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Abstract—In cybersecurity, analyzing social network data
has become an essential research area due to its property of
providing real-time updates about real-world events. Studies
have shown that Twitter can contain information about security
threats before some specialized sites. Thus, the classification of
tweets into security-related and not security-related can help
with early warnings for such attacks. In this study, the use
of a capsule network (CapsNet), the new deep learning algo-
rithm, is investigated for the first time in the field of security
attack detection using Twitter. The aim was to increase the
accuracy of tweet classification by using CapsNet rather than
a convolutional neural network (CNN). To achieve the research
objective, the original implementation of CapsNet with dynamic
routing is adapted to be suitable for text analysis using tweet
data set. A random search technique was used to tune the
model’s hyperparameters. The experimental results showed that
CapsNet exceeded the baseline CNN on the same data set, with
accuracy of 92.21% and a 92.2% F1 score; also, word2vec
embedding performed better than a random initialization.
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I. INTRODUCTION

Security monitoring and attack detection are essential
parts of any organization’s management for protection against
cyber-attacks. These attacks can cause service disruption,
asset damage, data breaches, or data loss. To avoid such
dangerous effects, a number of official security data sources
are available, including the National Vulnerability Database
(NVD) [1], which contains a security analysis of discovered
vulnerabilities, and the ExploitDB [2], which provides a user-
friendly interface for all discovered exploits targeting known
vulnerabilities. These traditional data sources provide trusted
security information, but it comes at a cost, which is the delay
of reporting the information [3]. Not all reported vulnerabilities
will be exploited in the real world, and some have a higher
probability of being exploited and thus need to be patched first
[4].

For system administrators, the time between the detection
of a cyberattack plan and the actual occurrence is critical. They
need up-to-date information about current or imminent attacks
to analyze them, study their impact, and be aware of new
attack types and hacking tools in real time [5]. One of the
new solutions for this problem is utilizing social network data
to extract real-time notifications about the security situation
of the organization or software and hardware used in its
infrastructure.

As one of the most popular social networks, Twitter is
considered a rich source of information about different security
threats. This claim is supported by studies showing that Twit-
ter contained information about security threats before some

specialized sites [6]–[8]. This observation attracted researchers
to analyze Twitter data and extract knowledge to be used in
the detection and prediction of security attacks. The objectives
when using Twitter data in the security field vary, from vulner-
ability and exploit detection [4], [9], [10] to attack detection by
linking a sentiment score to a specific target with real security
events [11]–[13], and trying to determine the threshold of tweet
sentiment that predicts the probability of the attack occurring
[14].

Text classification using different machine learning (ML),
neural network (NN), and deep learning (DL) algorithms has
been widely investigated for detecting cyber-attacks using
Twitter data. One of the most advanced techniques for this
purpose is the convolutional neural network (CNN) [15]. As
one of the DL algorithms, a CNN overcomes the traditional
ML technique limitation by providing automation for the learn-
ing process [16]. However, the CNN comes with limitations
that are mainly related to the use of the pooling layer [17],
which will be described in detail in Section II.

In 2017, the godfather of DL, Geoffrey Hinton, proposed
the capsule network (CapsNet), which was first examined using
the Modified National Institute of Standards and Technology’s
(MNIST) data set [18]. CapsNet outperforms its predecessor,
the CNN, in many image classification tasks [19], but it is
still in early stages for text classification [20]. This study
aimed to use Twitter to examine CapsNet’s capability for
providing accurate classifications of security tweets with the
goal of cyberthreat detection. The CapsNet is implemented by
building an NN model to classify tweets as security-related or
not security-related. Then, the CapsNet model was evaluated
in terms of classification accuracy and F1 score, and using
the CNN as a baseline model, compared the performance of
CapsNet in tweet classification for the security field.

The rest of this paper is organized as follows: In Section
II, an overview of CapsNet’s improvements in comparison to
CNNs will be given. Section III covers the main recent work
done in the field using Twitter for cyberthreat detection. This
is followed by Section IV, which describes the implementation
of the proposed model. In Section V, the details of the
experiments conducted is described, and Section VI includes
the results and discussion. Finally, the paper’s conclusion and
future works are discussed in Section VII.

II. BACKGROUND

Until recently, CNNs achieved state-of-the-art results for
many natural language processing (NLP) tasks [21]. However,
CNNs have limitations and drawbacks, such as with pooling.
Pooling, one of the building blocks of CNNs, is used to reduce
the complexity and the number of parameters in the CNN
while preserving the main features [20]. This makes CNNs
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Fig. 1. Face recognition in CNN.

particularly efficient with classification tasks, but it causes a
loss of valuable information such as the precise location of an
object or the relationships between the object’s parts [18]. Fig.
?? shows the way that the CNN works. Even when parts of
the face are not arranged correctly, the CNN will classify it as
a face regardless of the location and relationships between the
parts [19]. For better modeling of spatial relationships among
parts, CapsNet is proposed [22].

The architecture of the CapsNet overcomes CNN’s draw-
backs by different properties [18]. First, the basic unit in the
CapsNet is the capsule (vector), where each one is a set of
neurons representing an object or an object part. CapsNet
transforms vector inputs into vector outputs; thus, it can learn
more complex transformations than CNNs, which operate on
scalars. The output of a capsule is an activity vector, where its
length represents the probability of the existence of the object,
and its coordinates (dimensions) encode the object’s attributes
(pose information), which preserves the spatial relationship be-
tween features. Second, CapsNet uses a routing-by-agreement
technique to replace the routing by max pooling used in the
CNN. In simple terms, instead of extracting the most important
features by using max pooling and ignoring the less important
ones, propagation between the layers will be based on routing-
by-agreement. This means that the output of each capsule will
be forwarded to the next layers’ capsules with different weights
that are based on the agreements between the capsules.

In NLP, CapsNet has a greater ability to efficiently learn
the spatial relationships between words, such as the local
order of words and their semantic representations [22]. Many
researchers have investigated the use of CapsNet for NLP tasks
like sentiment analysis [23], [24], fake news detection [25],
stock performance prediction using Twitter [26], implicit emo-
tion detection [27], and offensive posts on social media [28].
The results of these studies showed that CapsNet outperformed
the CNN in text classification, which was part of the motivation
for the present study.

III. RELATED WORK

In this section, some studies that used Twitter data for
the detection of security attacks are reviewed. For each work,
the specific problem that was solved by each of these studies
is summarized, the analysis techniques used, and the results
obtained to give an overview of the research already conducted
in the field of interest.

In order to discover Twitter discussions about emerging
attacks against a specific target, the authors of [29] proposed
an approach to security event detection that learned with pos-
itive and unlabeled data based on user-provided expectations.

Expectation regularization (ER) was used to find the ratio
between positive and negative examples in the training process.
The study’s security events included denial of service (DoS)
attacks, data breaches, and account hijacking represented in
the form of (Entity, Date) as training examples. Two sets of
manually extracted features were used to find new events.
Using the logistic regression (LR) classifier, the proposed
solution was able to detect new events automatically in real
time for each predefined category.

The use of simple discrete features may suffer limitations
in representing subtle semantic differences between true event
mentions and false cases with similar word patterns. To
overcome this limitation, the researchers in [16], based on
[29], modified the method to be more semantically based by
using a long short-term memory (LSTM) based neural em-
bedding model that learns tweet-level features automatically.
This change improved the detection accuracy as compared to
the previous method because of the NN’s ability to represent
deep semantic information, which is more difficult to capture
through discrete features.

As an end-to-end solution for cyberthreat detection,
SYNAPSE [30] provided a real-time extraction of security
events from Twitter with high-level abstraction. A data set of
more than 195,000 tweets was collected from security-related
accounts and filtered by keywords related to the monitored
infrastructure. The statistical method called term frequency-
inverse document frequency (TF-IDF) was used to extract the
tweets’ features. Support vector machine (SVM) algorithm
was used for feature learning, and it achieved a minimum
true positive rate (TPR) and a true negative rate (TNR) of
90% in classifying tweets. For more informative extractions,
the model proposed in [30] included stream tweet clustering
using a dynamic clustering algorithm and summarization of
each cluster with the exemplar tweet. The model was able
to detect important actionable threats by verifying them with
threats reported in the Common Vulnerability Scoring System
(CVSS).

With the same objectives as the previous work [30], the
authors in [31] proposed an event detection model with joint
phases that performed the filtering, clustering, and summariza-
tion with shared tweet representation. Features were extracted
using skip-gram and LSTM to obtain vector representations,
and a multi-layer perceptron (MLP) classifier was used for
tweet classification identifying security-related tweets. The
tweets were clustered in groups, and each cluster was sum-
marized with the most informative tweet provided. All these
phases were conducted jointly based on features extracted at
the beginning. The collaborative event detection and summa-
rization model was more effective than solutions that used
discrete or neural models for new event detection, clustering,
and summarization.

The authors in [32] proposed a model that consists of
three steps: data collection and pre-processing, feature ex-
traction, and class prediction. They collected two balanced
sets of tweets. The first set, which represented the positive
class, contained tweets retrieved from cybersecurity accounts,
while the negative set was tweets retrieved from non-security
specialized accounts, such as health, news, and magazines.
Next, for feature extraction, they used TF-IDF. In the class
prediction step, the binary naı̈ve Bayes (NB) classifier was
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trained using a 10-fold validation approach, which resulted in
an average accuracy of 77.90% for tweet classification into
security-related or not.

The authors in [33] proposed a DL classification model
based on domain-specific and contextual embeddings to extract
features from raw tweets. These features are convolved using
a meta-encoder and then combined to be sent to the CNN,
LSTM, and contextual encoder for feature learning in parallel.
The resultant feature maps were concatenated with contextual
embeddings in a fusion layer. A softmax classifier was used
for the final prediction for each tweet as security-related or
not. Compared to a set of ML and NN baseline models,
the proposed model performed better with accuracy of 82%,
precision of 79%, 72% recall, and an F1 score equal to 76%.

The authors in [34] used a CNN to classify tweets con-
taining security keywords as security-related or not. All tweets
were retrieved from security-specialized Twitter accounts that
mentioned three predefined organizations or their assets. The
results obtained were using GloVe and word2vec embedding
and also used random initialization trained on the classification
task. The embedded tweets were fed into three CNN layers
in parallel to be convolved with a different number of filters
and filter sizes. The researchers suggested a named entity
recognition (NER) step to extract the main entities in the tweet
using bidirectional LSTM (BiLSTM). The results confirmed
that the CNN model performed better than traditional ML
techniques. The classification performance achieved 94% recall
and 91% TNR, while the NER achieved a 92% F1 score with
specifying appropriate entities.

Recent studies that reviewed in this section used a CNN,
which opened the door for more investigation and encouraged
more studies to improve the accuracy of detecting potential
security attacks. The present study aimed to implement the
new CapsNet algorithm for the first time in the field of attack
detection using Twitter.

IV. IMPLEMENTATION

Before describing the model implementation, a general
representation of the tweet classification model that has the
purpose of cyberthreat detection is illustrated. As shown in
Fig. 2, it contains three layers: an input layer, a classification
algorithm, and an output layer. The input layer holds the tweets
to be classified, which pass to the classification algorithm in
the second layer, the CapsNet in this work. The final goal of
this architecture is the label’s prediction of each tweet, which is
the task of the output layer in labeling each tweet as security-
related or not security-related.

The CapsNet model that is proposed for classification
purpose is the main contribution of this work. The input of
the model is a tokenized tweet of n words, and the output is
the predicted class of this tweet. The same principles used in
[18] for MNIST handwritten digit data set classification will be
followed and adapted to be compatible with the tweet data set.
The architecture of the model is shown in Fig. 3 and described
in the following sections.

A. Embedding Layer

This layer acts as a link between the input layer and the
NN because the NN does not understand the textual input. If

Fig. 2. The general architecture of the cyberthreat detection model using
Twitter.

n indicates the number of words in a tweet, then each tweet
is represented by an array of length n. Thus, there is a need
to convert each word into a numeric representation using a
word embedding model. Each word will be mapped to its
corresponding numeric representation in the embedding model.
According to this description, the embedding layer converts
the tokenized tweet from an n-dimensional vector to an n× d
dimensional tensor of a floating points matrix to be sent to the
next layer.

B. Convolutional Layer

The first convolutional layer is a regular convolutional layer
that the embedded tweet is fed to before passing to the primary
capsule layer. It convolves the embedding matrix with a set of
filters f and a kernel size k × d . This means it processes k
words at a time, which results in a tensor with size f(n−k+1).

C. Primary Capsule Layer

The primary capsule layer is fully connected to the next
layer and consists of three transformations performed sequen-
tially:

• Second convolutional layer: Similar to the previous
convolutional layer. It performs a convolution opera-
tion on its input with a kernel size k, which reduces
the input by k + 1.

• Reshape: As mentioned previously, one of the signif-
icant contributions of CapsNet is that it deals with
vectors. Scalar is a quantity with magnitude only,
while a vector is a quantity with the magnitude as
well as direction. This layer is added to reshape the
input feature maps, scalar values, to an output vector
map of the desired dimensions to get a set of vectors
(capsules) instead of scalars.

• Squashing function: To ensure that all vectors’ lengths,
which represent a probability, are between 0 and
1 while preserving the orientations of the vectors
(features detected) as the following equation [18]:

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(1)

where vj is the vector output of capsule j and sj is
its total input.
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Fig. 3. CapsNet architecture for cyberthreat detection.

D. Capsule Layer

At the point, between the primary and the capsule layer, the
novel routing algorithm sits. The goal of routing-by-agreement
is to send the output of the lower-level capsule (output of
the primary capsule) with high weights to the capsule in the
next layer (capsule layer) that it agrees with. To do that, it
calculates the predicted output of the next layer by learning
routing coefficients in multiple routing rounds. In other words,
it strengthens routing weights where predictions made by
primary capsules match secondary capsule outputs based on
the routing algorithm proposed in [18]. Between the CNNs,
which usually implement routing by max pooling that results
in loss of some information and the fully connected layers,
routing-by-agreement reduces the noise forwarded to the next
layer while keeping all the desired information for accurate
classification.

E. Flatten, Dense, and Dropout Layers

The output of the previous layer (capsule layer) is a two-
dimensional array/matrix, and the next layer is a dense layer
that expects a one-dimensional array. The flatten layer is
responsible for transforming the two-dimensional matrix of
features into a vector by stacking the rows next to each other
in a way that can be fed into a fully connected layer for
prediction. Then, instead of using the decoder proposed in
the work by [18], dropout is used as a regularization method
against overfitting [35], which will drop a percentage of the
neurons in the flatten layer randomly [36].

F. Output Layer

Since the problem of this work was a binary classification,
the final layer of this architecture is a dense layer that predicts
the class of each input tweet. Many activation functions can be
used to accomplish the aim of this layer, such as softmax or
sigmoid, which labels the tweet to be security-related (positive)
or not security-related (negative).

TABLE I. DATA SET STATISTICS.

Training % Validation % Testing %
Positive 2,134 50.14 300 50 712 50
Negative 2,122 49.86 300 50 712 50
Total 4,256 100 600 100 1424 100

V. EXPERIMENTS

In this section, the hardware and software configurations
used in the experiments is reviewed. In addition, the data set
that were used, the embedding layer specifications, the baseline
CNN model that was proposed for comparison purposes,
and the optimization process that was conducted to tune the
models’ hyperparameters will be described.

A. Tools

The experiments were run on Google Colab [37], a free
cloud-based service, with a Tesla P4 GPU and 25 GB of RAM.
The code was implemented in Python 3.6.9 with Keras 2.2.4
[38], using TensorFlow 1.15.2 [39] as a backend.

B. Data Set

The data set that satisfied the model requirements was
the data set created in the work [34]. It contains tweets
that were retrieved from predefined Twitter security-related
accounts that mention the infrastructures being monitored or
its assets and denoted as A, B, and C. The use of specialized
Twitter accounts eliminated the retrieval of tweets containing
the desired keyword without security context, such as the
words “apple, windows, network, virus, worm, root.” The data
set was already divided into three sets: training, validation, and
testing. Two sets of security specialist accounts, denoted as S1
and S2, were used. The training and validation sets contained
the tweets that were retrieved from the S1 accounts, while the
testing set was compiled from the S1 and S2 Twitter accounts.
The goal of using different sets of Twitter accounts was to
give us insights about the models’ performances on not only
unseen tweets but also tweets retrieved from a different set of
Twitter accounts. Another property for the data set was the
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TABLE II. CONVOLUTIONAL NEURAL NETWORK BASELINE RANDOM SEARCH SPECIFICATION AND RESULTS.

Layer Parameters Search Values Best Value
Random Word2vec

Convolutional Layer 1 Number of filters
Filter size

[128, 192, 256, 320, 384, 448, 512]
[3,5,7,9]

256
7

384
3

Convolutional Layer 2 Number of filters
Filter size

[128, 192, 256, 320, 384, 448, 512]
[3,5,7,9]

128
7

128
7

Convolutional Layer 3 Number of filters
Filter size

[128, 192, 256, 320, 384, 448, 512]
[3,5,7,9]

384
9

256
3

Dense Layer 1 Number of neurons [64] 64 64
Dropout Dropout rate [0.1, 0.2, 0.3, 0.4, 0.5] 0.1 0.3

TABLE III. CAPSNET RANDOM SEARCH SPECIFICATIONS AND RESULTS.

Layer Parameters Search Values Best Value
Random Word2vec

Convolutional Layer Number of filters
Filter size

[128, 256, 384, 512
[3, 5, 7, 9]

384
7

384
5

Primary Capsule Layer
Number of filters
Filter size
Primary capsule dimensions

[16, 24, 32, 40, 48, 56, 64]
[3, 5, 7, 9]
[8, 12, 16, 20, 24]

48
3
24

24
9
12

Capsule Layer
Secondary capsule dimensions
Number of capsules
Number of routing iterations

[8, 12, 16, 20, 24]
[64]
[3, 4, 5, 6]

16
64
6

12
64
5

Dense Layer Number of neurons [64, 128, 192, 256] 64 256
Dropout Dropout rate [0.1, 0.2, 0.3, 0.4, 0.5] 0.3 0.3

time interval of the tweets, where the validation and testing
sets were retrieved from time intervals following the training
set. This means that the obtained results would simulate the
real deployment of the model. Then, the collected tweets were
filtered based on a set of keywords describing the selected
organizations and labeled as security or not.

C. Data Set Retrieval and Statistics

Because of Twitter’s policy, which prevents publishing
tweets in plain text, the data set was only available in the
form of (tweet ID, label). Thus, a Twitter developer account
was created to retrieve the text of the tweets knowing the IDs
using Python and Tweepy library. At the time of retrieving
the tweets, some were missed due to deletion by the user or
the user being suspended. The data set was manipulated to
serve the work objectives as follows: the tweets from the three
infrastructures were merged and duplicates were deleted since
division by the organization was out of the scope of this study.
In addition, to work with a balanced data set, the validation and
testing tweets were merged, and 300 tweets from each class
were specified as a validation set and the remaining as testing
tweets, while keeping the classes balanced. The resultant data
set statistics are shown in Table I.

D. Data Set Pre-Processing

The raw tweets were cleaned in a pre-processing step, the
approach used by [34] for the same data set was followed.
In detail, each tweet was converted into lowercase, special
characters other than “.” and “-” were removed and replaced
with a dot and hyphen, respectively. These symbols were
needed because they could exist in the software versions and
common vulnerabilities and exposures (CVE) numbers. Then,
all numbers were converted into its textual representation to
be analyzed as text, which resulted in tokenized tweets that
were the input for the embedding layer, as described in Section
IV-A.

E. Word Embedding

The embedding layer received the tokenized tweet results
from the data pre-processing and converted each word into a
high-dimensional vector. A widely used NLP technique for
feature extraction that represents the semantic meaning of
words is word embedding [40]. In this work, two ways of
initializing the embedding matrix were examined: using Keras
embedding [38] and word2vec pre-trained word embeddings
[41], both with 300 dimensions.

F. Baseline Convolutional Neural Network (CNN) Model

In order to choose the appropriate architecture for the
baseline model that was used for purposes of comparison,
the CNN model used as a baseline in the CapsNet-MNIST
proposal [18] was manipulated to be suitable for the text
data set. In [18], the CNN and CapsNet models were not
architecturally similar, but the authors designed them with
similar computational efforts that served the work’s objectives.
Similarly, the baseline CNN model of this work was built
with three convolutional layers, flatten layer, dense layer, and
dropout layer, and then added a last dense layer for final
prediction.

G. Hyperparameter Tuning

Hyperparameters are the model’s parameters that were
not included in the training. These parameters should be set
carefully because they affect how the model will learn from the
data. The manual selection of these values could be less than
optimal, and the solution for that problem is hyperparameter
tuning. This step was performed because one of the work
objectives was finding the optimal values that would lead to
the best model performance and generate acceptable results.
The random search is used for optimization [42]. For a fair
comparison, 100 combinations of each model were tested, the
CNN and CapsNet in 200 epochs and early stopping after five
epochs. Table II lists all the layers that were included in the
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TABLE IV. ACCURACY AND F1 SCORE RESULTS.

Model Embedding Accuracy F1 Score

CNN baseline pooling Random 91.01 90.84
Word2vec 91.15 90.92

CNN baseline Random 91.43 91.44
Word2vec 91.64 91.46

CapsNet Random 91.85 91.78
Word2vec 92.21 92.20

search process, the values to be examined for each hyperpa-
rameter, and in the final column, the optimal values based
on the validation set results. Similarly, Table III shows the
hyperparameter tuning specification for the proposed CapsNet
model. To reduce the total number of combinations, hyper-
parameters such as the optimizers or the activation functions
were not included because we fixed them in both models, and
for batch size and learning rate, we kept the default values.

VI. RESULTS AND DISCUSSION

This study was conducted to investigate the use of CapsNet
for cyberthreat detection by classifying tweets into security-
related or not security-related. The model was built based
on hypothesizing and aiming at proving that CapsNet could
classify security tweets more accurately than a CNN and
that routing-by-agreement is more efficient than pooling. In
order to verify the correctness of the work hypothesis, the
final architectures generated from the hyperparameter tuning
process was trained to minimize the validation loss using bi-
nary cross-entropy loss function, and evaluated them using the
classification accuracy and F1 score. Classification accuracy is
the ratio of correct predictions (positive and negative) to the
total number of samples and is computed as in [43]:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

while the F1 score is calculated as:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

For the first hypothesis, mentioned above, the CapsNet
model was compared with a CNN model that did not include
a pooling layer. However, the second hypothesis was tested by
comparing the CapsNet with a CNN model that had a pooling
layer to prove the efficiency of the routing over the pooling.
As can be seen in Table IV, the proposed model achieved
competitive results over the strong baseline models. In addi-
tion, the accuracy and F1-score comparisons are presented in
Fig. 4 and Fig. 5 respectively. In the three models, using the
pre-trained word embedding word2vec gave better results than
the randomly initialized ones. In general, CapsNet models’
results were better than the CNN, followed by the CNN with
a pooling layer. The CapsNet model with word2vec achieved
the best results, with 92.21% accuracy and 92.20% F1 score,
while the worst result was related to the CNN model with a
pooling layer at 91.01% accuracy and an F1 score of 90.84%.
By comparing the CNN models to each other, it became clear
that the use of a pooling layer in the text classification tasks
would not be a wise choice, at least in the context of this work.

Fig. 4. Accuracy Comparison.

Fig. 5. F1-score Comparison.

VII. CONCLUSION

Securing software, hardware, data, and services has become
a crucial part of any organization’s management due to the in-
creasing numbers of emerging attacks that threaten its security.
In this study, the novel DL algorithm CapsNet was utilized
along with Twitter data to provide accurate classification of
tweets for the purposes of cyberthreat detection. A random
search was used for hyperparameter tuning for random and
word2vec embeddings. CapsNet model was built based on
the hyperparameters was found after the random search, then
the model was compared with two CNN architectures: a
CNN baseline model without a pooling layer and a CNN
baseline pooling model that included a pooling layer. The
model was evaluated using accuracy and F1 score, and from the
results, multiple remarks were gleaned. First, it was proved the
better efficiency of routing-by-agreement compared to pooling.
Second, in the three models, the pre-trained word embedding
word2vec achieved better results than random embedding.
Third, the proposed CapsNet model outperformed the strong
competitor of CNN, with 92.21% accuracy and 92.2% F1
score.

Because there is always room for improvement, we plan to
compare the obtained results with a recurrent neural network
(RNN) model given that CapsNet introduces improvements on
its architecture. In addition, we aim to examine replacing the
CNN layers in the CapsNet with RNN to take advantage of
dealing with tweets word-by-word rather than the whole tweet
at once. In addition, we aim to test more embeddings, such as
GloVe, Fasttext, BERT, and Elmo.
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