
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

226 | P a g e
www.ijacsa.thesai.org

Applying Aspect Oriented Programming in

Distributed Application Engineering

Fatiha Khalifa1

Oran University of Science and Technology

 Mohamed BOUDIAF USTO'MB, Oran, Algeria

Samira Chouraqui2

Oran University of Science and Technology

 Mohamed BOUDIAF USTO'MB, Oran, Algeria

Abstract—Aspect-oriented programming is an emerging

programming paradigm that stretches during the development

phases in different domains. Many researchers have focused on

the use of this paradigm in web service composition in different

research axis. However, none of them use together aspect-

oriented programming and design by contract to deal with the

adaptation of the parameters in the web service composition

process. This paper proposes a web service composition

algorithm based on the planning graph using both Aspect-

oriented programming and design by contract concept. The

aspect-oriented Programming approach provides explicit

support for separation of crosscutting concerns in web services

composition whereas the design by contract approach allows the

processing of parameters execution in pre-condition and post-

condition mode by using contracts in order to ensure correct

service execution with adaptation to external parameters without

touching in properties which can be dealt with re-construction of
the composite service. Future development of this planning graph

will include the introduction of the dynamic way of aspect
oriented programming and add comparison results.

Keywords—Aspect oriented programming; design by contract;

web service composition; parameters adaptation

I. INTRODUCTION

Aspect-Oriented Programming (AOP), is a new
programming paradigm introduced in information systems,
presents a new element called aspect, in order to encapsulate
the crosscutting concerns of the program. Instead of having one
concern repetitive in multiple code blocks, the aspect can
represent all these concerns in a single code block completely
separate from the source code [8].

The aspect contains three main elements, a joinpoint, a
pointcut, and advice. AOP also introduces the notion of a
weaver. Weaving behavior is the process that allows weaving
the program with these different aspects [3, 4].

Some researchers have focused on applying AOP
technologies into the Web service composition domain. Their
researches goals were situated around the increase in the
adaptability of web service [17] or modularize crosscutting
concerns in web service composition [10].

However, no one of them has treated the problem of
parameter adaptation and conflict between the services during
the composition phase by the mean of AOP and design by
contract.

The Design by Contract (DbC) is an approach that uses a
contract to specify and define the mutual obligations and

expected parameters of the communication between services
composite process, and use assertions to check whether an
application complies with a contract. The failure of an assertion
is typically a symptom of a bug in the software. There are three
different kinds of assertions [5, 7]:

1) Pre-conditions: specifies parameters conditions that

must hold before an operation executes.

2) Post-condition: specifies parameters conditions that

must be hold after an operation completes, consequently, post-

condition is evaluated after a method completes.

3) Invariant: specifies a parameters condition that must be

hold anytime when a client invoke an object’s method.

The work in this paper proposes a web service composition
algorithm based on the planning graph using both AOP and
DbC to deal with the problem of parameter adaptation and
conflict in web service composition using separation of
crosscutting concerns.

Remind that web services are applications available on the
internet, each of them performs a special task [1].

Except that, the requirements of the client always exceed
the demand of a single request or a single task, for example, if
the client wants to afford a holiday, he desires to find a web
service that offers him in the same time, purchase of a plane
ticket, hotel reservation, and car reservation, and other.

As no specific web service can meet all of these
requirements at the same time, it should be possible to combine
several existing services to fulfill one's needs. This is the
composition of web services. However, one of the important
issues to be addressed in the composition of web services is
that some services impose certain input or output parameters
that are defined by their suppliers and/or imposed by their
clients. These constraints specify the conditions that must be
met to ensure correct execution or appropriate interaction with
the different services involved in the composition.

In this context, the main contributions of our research work
are focused on:

Applying the AOP paradigm into web services composition
to increase the adaptability of services and to modularize
crosscutting concerns. When crosscutting concerns are
separated from the code of each service, it becomes easy to
modularize the crosscutting concern of the composite service
and then monitoring these parameters as discussed by Sk.
Riazu Rahemana et al. in [9, 20].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

227 | P a g e
www.ijacsa.thesai.org

On the other hand, we have applied the DbC paradigm for
safer interaction between input parameters of each new service
which is added to the composition and the output parameters of
the composite service belonging in web services composition
to avoid conflicts and exceptions.

The remainder of this paper is structured as follows:

Section 2 reviews related work, Section 3 presents the
conceptual architecture. In Section 4 an example is given.
Finally, Section 5 concludes the paper.

II. DISCUSSION AND RELATED WORK

Many types of research corresponding to the web service
composition have been published in recent years. They revolve
around different areas of research. We focus on those who used
the AOP.

Various studies have been made concerned applying AOP
in web services composition like those in [9, 10, 11, and 12].

Charfi and. al. has approached this problem from a different
direction. They have proposed an extension to the BPEL
language, which they called aspect-oriented BPEL
(AO4BPEL). Their language brings in modular and dynamic
adaptability to BPEL [15] However, they do not pay attention
on the issue of the crosscutting concerns consisted in service
compositions.

Both of [10], [11] propose a method for decoupling security
concerns in Web services via aspects, by expressing these
concerns as contextual information separate from the core Web
services functionality.

Authors in [12] have proposed a formal method through a
Petri net-based algebra for aspect-oriented web service
composition. The formal semantics of the composition
operation including composition operation for modeling basic
compositions and crosscutting operation for modeling aspects
is expressed in terms of Petri nets.

In [16] the authors used distributed aspect-oriented
programming (AOP) technology to model an adaptive
architecture for Web services composition, by representing the
non-functional properties of each Web service - composite and
component - via AOP. They make a relation function between
the aspects of the composite web service and the individual
aspects of the component Web services.

In [17] authors proposed a method to increase the
adaptability of web service by using the main AOP agreed
semantics.

In [18] an approach that have brings design by contract to
Web services has been presented. Authors have elaborated
generic solution architecture, and define its components and
have investigated the foundations such as important guidelines
for applying design by contract.

In [2, 19] authors have proposed a graph plane based
approach model and detect composition conflicts related to
introduction (structural composition).

In [13] authors have applying design by contract an Aspect
Composition.

However, none of these approaches have been applying
both AOP and DbC in the same context of web service
composition. Thereby this paper is the first attempt at using
both the AOP approach and DbC benefit in web service
composition focused on parameter adaptation.

III. CONCEPTUAL ARCHITECTURE

A. Concepts and definitions

When crosscutting concerns are separated from each
service in a web services composition, a service composition
can be seen as a result of a composite web service weaved with
aspects and contracts.

This section of the paper will describe web service
composition algorithms based on the planning graph
construction. On giving first certain definitions below.

 Definition 1

L is the set of different available services participating in
the composition of web services. L= {S1, S2, S3… Sn}

And Si is a service number i defined by Si=<Pi.I, Pi.O, Cc>

• Pi.I is the input parameters of the service i

• Pi.O is the output parameters of the service i

• Cc is a list of the crosscutting concerns (scattered or

tangled codes) requirements of the service.

 Definition 2

R is the set of different Aspect, R= {A1, A2, 3… An}

A is an Aspect defined by

A=<Cc, Joinpoint, Pointcut, Advice>

Where,

- Cc: crosscutting concern functionality.

- Advice: is a workflow code that encapsulates Cc.

- Joinpoint some points in the program of the service

related to pointcuts of the aspect.

- A pointcut is a function that relates a joinpoint to a set

of advice.

There are three sorts of pointcuts:

 A before pointcut Si.Cc⤵A.advice, represent that
advice is executed before the execution of the service i.

 An after pointcut Si.Cc⤴A.advice , represent that
advice executed after the execution of the service i.

 An around pointcut Si.Cc⤴⤵ A.advice , represent that
advice executed around execution of the service i.

If an aspect A.advice crosscuts a crosscutting concern of a

service S, it gives us: Si' = Si ◁ A, which represents that the
service Si, is weaved with aspect A.

 Definition 3

We define Db as a Boolean contract relationship between
the output and input parameters of two layers successive in the
Graph, given by:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

228 | P a g e
www.ijacsa.thesai.org

Db﴾type, Si.Output parameters, Si+1.Input parameters﴿.

Where type can take three formats:

 @Pré (a precondition of the contract): specify a
contract that must hold before the execution of the
input parameters of the service Si.PI.

 @post (postcondition of the contract): specify a
contract that must hold before the execution of the
input parameters of the service Si.PI.

 @Inv (invariant): specifies a contract that must behold
any time when service features are invoked.

Several cases are treated:

 If (Si.PI∩Si+1.PO = Ø) then

Db (@Pré, Si.PI, Si+1.PO) = true

If this condition is satisfied we have: S= S1 ⊥ S2

S1 ⊥S2 represents a composite service S that results from
performing the service S1 followed by the service S2, S1 must
be completed before S2 can start.

 if (Si.PI∩Si+1.PO = Ø) then

Db (@Post, Si.PI, Si+1.PO) = true

In this case, we have: S= S1 ⊦ S2

S1 ⊦ S2 represents a composite service S that results from
performing unordered between S1 and S2, the service S1
followed by the service S2 or S2 followed by S1

 if (Si.PI∩Si+1.PO = Ø) then

Db (Inv, Si.PI, Si+1.PO = true

In this case, we have: S1|| S2 represents a composite
service S, which results from performing in parallel service S1
and/or service S2.

 Definition 4

We define the composite web service request as a tuple:

REQ= ˂L, R, Db˃ where:

 PI: is the set of the input parameters that the client can
provide.

 PO: is the set the output parameters expected by the
client.

 PE: is the set of constraints representing required
limitations on input and output parameters, as required
by the client.

B. Proposed Algorithm

This section describes the algorithms for constructing web
services composition based in a planning graph (see Fig. 1),
applying aspect-oriented programming and contracts
techniques.

Our planning graph is a horizontal directed layered graph in
which the jump to the next node is permitted only from one
node layer to the next.

Fig. 1. A Planning Graph of the Web Services Compositions.

The node in level 0 corresponds to the REQStart

 REQStart is the node input of the graph which includes
specifications and parameters given by the client in the
composite web service; it's the Composition start
request.

REQStart ˂L, R, Db˃ = INPUT request= {specification set of

the client}

The node in level i depends on the composite service got
from on the result of the layer i-1, who will be in turn
submitted to the action of the REQi by weaving the aspects
required and by applying the necessary contracts.

REQi ˂{Si-1,Si}, R, Db˃

 REQEnd is the last node of the graph which give the
composition plan (algorithm 3) result that must
accomplish the client requirements as specified in the
INPUT request.

REQEnd is the OUTPUT request which gives us as a result
the composition plan.

Algorithm1. Services composition algorithm

INPUT: REQstart﴾ Composition request start ﴿, L﴾ Set of

available services ﴿, R﴾Set of Aspects﴿, Db﴾ relation of Contract

﴿, n (maximum numbers Service available in L)

OUTPUT: GraphPlan (REQEnd or failure)

 1: Graphplan=null;InputParameters =REQstart.PI

 2: n = ∑service ∈ L

 3: Si’ =null

 4: for i=1 to n do

 5: L=i

 6: for each Service Si ∈ L do

 7: if (Si.PI⊂ Inputparameters) and (Si ∉ grapheplan) then

 8: for each A ∈ R do

 9: if (Si.Cc = A.Cc) then

10: addAspect(Weaved, Si, A)

11: end if

12: end for

13: OutputParameters=OutputParameters ∪ Si.PO

14: AddService(REQ L, Si’,Si)

15: Graphplan= Graphplan.proceed

16: REQi = REQi+1

17: end if

18: i=i+1

19: end for

22: Graphplan= Graphplan.Completed

21: return failure

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

229 | P a g e
www.ijacsa.thesai.org

The Algorithm 1 gives the composition service model
based on the graph plan, the expected result is the service
composite that accomplish all specifications given by the
client.

Our service composition approach use aspect oriented
programming method to solve problems of crosscutting
concerns that target services, and design by contract to give
order of performing parameters between services.

The composition service model begins with REQstart,
which gives input parameters according to the specifications
required by the client. , in the composition process graph, each
service belongs to a layer level inside the graph where a new
REQ of the same level is generated (line 16).

Each service in the level layer will be woven with all
crosscutting concerns which are separated and encapsulated in
aspects (line 10) with function addAspect given in algorithm 2.

A contract relation is done between the output and input
parameters of services in two layer.

The service will itself be inserted afterwards in the graph
(line 14) given in algorithm 3.

Algorithm 2. AddAspect

INPUT Weaved(service weaved with aspect),

 Si (Service Si), A (Aspect)

OUTPUTSi (Si’; Si weaved with the Aspect A)

1: A.jointput → Si.Cc (Si.Cc is advised jointput)

2: if A.advice related to Si.Cc befor then

3: Si.Cc⤵A.advice (relates A.advice to an

 advised joinpoint)

4: else if A.advice related to S.Cc after

 then Si.Cc⤴A.advice

5: else Si.Cc ⤵⤴A.advice

6: end if

7: end if

8: Si’ =Si ◁ A

In AddAspect (algorithme 2) an advised jointput in a
service will be weaved with the advice of the aspect (line1).

Since we have working with the aspectJ the advice can be
executed before the pointCut (line 2-3) or after (line 4) or
around (line 5). In the end we have a new service generated
from the weaving.

Algorithm 3. AddService

INPUT REQ L (L is the number of the index layer in the

GraphPlan)

Si (the new service to be added to the graph plan)

Si’ (the product composite service by the previous layer)

OUTPUT REQ L+1(next request), Si″ (the product composite

service by the current layer)

1: while (Si.PI ≠Ø) do

2: if Db(@pré, Si’.PO, Si.Pi)) =true then

 Si″= Si’⊥ Si

3: else if Db(@pro, Si’.PO, Si.Pi)) =true then Si″= Si’⊦ Si

4: else Si″= Si’||Si

5: end if

6: end if

7: GraphPlan=GraphPlan ∪ Si

8: end while

9: Si’ = Si″

10: L =L ∪ Si″

11: return GraphPlan

Algorithm 3 adds a new service Si to the set of services
composite which are itself only a single service Si’, these two
services undergo a contract test based on their output and input
parameters. This test defines the way to perform these two
services in a given layer of the planning graph belonging to a
given request line (line 6-10).

(Line 6) represents a new service composite Si″ that
performs the previous service composite Si’ followed by the
service Si, Si must be completed before Si can start.

(Line 7) represents a new service composite Si″, that
performs unordered between the previous service composite
Si’ and the service Si, the service Si’ followed by the service
Si, or Si followed by Si’.

(Line 8) represents a new service composite Si″ that
performs the previous services composite Si’ and the service Si
independently from each other.

At the end, the new service composite generated is included
in the set of services L and added to the graph.

IV. AN EXAMPLE

This section, an example is given to better describe the
proposed planning graph. Consider for example a basic version
of shopping application that consists of the following sequence
of tasks: Searching for products, submitting an order, Paying
for the order, and shipping of the order (see Fig. 2).

The planning graph is assembled from the uses of these
different available services:

- S1 offer the Search service,

- S2 offer the Order service,

- S3 offer the payment service

- S4 offer shipment service

Instead of the client using a single web service for each
service they want to achieve (Search service, Order service,
payment service, shipment service), it would be better to offer
him a single service that meets all these requirements; it is the
composition of Web services.

The Web service composition can be mapped to a planning
graph (see Fig. 2) as follows:

The Search service, Order service, payment service,
shipment service are the four Web services required by the
client, which form the set L.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

230 | P a g e
www.ijacsa.thesai.org

Fig. 2. The Planning Graph of the Example.

If we consider that each of the service mentioned before
shares some crosscutting concerns, which will be defined as
modules called aspects, cited below:

 Maintaining the history of the client, for future
purchase {Aspect1 =History }

 Only authenticate client are allowed to effect the
payment service

{Aspect2 =Authentication}

 Ensuring the confidentiality of the client information
about his bank account

{Aspect3 =Security}

 Accommodate the timing property in order to calculate
the time taken by the client to access the Web services,
to be sure that the answer to the client request was not
long {Aspect4 =Timing}

So we have:

L= {S’= null, S1=Search, S2=Order, S3=Payment,

S4=Shipment}

And R= {A1=History, A2=Authentication, A3=Security,

A4=Timing}

Supposing that input and output parameters for these
services are:

 Search.PI={ProductNumber, DeliveryAddress },
Search.PO={ProductNumber, Product Address }

 Order.PI= {PaymentAmount, PaymentMethod},
Order.PO= {OrderNumber, PaymentAmount}

 Payment.PI ={ProductNumber }, Payment.PO
={PaymentConfirm}

 Shipment.PI= { PaymentConfirm, DeliveryAddress,
Product Address, OrderNumber, ShippmentConfirm } ,
Shipment.PO= {ShippmentConfirm }

And the specification parameters required by the client are:
PE = {C1, C2, C3} where:

C1 = ProductAdress ∈ {Europe}

C2= DeliveryAdress ∈ {Europe}

C3= PaymentMethod ∈ {visa, MasterCard}

The first request REQ1 is between S’ (he is null because
we haven't started the composition of the services yet) and S1
(search article service), the only aspects that crosscut these
services are A1and A4 and they crosscut all the services, so we
can wove him in the end of the composition processes. Let
applying a contract relation:

Db (@Pré, S’.PO, S1.PI) = true

Ø∩ {ProductNumber, Product Address} ∈ PE

S´1= S’⊥S1

S1’.PO= {ProductNumber, Product Address ∈ {Europe} }

RES1<L, PI, PO, PE> where , L=L ∪ S1’, PO=

In the following request, S`1 will be perform with the
service S2 and the contract relation is: Db (@Pré, S`1.PO,
S2.PI) = true

{ProductNumber, Product Address ∈ {Europe}}∩

{PaymentAmount, PaymentMethod}, ∈ PE

S’2=S1’ ⊥ S2

S2’.PO= { ProductNumber, Product Address ∈ {Europe},

PaymentAmount,

PaymentMethod ∈ {visa, MasterCard}}

S´2= S`1⊥S2 = (S’⊥S1) ⊥ S2

In the next request, S`2 will be performing with the service
S3.The Aspect A2 and A3 crosscuts S3 and the contract
relation is: Db (@Pré, S`2.PO, S3.PI) ∈ PE

S’3= S`2 ⊥ S3

S’3.PO= { ProductNumber, Product Address ∈ {Europe},

PaymentAmount,

PaymentMethod ∈ {visa, MasterCard}, PaymentConfirm}

S´3= S`2 ⊥ (S3 ◁ A2 ◁ A3)

And in the last request, S`3 will be performing with the
service S4.The Aspect A2 and A3 crosscuts S4 and the contract
relation is: Db (@Pré, S`3.PO, S4.PI) ∈ PE

S´4 = S´3 ||S4◁ A1, A2, A3, A4

S’4.PO= { ProductNumber, Product Address ∈ {Europe},

PaymentAmount,

PaymentMethod ∈ {visa, MasterCard}, PaymentConfirm,

ShippmentConfirm}

This example can be regarded as a woven composition
service

S= (((S’⊥S1)⊥ S2) ⊥ (S3◁ A2 ◁ A3))|| (S4◁A2◁ A3))) ◁

A1, A4

Where,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

231 | P a g e
www.ijacsa.thesai.org

S=<PI, PO, Cc>

PI= {PI.S1, PI.S2, PI.S3, PI.S4}

PO= S4’.PO

Cc= {A1.Cc, A2.Cc, A3.Cc, A4.Cc}

The planning graph of the example is shown in Fig. 3.

Fig. 3. The Composite Service of the Example.

V. CONCLUSION

The aim of this paper was the contribution of applying
aspect-oriented programming in the web service composition
domain with the use of the design by contract.

To this extent, we have proposed and illustrated algorithms
based on the construction of a planning graph to eliminate the
redundancy of the transversal codes of the crosscutting
concerned in the various services belonging to the composition
on the one hand and on the other to preclude conflict between
parameters of the service composite generate from the web
service composition process.

The planning graph using aspect-oriented programming and
design by contract was introduced in our work to deliver a
precise way to the web services composition without parameter
conflict and without code redundancy.

We have shown that the proposed algorithms are suitable
for the static detection of resolving conflict situations between
parameters of services belonging to the composition.

We have implemented a web service composition prototype
with eclipse and AspectJ [6] and a contract for java [14] that
resolve conflict detection for each stage of the composition and
for each service apart.

Using both AOP and Dbc as a planning graph technical for
web services composition will certainly enhance web service
composition quality in many ways including:

1) AOP offers better modularization in the web services

composition domain, by gathering the crosscutting concerns of

services that deals with the same aspect in one module

avoiding the redundancy of crosscutting concerns in the

composition.

2) AOP offers a consistent implementation in web services

composition. Unlike traditional implementations of web

services composition which are conspicuous in their

inconsistency, AOP provides consistent implementation by

having each aspect handled once and used in different web

services sat the same time.

3) Moreover, AOP and Dbc are based on the same

language and they are reusable and transferable. Therefore,

developers don't need to learn more than one language.

4) Using DbC with AOP allows programmers to enforce a

Boolean test of contracts and provide guidance in following

best practices by creating reusable aspects without conflict and

without exception.

We believe that this approach is general enough to be able
to be used in all types of web service composition. We intend
to use these two approaches together to explore the modeling
and detection of constraints adaptation of parameters in the
web services composition in our subsequent work.

REFERENCES

[1] Krisada Sangsanit, Werasak Kurutach, Suronapee Phoomvuthisarn,”
REST web service composition: A survey of automation and

techniques”, ICOIN,Vol 1, pp. 116-121, 2018.

[2] Rihab Ben Lamine, Raoudha Ben Jemaaa, Ikram Amous Ben Amora,
“Graph Planning Based Composition For Adaptable Semantic Web

Services”, Procedia Computer Science Elsevier, Vol 112, pp. 358-368,
2017.

[3] Omar Anwer Abdul Hameed, Ahmed Younus, Rasha Hassan Abbas,

“Aspect oriented programming: Concepts, characteristics and
implementation”, Vol 7, pp.2022-2033,2019.

[4] G. A. S. Sheela, and A. Aloysius, ”Aspect Oriented Programming -

Cognitive Complexity Metric Analysis Tool”, International Journal of
Scientific Research in Computer Science, Engineering and Information

Technology (IJSRCSEIT), Vol 3, Issue (1), Jan. –Feb. 2018.

[5] George fairbanks, “Better Code Reviews With Design by Contrac”,
IEEE, Vol 36, pp.53-56,2019.

[6] AJDT for eclipse tools for AspectJ,accessed [23/07/2020] online
available : https://www.eclipse.org/aspectj/.

[7] T. Thomas, I. Schaefer, M. Kuhlemann, “Applying Design by contract

to Feature Oriented Programming”. FASE, pp. 255-269, 2012.

[8] Anil Kumar, Arvind Kumar, M.Iyyappan, “Applying Separation of
Concern for Developing Softwares Using Aspect Oriented Programming

Concepts”, Procedia Computer Sciecne, Vol 85, pp. 906-914, 2016.

[9] A. charfi, B. Schmeling, A. Heizenreder, M. Mezini, “Secure and
Transacted Web Service Compositions with AO4BPEL”. In Proceedings

of The 2nd International Conference on Service Oriented Computing
ICSOC, 2004.

[10] . Shanmuga Priya, K. Rajaram, “AOP Based QoS Monitoring of

Dynamic Web Service Compositions”. In: Conference: IEEE
International Conference on Advanced Communication Control and

Computing Technologies (ICACCCT), pp. 1913-1917, 2014.

[11] F.Zaimer, M.yutao, H. Keping, P. Gong, “A Requirements-Driven and
Aspect-Oriented Approach for Evolution of Web Services

Composition”. In: Conference: Web Mining and Web-based Application
(WMWA), 2009.

[12] Liqiong Chen, Guisheng Fa, Huanhuan Zhang Lizhong Xiao,” Petri
nets-based method to model and analyse the self-healing web service

composition”, IJHPCN, Vol 9, 2016.

[13] H. Klaeren, E. Pulvermuller, A. Rashid, A. Speck, “Aspect Composition
Applying the Design by Contract Principle”. In: Proc of Generative and

Component-based software-Enginering Second International
Symposium GCSE , pp. 57-69, 2000.

[14] N. Minh Le, ”Contracts for java: A practical framework for contract

programming”. http://code.google.com/p/cofoja/, last access on
08/08/2019.

[15] Charfi, M. Mezini. AO4BPEL: An Aspect-Oriented Extension to BPEL.

Springer Netherlands, 309-344, 2007.

https://www.computer.org/csdl/search/default?type=author&givenName=Krisada&surname=Sangsanit
https://www.computer.org/csdl/search/default?type=author&givenName=Werasak&surname=Kurutach
https://www.computer.org/csdl/search/default?type=author&givenName=Suronapee&surname=Phoomvuthisarn
https://www.sciencedirect.com/science/article/pii/S1877050917313558#!
https://www.sciencedirect.com/science/article/pii/S1877050917313558#!
https://www.sciencedirect.com/science/article/pii/S1877050917313558#!
https://www.sciencedirect.com/science/journal/18770509
https://www.researchgate.net/profile/Omar_Abdul_Hameed
https://www.researchgate.net/profile/Ahmed_Younus3
https://www.sciencedirect.com/science/article/pii/S1877050916306317#!
https://www.sciencedirect.com/science/article/pii/S1877050916306317#!
https://www.sciencedirect.com/science/article/pii/S1877050916306317#!
https://www.researchgate.net/profile/Shanmuga_Priyar
https://www.inderscience.com/filter.php?aid=74654
https://www.inderscience.com/filter.php?aid=74654
https://www.inderscience.com/filter.php?aid=74654

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

232 | P a g e
www.ijacsa.thesai.org

[16] M.M.B. Hmida, R. F. Tomaz, V. Monfort. Applying AOPconcepts to

increase Web services flexibility”, In Proceeding of International
Conference on Next Generation Web Services Practices. 2005.

[17] HanineTout, AzzamMourad, Chamseddine Talhib, Hadi Otrok, “AOMD

approach for context-adaptable and conflict-free Web services
composition”, Vol 44, pp. 200-217, 2015.

[18] Bernhard Hollunder, Matthias Herrmann, Andreas H ̈ulzenbecher,

Design by Contract for Web Services: Architecture, Guidelines, and
Mappings”, IJAS, Vol 5,2012.

[19] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. “A graph based

approach to modeling and detecting composition conflicts related to
introductions”. Proceedings of 6th International. Conf. on Aspect-

Oriented Software Development, pp. 85–95, March 2007.

[20] Sk. Riazu Rahemana, Hima Bindu Maringanti, Amiya KumarRath.
Aspect oriented programs: Issues and perspective. Journal of Electrical

Systems and Information Technology. Vol 5(2), 2018.

https://www.sciencedirect.com/science/article/abs/pii/S0045790615001329#!
https://www.sciencedirect.com/science/article/abs/pii/S0045790615001329#!
https://www.sciencedirect.com/science/article/abs/pii/S0045790615001329#!
https://www.sciencedirect.com/science/article/abs/pii/S0045790615001329#!
https://www.sciencedirect.com/science/article/pii/S2314717218300035#!
https://www.sciencedirect.com/science/journal/23147172
https://www.sciencedirect.com/science/journal/23147172

