, 2000. ACSAC'00. 16th Annual Conference, pp.

257-267. IEEE, 2000.

[61] Deepa, G., Thilagam, P. S., Praseed, A., & Pais, A. R. (2018). DetLogic:
A black-box approach for detecting logic vulnerabilities in web

applications. Journal of Network and Computer Applications, 109, 89-
109.

[62] Nunes, P., Medeiros, I., Fonseca, J., Neves, N., Correia, M., & Vieira,

M. (2019). An empirical study on combining diverse static analysis tools
for web security vulnerabilities based on development

scenarios. Computing, 101(2), 161-185.

[63] NUNES, P., FONSECA, J. & VIEIRA, M. (2015). phpSAFE: A security

analysis tool for OOP web application plugins. In Proceedings of the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

539 | P a g e
www.ijacsa.thesai.org

45th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks

[64] Long, H. V., Tuan, T. A., Taniar, D., Can, N. V., Hue, H. M., & Son, N.
T. K. (2020). An efficient algorithm and tool for detecting dangerous

website vulnerabilities. International Journal of Web and Grid
Services, 16(1), 81-104.

[65] Aliero, M. S., Ghani, I., Qureshi, K. N., & Rohani, M. F. A. (2020). An

algorithm for detecting SQL injection vulnerability using black-box
testing. Journal of Ambient Intelligence and Humanized

Computing, 11(1), 249-266.

[66] EVRON, G. & RATHAUS, N. (2007). Open Source Fuzzing Tools.
Elsevier Inc., 1st edn.

[67] SUTTON, M., GREENE, A. & AMINI, P. (2007). Fuzzing: Brute Force

Vulnerability Discovery. Addison-Wesley, 1st edn.

[68] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., & Evans, D.

(2005). Automatically hardening web applications using precise
tainting. Security and Privacy in the Age of Ubiquitous Computing, 295-

307.

[69] Haldar, V., Chandra, D., & Franz, M. (2005, December). Dynamic taint
propagation for Java. In Computer Security Applications Conference,

21st Annual (pp. 9-pp). IEEE.

[70] Jimenez, W., Mammar, A., & Cavalli, A. (2009). Software
vulnerabilities, prevention and detection methods: A review1. Security

in Model-Driven Architecture, 6.

[71] Miller, B. P., Fredriksen, L., & So, B. (1990). An empirical study of the
reliability of UNIX utilities. Communications of the ACM, 33(12), 32-

44.

[72] BRADSHAW, S. (2010). An introduction to fuzzing: Using fuzzers
(spike) to find vulnerabilities. http://resources.infosecinstitute.com/intro-

to-fuzzing/.bufferoverflow vulnerabilities in executable software without
source-code. In Proceedings of the 2nd Latin-American Conference on

Dependable Computing, 20–34.

[73] Huang, Y. W., Tsai, C. H., Lin, T. P., Huang, S. K., Lee, D. T., & Kuo,
S. Y. (2005). A testing framework for Web application security

assessment. Computer Networks, 48(5), 739-761.

[74] Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2006, May). Secubat:

a web vulnerability scanner. In Proceedings of the 15th international
conference on World Wide Web (pp. 247-256). ACM.

[75] DUCHÈNE, F., RAWAT, S., RICHIER, J. & GROZ, R. (2014).

Kameleonfuzz: Evolutionary fuzzing for black-box XSS detection. In
Proceedings of the 4th ACM Conference on Data and Application

Security and Privacy, 37–48.

[76] Antunes, N., & Vieira, M. (2010, July). Benchmarking vulnerability
detection tools for web services. In Web Services (ICWS), 2010 IEEE

International Conference on (pp. 203-210). IEEE.

[77] Ciampa, A., Visaggio, C. A., & Di Penta, M. (2010, May). A heuristic-
based approach for detecting SQL-injection vulnerabilities in Web

applications. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Secure Systems (pp. 43-49). ACM.

[78] Stock, B., Lekies, S., & Johns, M. (2013). 25 Million Flows Later-

Large-scale Detection of DOM-based XSS. 20th CCS. ACM.

[79] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M. & BOS,
H. (2013). Dowsing for overflows: A guided fuzzer to find buffer

boundary violations. In Proceedings of the 22nd USENIX Security
Symposium, 49–64.

[80] Dahse, J., & Holz, T. (2014, August). Static Detection of Second-Order
Vulnerabilities in Web Applications. In USENIX Security

Symposium (pp. 989-1003).

[81] Weissbacher, M., Robertson, W. K., Kirda, E., Kruegel, C., & Vigna, G.
(2015, August). ZigZag: Automatically Hardening Web Applications

against Client-side Validation Vulnerabilities. In USENIX Security
Symposium (pp. 737-752).

[82] RanWang, GuangquanXu, XianjiaoZeng, XiaohongLi, ZhiyongFeng.

(2018). TT-XSS: A novel taint tracking based dynamic detection
framework for DOM Cross-Site Scripting.Journal of Parallel and

Distributed Computing Volume 118, Part 1, August 2018, Pages 100-
106

[83] Park, J., Choo, Y., & Lee, J. (2019). A hybrid vulnerability analysis tool

using a risk evaluation technique. Wireless Personal
Communications, 105(2), 443-459.

[84] CHIPOUNOV, V., KUZNETSOV, V. & CANDEA, G. (2011). S2e: A

platform for in-vivo multi-path analysis of software systems. In
Proceedings of the 16th International Conference on Architectural

Support for Programming Languages and Operating Systems, 265–278.

[85] Falana, O. J., Ebo, I. O., Tinubu, C. O., Adejimi, O. A., & Ntuk, A.
(2020, March). Detection of Cross-Site Scripting Attacks using Dynamic

Analysis and Fuzzy Inference System. In 2020 International Conference
in Mathematics, Computer Engineering and Computer Science

(ICMCECS) (pp. 1-6). IEEE.

[86] Di Lucca, G. A., Fasolino, A. R., Mastoianni, M., & Tramontana, P.
(2004, September). Identifying cross site scripting vulnerabilities in web

applications. In Web Site Evolution, Sixth IEEE International Workshop
on (WSE'04) (pp. 71-80). IEEE.

[87] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E.,

Kruegel, C., & Vigna, G. (2008, May). Saner: Composing static and
dynamic analysis to validate sanitization in web applications. In Security

and Privacy, 2008. SP 2008. IEEE Symposium on (pp. 387-401). IEEE.

[88] Livshits, V. B., & Lam, M. S. (2005, August). Finding Security

Vulnerabilities in Java Applications with Static Analysis. In USENIX
Security Symposium (Vol. 14, pp. 18-18).

[89] Lam, M. S., Martin, M., Livshits, B., & Whaley, J. (2008, January).

Securing web applications with static and dynamic information flow
tracking. In Proceedings of the 2008 ACM SIGPLAN symposium on

Partial evaluation and semantics-based program manipulation (pp. 3-12).
ACM.

[90] Van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W., & Piessens, F.

(2012, May). FlashOver: Automated discovery of cross-site scripting
vulnerabilities in rich internet applications. In Proceedings of the 7th

ACM Symposium on Information, Computer and Communications
Security (pp. 12-13). ACM.

[91] Lee, I., Jeong, S., Yeo, S., & Moon, J. (2012). A novel method for SQL

injection attack detection based on removing SQL query attribute
values. Mathematical and Computer Modelling, 55(1), 58-68.

[92] Lee, T., Won, G., Cho, S., Park, N., & Won, D. (2012). Experimentation

and Validation of Web Application‘s Vulnerability Using Security
Testing Method. In Computer Science and its Applications (pp. 723-

731). Springer, Dordrecht.

[93] Vogt, Philipp, Florian Nentwich, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. "Cross Site Scripting

Prevention with Dynamic Data Tainting and Static Analysis." In NDSS,
vol. 2007, p. 12. 2007.

[94] Stock, Ben, and Martin Johns. "Protecting users against XSS-based
password manager abuse." In Proceedings of the 9th ACM symposium

on Information, computer and communications security, pp. 183-194.
ACM, 2014.

[95] He, X., Xu, L., & Cha, C. (2018, December). Malicious JavaScript Code

Detection Based on Hybrid Analysis. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC) (pp. 365-374). IEEE.

[96] Le, V. G., Nguyen, H. T., Pham, D. P., Phung, V. O., & Nguyen, N. H.

(2019). GuruWS: A Hybrid Platform for Detecting Malicious Web
Shells and Web Application Vulnerabilities. In Transactions on

Computational Collective Intelligence XXXII (pp. 184-208). Springer,
Berlin, Heidelberg.

[97] Hladka, B., & Holub, M. (2015). A Gentle Introduction to Machine

Learning for Natural Language Processing: How to Start in 16 Practical
Steps. Language and Linguistics Compass, 9(2), 55-76. Chicago

[98] Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann.

[99] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and
techniques. Elsevier.

[100] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3), 15.

[101] Neuhaus, S., Zimmermann, T., Holler, C., & Zeller, A. (2007, October).

Predicting vulnerable software components. In Proceedings of the 14th
ACM conference on Computer and communications security (pp. 529-

540). ACM.

http://resources.infosecinstitute.com/intro-to-fuzzing/
http://resources.infosecinstitute.com/intro-to-fuzzing/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

540 | P a g e
www.ijacsa.thesai.org

[102] SHIN, Y., MENEELY, A., WILLIAMS, L. & OSBORNE, J.A. (2011).

Evaluating complexity, code churn, and developer activity metrics as
indicators of software vulnerabilities. IEEE Transactions on Software

Engineering, 37, 772–787.

[103] Wang, Y., Wang, Y., & Ren, J. (2011). Software Vulnerabilities
Detection Using Rapid Density-based Clustering. JOURNAL OF

INFORMATION &COMPUTATIONAL SCIENCE, 8(14), 3295-3302.

[104] Yamaguchi, F., Lindner, F., & Rieck, K. (2011, August). Vulnerability
extrapolation: assisted discovery of vulnerabilities using machine

learning. In Proceedings of the 5th USENIX conference on Offensive
technologies (pp. 13-13). USENIX Association.

[105] Wijayasekara, D., Manic, M., Wright, J. L., & McQueen, M. (2012,

June). Mining bug databases for unidentified software vulnerabilities.
In Human System Interactions (HSI), 2012 5th International Conference

on (pp. 89-96). IEEE.

[106] Nunan, A. E., Souto, E., dos Santos, E. M., & Feitosa, E. (2012, July).
Automatic classification of cross-site scripting in web pages using

document-based and URL-based features. In Computers and
Communications (ISCC), 2012 IEEE Symposium on (pp. 000702-

000707). IEEE.

[107] Sultana, A., Hamou-Lhadj, A., & Couture, M. (2012, June). An

improved hidden markov model for anomaly detection using frequent
common patterns. In Communications (ICC), 2012 IEEE International

Conference on (pp. 1113-1117). IEEE.

[108] Khosronejad, M., Sharififar, E., Torshizi, H. A., & Jalali, M. (2013).
Developing a hybrid method of Hidden Markov Models and C5. 0 as a

Intrusion Detection System. International Journal of Database Theory
and Application, 6(5), 165-174.

[109] Bhole, A. T., & Patil, A. I. (2014). Intrusion Detection with Hidden

Markov Model and WEKA Tool. International Journal of Computer
Applications, 85(13).

[110] Shar, L. K., & Tan, H. B. K. (2012, June). Mining input sanitization

patterns for predicting SQL injection and cross site scripting
vulnerabilities. In Proceedings of the 34th International Conference on

Software Engineering (pp. 1293-1296). IEEE Press.

[111] Shar, L. K., Briand, L. C., & Tan, H. B. K. (2015). Web application
vulnerability prediction using hybrid program analysis and machine

learning. IEEE Transactions on Dependable and Secure
Computing, 12(6), 688-707.

[112] Soska, K., & Christin, N. (2014, August). Automatically Detecting

Vulnerable Websites Before They Turn Malicious. In USENIX Security
Symposium (pp. 625-640).

[113] Yamaguchi, Fabian. Golde, N., Arp, D., & Rieck, K. (2014, May).
Modeling and discovering vulnerabilities with code property graphs.

In Security and Privacy (SP), 2014 IEEE Symposium on (pp. 590-604).
IEEE.

[114] Singh, N., Dayal, M., Raw, R. S., & Kumar, S. (2016, March). SQL

injection: Types, methodology, attack queries and prevention.
In Computing for Sustainable Global Development (INDIACom), 2016

3rd International Conference on (pp. 2872-2876). IEEE.

[115] Grieco, G., Grinblat, G. L., Uzal, L., Rawat, S., Feist, J., & Mounier, L.
(2016, March). Toward large-scale vulnerability discovery using

Machine Learning. In Proceedings of the Sixth ACM Conference on

Data and Application Security and Privacy (pp. 85-96). ACM.

[116] Medeiros, I., Neves, N., & Correia, M. (2016). Detecting and removing
web application vulnerabilities with static analysis and data mining.

IEEE Transactions on Reliability, 65(1), 54-69.

[117] Walden, James, Jeff Stuckman, and Riccardo Scandariato. "Predicting
vulnerable components: Software metrics vs text mining." In Software

Reliability Engineering (ISSRE), 2014 IEEE 25th International
Symposium on, pp. 23-33. IEEE, 2014.

[118] Zhang, Yun, David Lo, Xin Xia, Bowen Xu, Jianling Sun, and Shanping

Li. "Combining software metrics and text features for vulnerable file
prediction." In Engineering of Complex Computer Systems (ICECCS),

2015 20th International Conference on, pp. 40-49. IEEE, 2015.

[119] Abunadi, Ibrahim, and Mamdouh Alenezi. "An Empirical Investigation
of Security Vulnerabilities within Web Applications." J. UCS 22, no. 4

(2016): 537-551.

[120] Anbiya, D. R., Purwarianti, A., & Asnar, Y. (2018, November).

Vulnerability Detection in PHP Web Application Using Lexical
Analysis Approach with Machine Learning. In 2018 5th International

Conference on Data and Software Engineering (ICoDSE) (pp. 1-6).
IEEE.

[121] Kronjee, J., Hommersom, A., & Vranken, H. (2018, August).

Discovering software vulnerabilities using data-flow analysis and
machine learning. In Proceedings of the 13th International Conference

on Availability, Reliability and Security (pp. 1-10).

[122] Smitha, R., Hareesha, K. S., & Kundapur, P. P. (2019). A Machine
Learning Approach for Web Intrusion Detection: MAMLS Perspective.

In Soft Computing and Signal Processing (pp. 119-133). Springer,
Singapore.

[123] Khalid, M. N., Farooq, H., Iqbal, M., Alam, M. T., & Rasheed, K.

(2018, October). Predicting Web vulnerabilities in Web applications
based on machine learning. In International Conference on Intelligent

Technologies and Applications (pp. 473-484). Springer, Singapore.

[124] Kudjo, P. K., Aformaley, S. B., Mensah, S., & Chen, J. (2019, July). The
Significant Effect of Parameter Tuning on Software Vulnerability

Prediction Models. In 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security Companion (QRS-C) (pp.

526-527). IEEE.

[125] Zhou, X., & Wu, B. (2020, June). Web Application Vulnerability
Fuzzing Based On Improved Genetic Algorithm. In 2020 IEEE 4th

Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC) (Vol. 1, pp. 977-981). IEEE.

[126] Tang, P., Qiu, W., Huang, Z., Lian, H., & Liu, G. (2020). Detection of
SQL injection based on artificial neural network. Knowledge-Based

Systems, 190, 105528.

[127] Williams, M. A., Barranco, R. C., Naim, S. M., Dey, S., Hossain, M. S.,
& Akbar, M. (2020). A vulnerability analysis and prediction

framework. Computers & Security, 92, 101751.

[128] Calzavara, S., Conti, M., Focardi, R., Rabitti, A., & Tolomei, G. (2020).
Machine Learning for Web Vulnerability Detection: The Case of Cross-

Site Request Forgery. IEEE Security & Privacy, 18(3), 8-16.

