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Abstract—Sincerity is an important characteristic of com-
municative behavior which represents an honest, truthful, and
genuine display of verbal and non-verbal expressions. Individuals
who are deemed sincere often appear more charismatic and can
influence a large number of people. In this paper, we propose
a multi-model fusion framework to identify sincerely delivered
apologies by modelling difference between acoustics of sincere
and insincere utterances. The efficacy of this framework is
benchmarked using the Sincere Apology Corpus (SAC). We show
that our proposed methods can improve the baseline classification
performance (in terms of unweighted average recall) for SAC
from 66.02% to 70.97% for the validation partition and 66.61%
to 75.49% for the test partition. Moreover, as part of our
investigation, we found that gender dependency can influence
the classification performance of machine learning models, with
models trained for male subjects performing better than those
trained for female subjects.

Keywords—Sincerity; affective computing; social signal process-
ing

I. INTRODUCTION

Sincerity is an act of being sincere. It is a quality of
human beings that makes them free from pretense, deceit, and
hypocrisy. Generally, it is believed that if a person is perceived
to be sincere, more people will trust them. Sincerity and trust
are at the heart of social interactions, be it in the form of
relationships about business or personal life.

Sincerity is an important aspect of human behavior which is
useful for many different day-to-day activities. For example,
sincerity is a vital part of business dealing and along with
honesty is considered to be one of its core values. Simi-
larly, the perceived sincerity of public representatives, such as
politicians, can significantly improve their chances of winning
elections. Sincerity is also an important factor in healthcare
where the trust needs to be established between clinicians and
their patients. Finally, sincerity and truthfulness are important
aspects of law prosecution where it needs to be ensured that
the witness is being truthful in the court of law. To summarize,
sincerity is an important aspect of human behavior that affects
almost every part of society.

Recent advances in social signal processing have encour-
aged researchers to investigate aspects of human behavior
that influence major sectors such as health and commerce.
While sincerity recognition has not been investigated by the
social signal processing research community in great detail,
one can note that research into deception recognition has been
a popular field of research [1], [2], [3], [4], [5], [6], [7], [8].

At the 20th Annual Conference of the International Speech
Communication Association (INTERSPEECH) held in late
2019, Baird et al. [9] published a relatively large corpus of
speech recordings called the Sincerity Apology Corpus (SAC)
which have been labeled explicitly for the task of sincerity
recognition. To the best of our knowledge, this is the largest
publicly available dataset in this field and therefore it provides
researchers an opportunity to develop frameworks to recognize
whether speech is perceived sincere or insincere.

In addition to releasing the dataset, Baird et al. [9] also
investigated the efficacy of three types of audio features
for the task of sincerity detection from speech. These fea-
tures include, a) Geneva Minimalistic Acoustic Parameter
Set (GeMAPS) [10], b) Computational Paralinguistics Chal-
lenge (ComParE) feature set [11], and c) DeepSpectrum fea-
tures [12]. While eGeMAPS and ComParE features are tradi-
tional non-deep learning based features, the DeepSpectrum fea-
tures are generated by feeding audio signals into the AlexNet
network for large scale image classification [13]. They reported
classification performance in terms of unweighted average
recall (UAR) for the three types of features which showed
that the Deep Spectrum achieved 79.2% on the test partition
of the cross-validation folds, whereas eGeMAPS and ComParE
features achieved a UAR of 72.0% and 76.2%, respectively.
As per Baird et al., these results are meant to serve as the
baseline classification performance for further research in the
field of sincerity detection, in particular research based on the
SAC corpus. It is important to mention here that a part of the
Sincerity Apology Corpus was also used for Computational
Paralinguistics Challenge of 2016 [11]. There, the objective
was to train machine learning models for a regression task
with the objective to predict the sincerity score allocated to
each audio recording by a group 16 annotators, whereas Baird
et al. focus on a classification task to differentiate between
sincere and insincere apologies.

In this paper, we propose a multi-model fusion framework
for automated recognition of sincere apologies from acoustics
of speech and test it using the Sincere Apology Corpus, a
dataset publicly available for academic research. In addition to
this, we investigate the influence of gender on the classification
performance of machine learning models for the task at hand.
The rest of this paper is organized as follows: In section II we
provide a summary of the Sincere Apology Corpus, whereas
in section III we detail the methodology for feature aggregation
and model fusion methods. Experimental results and discussion
is provided in section IV, and conclusion is provided in sec-
tion V.
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II. DATASET

Audio recordings in the Sincere Apology Corpus are
provided as dual-channel stereo audio files that are sampled
at 44100 Hz. As per the convention of the field, we first
converted the audio recordings into a mono-channel by taking
the average signal value per sample for the two channels of the
stereo signal. Next, the signal is downsampled to a sampling
frequency of 16000 Hz using the Librosa library [14]. Finally,
each audio recording is normalized such that the dynamic
range of the signal lies between −1 and +1. Whereas details of
the Sincere Apology Corpus are available in [15], a summary
of dataset partitions is provided in Table I.

TABLE I. SUMMARY OF DATASET PARTITIONS FOR GENDER
INDEPENDENT AND GENDER DEPENDENT SETTINGS

Gender Independent

NS S Total
Train 143 142 285
Val 186 184 370
Test 105 151 256

Male

NS S Total
Train 98 45 143
Val 59 61 120
Test 77 80 157

Female

NS S Total
Train 45 97 142
Val 127 123 250
Test 28 71 99

III. METHODOLOGY

In Fig. 1, we illustrate the process flow pipeline of our
proposed multi-model fusion framework for automated recog-
nition of sincere apologies. Here, one starts with speech based
audio recordings of subjects which are preprocessed into a
standard format as discussed in the previous section. The next
step is to compute acoustic low-level descriptors (LLDs) which
quantify characteristics of speech paralinguistics. In the current
work, we use the IS10Paralinguistics feature set, the ComParE
feature set and the eGeMAPS feature set. These LLDs need to
undergo a process of feature aggregation which yields a higher
level representation of speech acoustics. To this end, we use
functionals, bag of audio words, and Fisher Vector encoding
based feature aggregation. Next, machine learning models are
trained using the training partition, their hyper-parameters are
optimized using the validation, and the performance of ma-
chine learning models is compared against one-another in an
unbiased manner using the test partition. Finally, model fusion
approaches are used with the aim to improve the classification
performance of the sincerity recognition framework.

A. Acoustic Features for Speech Paralinguistics

The speech signal is inherently non-stationary in nature and
therefore acoustic features need to be computed over short
intervals of time over which the speech signal demonstrates
some form of stationarity. In speech signal processing, it is
common to compute acoustic features over time intervals in
the range of 15 − 30 ms [16], and as a result, such features
are called low-level descriptors (LLDs).

These LLDs quantify various acoustic characteristics of a
speech signal such as its fundamental frequency (also known
as pitch), the quality of voice, spectral characteristics, and
more. Given that elementary discussion on the characteristics
of acoustic features is beyond the scope of this paper, we
refer the reader to [10] for further discussion. Typically, these
acoustic LLDs are packaged together and used in the form of
feature sets. In our work, we shall use feature sets that have
been shown to be useful for a variety of tasks related to speech
paralinguistics.

In the baseline paper for the SAC corpus, Baird et al. [15]
had used four fundamental types of feature sets. These in-
clude two domain-knowledge based feature sets: the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) and
the Computational Paralinguistics Challenge (ComParE), as
well as acoustic representations derived from the AlexNet
deep neural network for image classification [13], [12]. In our
work, we shall make use of eGeMAPS and ComParE feature
sets (similar to the baseline paper) but also include the IS10-
Paralinguistics feature set which we have previously found to
be useful for tasks related to speech paralinguistics [17], [18].
We shall provide a brief description of these features in the
following paragraphs.

The IS10-Paralinguistics feature set consists of 38 acoustic
LLDs which include 31 LLDs that describe spectral charac-
teristics of speech, 6 LLDs which describe voicing related
characteristics, and an LLD to describe the energy of voice
(in terms of loudness). As the name suggests, the IS10-
Paralinguistics feature set was especially designed to character-
ize paralinguistics characteristics of speech. For further details
of this feature set, we refer the reader to [19]. Meanwhile, the
ComParE feature set consists of 65 acoustic LLDs of which
55 LLDs describe the spectral characteristics of the speech
signal, 6 LLDs quantify voicing related characteristics, and
4 LLDs describe energy-related LLDs. The ComParE feature
set is often called a brute force feature set since it provides
a more holistic approach to modeling speech characteristics.
Finally, the eGeMAPS feature set was proposed as an opti-
mized version of the ComParE feature set in terms of feature
set dimensionality. The eGeMAPS feature set consists of 23
acoustic LLDs which include 9 spectral LLDs, 13 voicing
related LLDs, and 1 energy-related LLDs. For further details
of this feature set, we refer the reader to [10].

B. Feature Aggregation: Functionals

As mentioned earlier, due to the non-stationary nature
of speech, acoustic features are computed for short dura-
tion frames of the audio signal (typically in the range of
20 – 30 ms). These acoustic features, called low-level descrip-
tors (LLDs) only provide low-level information. Therefore,
in order to generate a global representation for an audio
recording, the information provided by acoustic LLDs needs
to be aggregated by appropriate methods. The simplest and
commonly used feature aggregation method uses functionals
of descriptive statistics such as mean, variance, range et cetera.
In this work, we use a set of standard functionals as defined in
the openSmile toolkit [20]. The toolkit is the defacto standard
in the field of social signal processing due to its open-source
nature and free availability for academic research.
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Fig. 1. Illustration of the Pipeline for Baseline Classification

C. Feature Aggregation: Bag of Audio Words

An alternate to functionals based feature aggregation is the
Bag-of-Audio-Words (BoAW) method which is an extension
of the bag-of-words (BoW) method from the field of natural
language processing. BoW has been a popular approach to gen-
erate word-frequency histogram-based representation of text
documents for applications related to text processing. The same
concept has also been extended in audio signal processing to
yield a global histogram-based representation for audio record-
ings [21], [22]. Unlike the text domain where textual words
naturally exist, one needs to compute audio words through a
process called vector quantization. Here, acoustic LLDs from
all audio files are concatenated into a matrix and a clustering
algorithm is used to learn representative clusters for the LLDs.
Each cluster is called an audio word and the set of clusters
for acoustic LLDs is called the codebook. It was common to
use the k-means clustering algorithm, however Rawat et al.
discovered that clustering based on random selection performs
just as well with the advantage of a considerably smaller
computational complexity [23]. Henceforth, it has become
common practice to use random sampling for learning the
codebook. As a result, we shall also use a random sampling
approach for clustering in this work. The BoAW approach
requires tuning of hyperparameters such as the codebook size,
the number of simultaneous assignments to multiple audio
words (in case an acoustic LLD is close in terms of Euclidean
distance to multiple audio words), and normalization. We shall
perform hyperparameter optimization for BoAW using the
validation partition and from there select the best performing
model for predicting test partition labels. In order to compute
BoAW, we use the openXBOW toolkit [24].

D. Feature Aggregation: Fisher Vectors

Fisher vector encoding is a feature aggregation method
which was initially proposed by Perronin et al. [25], [26] for
applications in the field of computer vision, achieving state-
of-the-art performance [27] for object recognition before the
advent of deep learning for computer vision era [13]. This
method has also been found useful for applications related
to speech paralingusitics [28], [29], [30]. In our previous
works, we found the Fisher Vector based feature aggregation
to be useful for speech screening of depression [31] and
bipolar disorder [17]. Fisher Vector representation combines
the advantages of generative models i.e. the ability to work

with variable-length data and discriminative models i.e. ability
to learn class-specific boundaries.

In order to compute Fisher Vector features for the task
of sincerity recognition, we follow the approach detailed by
Perronin et al. [25], [26] but adapt it for audio signals. To
this end, we first concatenate acoustic LLDs from all audio
recordings and train a Gaussian Mixture Model (GMM) [32],
which serves as the generative model of the Fisher Vector
framework. Next, the first and second-order statistics for
gradients between acoustic LLDs from an audio recording
and the generative model are computed. These statistics are
then concatenated to yield a single feature vector and called
Fisher Vector (FV) features. In the current work, we use the
VLfeat toolkit [33] in order to train GMMs as well as compute
FV features.

E. Fusion

Fusion is a method through which it is possible to combine
information from multiple machine learning models with the
aim to improve overall classification performance[34]. There
are two fundamental ways to fuse such information i.e. label
fusion and confidence fusion. In label fusion, class-label pre-
dictions from machine learning models are stacked and the
class which is predicted by the majority of models is deemed
to be the correctly predicted class. For example, if three models
in five-model fusion predict the label for a speech recording
to be Sincere whereas two models predict the label as Not-
Sincere then the final label will be decided as Sincere based
on a majority vote. Meanwhile, confidence fusion takes place
on probabilistic or confidence outputs of the classifier. It is
reminded that each classification model returns a confidence
metric for the predicted label which essentially quantifies how
sure it is about its predictions. Naturally, it predicts the label
for which it has the most confidence. Given that different
models are trained with different features and parameters, the
confidence may be different and such information may help
to improve the overall accuracy of prediction. In confidence
fusion, the idea is to decide on the class-label based on
the confidence of multiple machine learning models. The
simplest way to implement confidence fusion is to take the
arithmetic average of the confidence metric from multiple
machine learning models and predict the label which has more
confidence.
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IV. EXPERIMENTATION, RESULTS AND DISCUSSION

We use the implementations of logistic regression (LR),
support vector machine (SVM), and random forest (RF) clas-
sifier which are available in the scikit-learn toolkit 1. The
complexity value of the LR and SVM is optimized over a
logarithmically spaced grid between 10−7 to 107. The RF
classifier has a number of hyperparameters which need to
be optimized, such as a) the number of trees in the forest
(num est), b) the maximum depth of each tree (max depth),
c) the minimum number of samples before splitting at a node
(min samps split), and d) the minimum number of samples
required to be at a leaf node (min samps leaf ). To this end, we
conduct gridsearch based optimization with the following pa-
rameter values: num est = {25, 50, 100, 200, 400}, max depth
= {2, 5, 10, 15, 20}, min samps split = {2, 5, 10, 15, 20}, and
min samps leaf = {2, 5, 10, 15, 20}. These classifiers are
trained using the training partition, their hyperparameters are
optimized using the validation partition, and the classification
results being compared against the test partition. For the sake
of completeness, we report the results for both validation and
test partitions.

A. Baseline Classification Performance

In Table II, we provide a summary of the baseline classifi-
cation performance for the Sincere Apology Corpus which was
reported by Baird et al. [15]. Furthermore, we also report the
results we achieved using the same feature set (note that along
with audio recordings, Baird et al. also provided their features)
albeit with three different classifiers, that are LR, SVM, and
RF whereas Baird et al. only used SVM.

Ideally, one expects that the results provided in the baseline
paper and those computed by us with the SVM classifier would
be the same given that features and the SVM classifier are
similar; but these are not. In fact, we find that all results of
machine learning models reported by Baird et al. achieve a
greater classification accuracy on the test partition as compared
to the results we computed. One can think of two possible
reasons: 1) the random seed and the number of iterations
for training the SVM classifier could be different between
our implementation and that of [15] which can lead to a
difference in results, and 2) Baird et al. optimized the SVM for
results on the test partition directly whereas we optimized the
SVM classifier for the validation partition and only used the
test partition for comparing classification performance across
different models. Furthermore, one should also note that Baird
et al. did not report results for the validation partition which
would have otherwise made their results easier to interpret.

Given this, we shall use classification performance
achieved through our experiments as the baseline and shall
carry out our investigations on feature aggregation, gender
dependency, and model fusion for binary classification between
sincere and insincere apologies. To this end, we report that
eGeMAPS functionals when used with the SVM classifier,
provide the best classification performance of UAR = 66.20%
for the development partition, and the corresponding model
achieves a UAR = 66.61% for the test partition. This shall be
the baseline classification performance.

1https://scikit-learn.org

B. Experiments with Gender Independent Partitions

We first compare the classification performance of feature
aggregation methods in a gender-independent setting. In Ta-
ble III, we provide a summary of results for classification be-
tween sincere and insincere apologies for functionals, BoAW,
and FV based feature aggregation of IS10-Paralinguistics,
eGeMAPS, and ComParE features for a gender independent
setting. It is clear to note that the baseline UAR = 66.02%
for the development partition can be improved by all three
feature aggregation methods. The top performing models from
each method are Funcs-IS10Paraling-RF, BoAW-ComParE-RF,
and FV-ComParE-RF. Overall, the best performing model for
the validation partition is BoAW-ComParE-RF with a UAR =
67.08% which goes on to achieve a UAR = 68.78% on the
test partition.

C. Experiments with Gender Dependent Partitions

It is known that the subject’s gender can influence the
paralinguistic characteristics of speech for applications such
as emotion valance recognition [35] and depression recogni-
tion [36], [37]. We, therefore, investigate the effect of gender
on the accuracy with which machine learning models can
differentiate between sincere and insincere apologies. To this
end, we conducted experiments as discussed previously with
gender-dependent partitions and provide a summary of results
for male gender in Table IV and female gender in Table V.
It is important to mention here that since Baird et al. did not
report results of classification performance under a gender-
dependent setting, therefore, a baseline does not exist, and we
shall introduce a baseline for gender-dependent settings as part
of our work.

From Table IV, we note that the best performance for
the validation partition is achieved by Funcs-eGeMAPS-RF
with a UAR = 80.79% although the performance drops sig-
nificantly to 55.52% on the test partition. It is interesting to
note that a number of models achieve similar performance
as Funcs-eGeMAPS-RF on the validation partition, such as
BoAW-IS10Paraling-RF with UAR = 80.02%, FV-ComParE-
SVM with UAR = 79.91%, FV-ComParE-LR with UAR =
79.04%, and FV-IS10Paraling-SVM with UAR = 79.01%.
Amongst these, FV-IS10Paraling-SVM achieves the highest
performance on the test partition with a UAR = 69.34%
whereas FV-ComParE-SVM and FV-ComParE-LR achieve a
UAR of approximately 67.50%. These results suggest over-
fitting on the validation partition since there exists a large
difference between the UAR values achieved for validation
and test partition.

As far as recognition of sincere and insincere apologies for
female subjects is concerned, we find somewhat poorer classifi-
cation performance of machine learning models as compared to
the case of male subjects. Here, the best performing model FV-
IS10Paralig-LR achieves a UAR = 67.89% on the validation
partition and a UAR = 72.33% on the test partition. The best
performing model amongst BoAW based feature aggregation is
the BoAW-IS10Paraling-LR which achieved a UAR = 64.88%
for the validation partition whereas the best performing with
functionals based aggregation achieved a UAR = 64.82% for
the same partition. This suggests that gender does influence the
paralinguistic characteristics of sincere and insincere speech.

www.ijacsa.thesai.org 652 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE II. SUMMARY OF RESULTS PROVIDED AS BASELINE IN [15] AND FROM EXPERIMENT PERFORMED BY THESE AUTHORS USING BASELINE FEATURES

UAR (%)

Feature Name SVM LR RF

Val. Test Val. Test Val. Test

Results provided ComParE-funcs - 70.00 - - - -
eGeMAPS-funcs - 70.20 - - - -
DeepSpectrum-MelSpec-fc6 - 69.80 - - - -
DeepSpectrum-LinSpec-fc6 - 69.90 - - - -
DeepSpectrum-MelSpec-fc7 - 65.90 - - - -
DeepSpectrum-LinSpec-fc7 - 68.60 - - - -

Our experiments ComParE-funcs 62.07 66.40 64.46 64.50 65.24 62.80
eGeMAPS-funcs 66.02 66.61 63.62 63.75 63.07 63.90
DeepSpectrum-MelSpec-fc6 51.87 53.95 58.17 66.05 57.88 66.34
DeepSpectrum-LinSpec-fc6 57.23 57.76 61.65 65.16 58.98 65.74
DeepSpectrum-MelSpec-fc7 59.85 65.80 60.11 65.43 58.46 64.64
DeepSpectrum-LinSpec-fc7 53.48 53.00 58.20 66.05 59.81 65.30

TABLE III. SUMMARY OF RESULTS FOR FUNCTIONALS, BAG-OF-AUDIO
WORDS, AND FISHER VECTOR FEATURES FOR GENDER INDEPENDENT

SETTING OF TRAINING, VALIDATION, AND TEST PARTITIONS

UAR (%)

Feature Name SVM LR RF

Val. Test Val. Test Val. Test

Functionals IS10Paral. 64.46 70.75 64.42 68.97 66.84 70.01
ComParE 62.84 66.87 65.23 65.37 64.71 64.54
eGeMAPS 63.02 59.47 62.57 66.34 66.05 63.13

BoAW IS10Paral. 66.00 62.68 65.73 65.00 64.67 65.29
ComParE 61.59 56.01 62.98 62.18 67.08 68.78
eGeMAPS 59.48 64.11 59.19 67.48 64.66 60.96

FV IS10Paral. 62.72 71.87 63.78 70.01 63.33 67.50
ComParE 65.73 69.39 65.45 69.82 66.60 69.40
eGeMAPS 63.82 62.70 64.08 65.16 64.17 68.45

TABLE IV. SUMMARY OF RESULTS FOR FUNCTIONALS, BAG-OF-AUDIO
WORDS, AND FISHER VECTOR FEATURES FOR TRAINING, VALIDATION,

AND TEST PARTITIONS WITH MALE SUBJECTS ONLY

UAR (%)

Feature Name SVM LR RF

Val. Test Val. Test Val. Test

Functionals IS10Paraling 72.06 69.72 71.33 71.14 74.91 52.32
ComParE 73.81 69.05 73.02 66.50 72.05 57.23
eGeMAPS 68.78 60.78 75.62 64.15 80.79 55.74

BoAW IS10Paraling 76.55 66.82 78.19 66.70 80.02 60.76
ComParE 69.03 62.32 68.30 57.32 77.42 66.19
eGeMAPS 71.77 62.35 67.81 55.06 75.90 50.64

FV IS10Paraling 79.01 69.34 79.01 67.42 73.63 54.16
ComParE 79.91 67.54 79.04 67.47 76.09 67.18
eGeMAPS 75.70 59.82 78.27 61.31 74.34 62.09

TABLE V. SUMMARY OF RESULTS FOR FUNCTIONALS, BAG-OF-AUDIO
WORDS, AND FISHER VECTOR FEATURES FOR TRAINING, VALIDATION,

AND TEST PARTITIONS WITH FEMALE SUBJECTS ONLY

UAR (%)

Feature Name SVM LR RF

Val. Test Val. Test Val. Test

Functionals IS10Paraling 59.97 59.68 60.43 58.98 59.32 64.71
ComParE 56.64 58.60 56.98 67.91 58.22 67.91
eGeMAPS 64.82 50.48 65.21 56.54 62.68 64.34

BoAW IS10Paraling 64.22 69.52 64.88 64.81 64.86 64.76
ComParE 63.66 68.86 63.38 62.75 62.33 68.66
eGeMAPS 61.83 50.96 62.61 54.15 64.31 68.66

FV IS10Paraling 60.65 63.63 67.89 72.33 63.17 64.71
ComParE 61.61 72.56 60.50 62.93 60.88 66.83
eGeMAPS 63.43 58.32 63.78 62.22 61.79 58.27

D. Model Fusion

Finally, in Table VI, we provide a summary of results for
label- and confidence-based fusion for predicting sincerity for
the gender independent setting. Here, we chose to fuse the
results from top-5 performing models. The results show that
both fusion approaches can help improve the classification
performance for validation as well as test partitions. Inter-
estingly, there is little difference between the UAR achieved
by label-based and confidence-based fusion approaches for
the validation partitions but for the test partition, label-based
fusion provides a better UAR with 75.49% compared to
73.22% as achieved by confidence-based fusion.

TABLE VI. SUMMARY OF RESULTS FOR LABEL- AND
CONFIDENCE-BASED FOR TOP-5 PERFORMING MODELS

Model Name UAR (%)

Val. Test

BoAW-ComParE-RF 67.08 68.78
Funcs-IS10Paraling-RF 66.84 70.01
FV-ComParE-RF 66.60 69.40
Funcs-eGeMAPS-RF 66.05 63.13
BoAW-IS10Paralig-LinSVM 66.00 62.68

Label Fusion 70.79 75.49
Conf. Fusion 70.97 73.22

V. CONCLUSION

The purpose of the current study was to propose a multi-
model fusion based framework for identifying speech record-
ings which carry insincere apologies amongst a corpus which
also contains recordings of sincere apologies. To this end,
our proposed methods were able to improve the classification
performance for the Sincere Apology Corpus from 66.02% to
70.97% for the validation partition and 66.61% to 75.49%
for the test partition. We also proposed new baselines for
gender dependent classification between sincere and insincere
apologies and report that classification models tend to perform
better for male subjects as compared to female subjects.
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