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Abstract—Zooplankton is enormously diverse and 
fundamental group of microorganisms that exists in almost every 
freshwater body, determining its ecology and play a vital role in 
food chain. Considering the significance of zooplankton, the 
study of freshwater zooplankton is very essential which intensely 
relies on the classification of images. However, the routine 
manual analysis and classification is laborious, time consuming 
and expensive, and poses a significant challenge to experts. Thus, 
for recent decade much research is focused on the development 
of underwater imaging technologies and intelligent classification 
system of zooplankton. This work presents devotion to 
observation of freshwater zooplankton by designed underwater 
microscope and modeling the system for automatic classification 
among four different taxa. Unlike most of the existing 
zooplankton image classification systems, this model is trained on 
a comparatively small dataset collected from freshwater by 
designed underwater microscope. Transfer learning of pre-
trained AlexNet Convolutional Neural Network (CNN) model 
proved to be a potential approach in the system design. Among 
four networks trained over two datasets, the best overall 
classification accuracy of up to 93.1%, comparable to other 
existing systems was achieved on test dataset (92.5% for 
Calanoid and Cyclopoid (Female), 90% for Cyclopoid (Male) and 
97.5% for Daphnia). Graphical User Interface (GUI) of the 
model constructed on MATLAB, makes it easy for the users to 
collect images for building database, train network and to 
classify images of different taxa. Moreover, the designed system 
is adaptable to the addition of more classes in the future. 
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I. INTRODUCTION 
Zooplankton belongs to the class of microorganisms, also 

known as “drifters”, can be found in loads, suspended in 
freshwater bodies and other huge aquatic ecosystems [1]. 
Freshwater zooplankton community is diverse (>20 types), 
and occur in almost every lake, with the body size ranging 
from few tens of microns to >2mm. Mostly crustaceans and 
rotifers are the dominant group of zooplankton found in 
freshwater [2]. They act as a bioindicator to monitor the 
change in the aquatic behavior as they are very sensitive to 
ecological variations. Zooplankton, as a marker of 

determination of water quality, are also considered as integral 
component of global carbon cycle as well as the foundation of 
food chain for aquatic life [3] [4] [5]. To efficiently observe 
the changes in aquatic ecology and to protect it, the crucial 
distribution of zooplankton population cannot be left 
unnoticed, as it can cause appalling mutilation to aquatic 
ecosystem as well as undesirable communal terrestrial effects 
[6]. 

The area of underwater microscopic studies of 
zooplankton is an on ongoing and much focused research 
which is mostly linked to its taxonomic classification. Precise 
taxa identification offers bases for biodiversity research, 
which is a vital component of workflow of biological 
investigation along with evolution and distribution of 
zooplankton. However, carrying out manual research on 
zooplankton, which includes the sample collection by Niskin 
bottles or towed plankton net etc. and the manual 
classification by individual experts are laborious, time 
consuming and expensive tasks [7]. Thus, automating such 
tasks will help taxonomist, pharmacologist and also ease the 
labor of biological experts. 

Few underwater imaging devices have been designed and 
tested for marine zooplankton studies for many years which 
erased the need of manual sampling by plankton nets up to 
major extent [8]. But the abrasive quality and size of 
underwater images dataset carries a challenging task in 
analyzing and classification due to unclear morphological 
traits and training of automatic classification model [9] [10]. 
However, focusing the critical importance of zooplankton, it is 
still in the interest of researchers to develop more advanced, 
robust and automatic system for its imaging and classification 
[11]. 

Later Section II of this paper include literature review of 
some imaging devices used in underwater imaging of 
plankton, and some recent work related to classification of 
zooplankton. Section III describes the methodology followed 
in this work, which consists of imaging of freshwater 
zooplankton including imaging device and method, and 
designing of neural network for zooplankton classification. 
Section IV presents training and testing results of CNN. 
Section V conclude the whole work, describing the 
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summarized results, significance and future aspects of this 
study. 

II. RELATED WORK 
A lot of effort has already been thru on imaging and 

automatic classification of microorganisms for last few 
decades [12]. Underwater imaging devices like Shadow Image 
Particle Profiling Evaluation Recorder (SIPPER) [13], 
ZOOplankton Visualization and Imaging System (ZOOVIS) 
[14], In Situ Ichthyoplankton Imaging System (ISIIS) [15], 
Underwater Vision Profiler 5 (UVP5) [16] have been in 
service for marine zooplankton imaging. From handcrafted 
feature extraction and classifier design by [17] to the most 
advanced approaches like deep learning by [18] have been 
established in different setups of zooplankton classification. 
Some of the recent work presented in last few years on the 
project of automatic classification of marine zooplankton is 
summarized in Table I and discussed in later section. 

TABLE I. SUMMARY OF RECENT METHODS OF ZOOPLANKTON 
CLASSIFICATION 

Year By Method Dataset 

2016 [19] CNN (Pre-trained CIFAR10) WHOI - Plankton 

2016 [3] CNN (Pre-trained AlexNet 
and VGGNet) ZOOscan 

2017 [1] CNN (AlexNet) WHOI - Plankton 

2017 [20] CNN and fine-tuned 
AlexNet ISIIS, IFCB, SPC 

2018 [21] CNN (AlexNet) WHOI - Plankton 

2019 [12] CEAL and CNN (AlexNet) ILES and CZECH 

2019 [10] CNN and Transfer learning 
models 

WHOI, Kaggle, and 
ZOOscan 

a. WHOI: Woods Hole Oceanographic Institution, b. IFCB: Imaging Flow Cytobot, c. SPC: Scripps 
Plankton Camera System, d. CEAL: Czntaining 9460 gray scale microscopic images of 13 classes. In 

their designed method, data augmentation technique was included to reduce the overfitting of the small 
dataset. 

Author in [1] proposed another hybrid CNN model for 
plankton classification which consists of 3 AlexNet networks 
and fuses together at final fully connected layer. The three-
channel pyramid structured network, which takes original 
image and two preprocessed copies of it as input respectively 
is trained over WHOI-Plankton dataset containing 30000 
images of 30 classes. 

In [20], the author experimented the behavior of CNN 
network trained over two very different datasets collected with 
different imaging devices, ISIIS and IFCB and tested over 
another out of domain dataset collected with SPC. CNN from 
scratch and fine tuning pre-trained AlexNet were chosen for 
experiment. 

Following the preceding work by [1], [21] designed a 
hybrid system with addition of a concatenation layer before 
convolution layers, which resulted in low time cost and 
slightly better overall accuracy. The system was trained and 
tested over WHOI-Plankton dataset. 

CEAL approach was presented by [12] to train a CNN for 
zooplankton classification. AlexNet architecture was adapted 
during training of CNN. In their work two dataset of images, 
ILES and CZECH collected by ISIIS, were used. The 

experiments showed that with CEAL approach there is no 
need for a human expert to annotate the large number of 
images in dataset, but just a small number of annotated images 
will maximize the possible accuracy of CNN. 

In the work by [10], both deep learning and transfer 
learning approaches have been developed for plankton 
classification. Three major datasets, WHOI, Kaggle and 
ZOOscan were used during the task. They used fine-tuning 
and transfer learning of pretrained models and showed the 
possibility of pre-processing coupled with CNN in order to 
enhance feature extraction capability. AlexNet, GoogleNet, 
Inception V3, VGGNet, ResNet, DenseNet, SqueezeNet 
models were used and concluded DenseNet to be the best 
model for classification. 

Unlike the proposed approach in this paper, all the 
previous work was carried out using publicly available large 
dataset of plankton images acquired during marine 
zooplankton survey. 

III. METHODOLOGY 
System flowchart shown in Fig. 1 present the key phases 

followed during the study of automatic zooplankton 
classification, which includes sample collection and 
observation under microscope, data acquisition, neural 
network training and testing. 

A. Sample Collection 
Freshwater samples were collected from two stations, pond 

and canal located in Ocean College of Zhejiang University, 
Zhoushan. Plankton net or any other type of plankton catcher 
were not used during sample collection. The water samples 
were kept in a glass tank without taking any biological sample 
preservation approaches like addition of formaldehyde 
solution. The samples were studied with underwater 
microscope designed by Ocean Optics lab. Visual data in the 
form of images and videos was collected from the surface and 
underwater observations, which confirmed the presence of 
several types of zooplankton as shown in Fig. 2. 

Nomenclature of the zooplankton in Fig. 2 was done with 
the reference of “Practical guide to identifying freshwater 
crustacean zooplankton” [22]. Due to difficulty in 
distinguishing between the morphological features of 
zooplankton found in freshwater samples, the nomenclature is 
done up to the least possible level of taxonomy. Table II 
shows the detail taxonomy of the spotted types of 
zooplankton. 

B. Data Acquisition 
Water samples were observed through designed 

underwater microscope containing 14 mega pixels, Lapsun 
(M102) Charge-Coupled Device (CCD) camera optical chip 
combined with the lenses, offering total magnification of 
1524x and Field of View (FOV) ranging from “1.7mm to 
2.6mm”. White Light Emitted Diode (LED) lamp powered by 
12-volt battery was used as lighting source. The designed 
microscope was vertically deployed in the sample testing glass 
tub and total 16 videos were captured with a frame rate of 60 
frames per second. Fig. 3 shows working setup of microscope. 
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CCD camera’s built-in function of auto focus as well as 
manual focus, controlled by variable objective lens ranging 
1.7x to 4.5x, was used during the process of underwater 
microscopy. Total 2900 raw images of the size 1920x1080x3 
and Joint Photographic Experts Group (JPEG) format were 
acquired from the microscope which contain desired Region 
of Interest (ROI). 

 
Fig. 1. Schematic Approach of the Study. 

 
Fig. 2. Raw Images Obtained from Underwater Microscopy of Freshwater. 

TABLE II. TAXONOMY OF FOUND ZOOPLANKTON TYPES 

Label Type Taxonomy 

a Calanoid 
Phylum ‘Arthropoda’, subphylum 
‘Crustacea’, class ‘Maxillopoda’, subclass 
‘Copepoda’, order ‘Calanoida’. 

b Cyclopoid (Female) 
Phylum ‘Arthropoda’, subphylum 
‘Crustacea’, class ‘Maxillopoda’, subclass 
‘Copepoda’, order ‘Cyclopoida’. 

c Cyclopoid (Male) 

d Cyclopoid Nauplii 

e Daphnia 
Phylum ‘Arthropoda’, subphylum 
‘Crustacea’, class ‘Branchiopoda’, 
suborder ‘Cladocera’, family ‘Daphniidae’. 

f Rotifer Phylum ‘Rotifera’. 

 
Fig. 3. Underwater Microscope Setup. (a). Imaging unit Mounted over 2-
Axis Linear, Stepper-Controlled Aluminum Assembly, (b). Control unit for 
Objective Lens and Light Switching, (c). Underwater Microscope Operation 

in Testing Tank. 

C. Building Image Dataset 
After the screening of the acquired images, the two types 

of zooplankton in Fig. 2, Cyclopoid Nauplii and Rotifer were 
discarded from image database due to less amount and coarse 
quality of images. Two Image Datasets (IMDS) were built 
after executing the following operations. 

Since microscopic images contain other particles in the 
image too, for example algae, thus the easiest technique to 
discard those noisy particles in the image is to crop desired 
ROI. Cropping ROI reduced the size of image, resulting 
quicker processing speed and low data consumption by 
Graphic Processing Unit (GPU) in training the model. First 
IMDS was created after resizing the cropped images to the 
new size of 227x227x3, as shown in Fig. 4, and allocating 
three hundred images of each type of zooplankton into four 
classes. Each class was named according to their taxonomy 
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after verification with the key for zooplankton nomenclature. 
80% of each class of images were used for training and 
remaining 20% for validation of the neural network. 

Underwater microscopic images are mostly targeted by 
many factors that are; out of focus lens and continuous drifting 
of zooplankton, which cause blurry images resulting in the 
loss of basic morphological structure of microorganism. 
Second IMDS was built by including the offline augmented or 
the preprocessed image replicas along with the blurry raw 
images, keeping the dataset balanced. Thus, the total number 
of images in each class is increased to six hundred images per 
class, in which 80% were used for training and remaining for 
validation. Processing included contrast enhancement by 
contrast stretching technique and later applying Gaussian filter 
to smoothen the edges and get the texture of enhanced image. 
Sample raw images of each of four classes and processed 
images along with their respective histograms are shown in 
Fig. 5. 

A separate test dataset was created containing the cropped 
images of the same size as that of training dataset for the 
accuracy estimation of trained CNN. Table III provides 
overall quantitative analysis of IMDS. 

D. CNN Training 
Proposed CNN model comprises of four different training 

scenarios based on IMDS, as shown in Fig. 6. Due to small 
dataset of images, pre-trained CNN model, AlexNet 
developed by [23], was adapted for this planned study. Pre-
trained model is fine-tuned by replacing the final three layers 
with a fully connected layer of the size of number of classes, a 
SoftMax layer to yield the class probability calculation and 
finally an output classification layer. Rectified linear 
activation (ReLU) function is performed for each 
convolutional layer and fully connected layer, except for the 
last one which consist of SoftMax layer. Cross channel 
normalization layer and max pooling layer is included in the 
network. A dropout of 50% is used while training to prevent 
the network from overfitting. 

 
Fig. 4. ROI Cropped and Resized Images of Four Classes of IMDS. 

 
Fig. 5. ROI Cropped Images and their Pre-Processed Replicas with 

Respective Histogram Plots. 

TABLE III. QUANTITATIVE ANALYSIS OF DATASETS 

 
Number of Images 
C CF CM D 

 Raw data 500 800 700 900 
IMDS 
1 

Fine-tuning (crop) 300 300 300 300 
Training dataset 240 240 240 240 

IMDS 
2 

Fine-tuning (crop and 
preprocess) 600 600 600 600 

Training dataset 480 480 480 480 
TEST Fine-tuning (crop) 40 40 40 40 

a. C: Calanoid, b. CF: Cyclopoid (Female), c. CM: Cyclopoid (Male), d. D: Daphnia. 

Table IV shows the CNN configuration of 
hyperparameters which were selected to improve immunity of 
the system to overfitting during the four training models. To 
make fair evaluation of models’ accuracies, same 
hyperparameters are used during the training of all the models. 
Lower learning rate is considered more effective during fine 
tuning of the pre-trained architecture. 

TABLE IV. TRAINING CONFIGURATION OF CNN 

Training options Value 
Model AlexNet 
Execution environment GPU 
Number of convolutional layers 5 
Number of fully connected layers 3 
Optimizer SGDM 
Mini batch size 32 
Initial learning rate 0.0001 
Data shuffle Every epoch 
Activation function ReLU 
Maximum iterations (IMDS 1 training) 450 
Maximum iterations (IMDS 2 training) 900 

a. SGDM = Stochastic Gradient Descent with Momentum. 
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Fig. 6. Training Schematic and Network Layers Architecture. 

Data augmentation was included to enhance the accuracy 
of the network and preventing the network to overfit. To keep 
the better tradeoff between validation accuracy and overfitting 
of data during training, only reflection of images about x-axis 
is selected for online augmentation of images. 

IV. SYSTEM MODELING AND EXPERIMENTAL RESULTS 
Classification system was designed on MATLAB 2019a 

and trained over Nvidia GeForce 920MX GPU. Image 
acquisition, image processing, neural network, parallel 
computing and CUDA enabled GPU tool box were used in the 
modeling of zooplankton classification system.  

Four networks Net1, Net2, Net3 and Net4 were trained on 
two datasets IMDS1 and IMDS2, keeping the same 
hyperparameters, and compared the results on the bases of test 
dataset classification. Net1 and Net2 denote the networks 
trained on IMDS1 with and without augmentation 
respectively. Similarly, Net3 and Net4 denotes the networks 
trained on IMDS2. 

Results of all the four networks were formulated on the 
bases of size of dataset, training routine which shows network 
response to the data, confusion matrix and probability scores 
for each class after classification. 

Precision, recall and accuracy were concluded from 
confusion matrix by the following equations. 

Precision = TP / (TP + FP)             (1) 

Recall = TP / (TP + FN)             (2) 

Accuracy = (TP + FN) / (TP + FN + TN + FP)          (3) 

Another useful quantity is F-measure, which is harmonic 
mean of recall and precision. Its value ranges from 0 – 1, 
closest to 1 determines the decent grading of the network and 
vice versa. It can be measured as; 

F measure = 2*(Recall * Precision)/(Recall+Precision)        (4) 

Experimental results of four networks during training and 
testing are summarized in Table V. Net4 yielded in to better 
classification results of the test data, as compared to other 
three networks. 

Since Net4 showed better outcomes, it was considered in 
this study of zooplankton classification. The network was 
tested on in-domain test dataset which is captured with same 
underwater microscope. The network provided individual 
accuracy of 92.5% for Calanoid and Cyclopoid (Female), 
90.0% for Cyclopoid (Male) and 97.5% for Daphnia as shown 
in Fig. 7. 

TABLE V. COMPARISON OF NEURAL NETWORKS 

 Net 1 Net 2 Net 3 Net 4 

Comparison of trained CNN models based on training. 

Dataset IMDS1 IMDS1 IMDS2 IMDS2 
Images per 
Class 300 300 600 600 

Augmentation No Yes No Yes 
Training 
Routine Minor OF Smooth Smooth Smooth 

Training Time 1.72x102 s 2.44x102 s 3.41x102 s 5.27x102 s 
Validation 
Accuracy 98.30 % 98.80 % 98.75 % 99.58% 

Comparison of trained CNN models based on testing. 

Average Recall 85.0 % 90.6 % 88.1 % 93.1 % 
Average 
Precision 85.7 % 91.1 % 88.7 % 93.5 % 

F-Measure 0.85 0.91 0.88 0.93 

Testing Time 9.38x10-1 s 7.47x10-1 s 7.26x10-1 s 7.51x10-1 s 
a. OF: Overfitting, smooth: Fine convergence of network towards data without overfitting. 

b. Testing time is the time network takes to classify 40 images per classes and may vary with every 
attempt of classification. The time for training and testing is in seconds and rounded off to 2 decimal 

values. 
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Fig. 7. Confusion Matrix of Net4. 

In addition, the network yielded into much confident 
classification probability scores for Calanoid and Daphnia, 
which is 83.0% and 84.5%. The probability scores for 
Cyclopoid (Female), 76.2% and Cyclopoid (Male), 79.9% 
showed minor confusion in the classification. Fig. 8 shows the 
average probability scores of classifications among four 
classes of test dataset. Furthermore, the system showed 

positive response to out of domain images during 
classification as in Fig. 9. 

GUI designed on MATLAB aids with easy routine use of 
the system. Developing dataset, training network and 
classification modules are added in GUI. Also provides results 
during training and probability scores during classification. 
Through GUI, the system can be easily modified and 
improved by addition of other classes for classification. 

 
Fig. 8. Net4 Classification Probability Scores Per Class. 

 
Fig. 9. GUI of Classification System. 
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V. CONCLUSION 
In this study a model is propossed for operative 

underwater microscopy of zooplankton and automatic 
classification of underwater microscopic images of 
zooplankton. Two different and comparatively small datasets 
of four classes of zooplankton captured with the same imaging 
system were developed for the training of CNN model. The 
overall maximum classification accuracy of 93.1% was 
calculated after the trained network was tested on independent 
test dataset. Both online and offline data augmentation is 
applied in the system to enlarge the size of dataset and 
overcome the chances of overfitting during network training. 
The experimental results of architecture based on pre-trained 
convolutional neural network show that this system can 
classify zooplankton images effectively with the cost of very 
less time and low computing requirements. 

Freshwater zooplankton distribution is very diverse and 
inhomogeneous and its research is of very importance in 
ecology protection. Main focus in zooplankton study is 
effective zooplankton classification which will help aquatic 
ecologist in robust sampling and classification without putting 
much efforts. 

How to sample and classify zooplankton more effectively 
is still a big challenge and there are still many things that can 
be done on zooplankton imaging and classification. For future 
advancement in the system, much research will be focused on 
development of more effective and enhanced zooplankton 
imaging systems and designing of improved classification 
models. Besides, other pre-trained CNN models will also be 
applied in zooplankton classification systems. Also, addition 
of more genera as well as other aspects like life cycle stages of 
zooplankton into the classification model will be done. 
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