
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

DeepScratch: Scratch Programming Language
Extension for Deep Learning Education

Nora Alturayeif1, Nouf Alturaief2, Zainab Alhathloul3
Department of Computer Science, King Fahd University of Petroleum & Minerals,

Dhahran, Saudi Arabia

Abstract—Visual programming languages make programming
more accessible for novices, which open more opportunities
to innovate and develop problem-solving skills. Besides, deep
learning is one of the trending computer science fields that has
a profound impact on our daily life, and it is important that
young people are aware of how our world works. In this study,
we partially attribute the difficulties novices face in building
deep learning models to the used programming language. This
paper presents DeepScratch, a new programming language
extension to Scratch that provides powerful language elements
to facilitate building and learning about deep learning models.
We present the implementation process of DeepScratch, and
explain the syntactical definition and the lexical definition of
the extended vocabulary. DeepScratch provides two options to
implement deep learning models: training a neural network
based on built-in datasets and using pre-trained deep learning
models. The two options are provided to serve different age
groups and educational levels. The preliminary evaluation shows
the usability and the effectiveness of this extension as a tool for
kids to learn about deep learning.

Keywords—Deep learning; visual programming languages; pro-
gramming education; formal language definitions; neural networks

I. INTRODUCTION

Programming nowadays is considered an essential skill
and has been introduced in a novice level for different ages.
Moreover, visual programming languages make programming
more accessible for young people, which open more
opportunities to innovate and explore. Scratch [1]; a visual
programming environment developed by MIT, is one of the
most popular block-based visual programming languages that
allows users to create interactive and media-rich projects.
On the other hand, deep learning is one of the trending
computer science fields during the last years, and it acquired
interest and focus in many different fields. Deep learning has
a profound impact on our daily life and it is important that
young people are aware of how our world works. However,
it is not an easy task to understand the concepts of a deep
learning as it requires deep understanding of mathematics and
calculus. Understanding and applying deep learning requires
spending hundreds of hours learning and debugging code,
which is mostly frustrating for juniors.

The aim of this research is to extend the vocabulary
of Scratch programming language to help young people
designing and implementing deep learning applications.
Deep learning has a profound impact on society. It has

many applications in finance, healthcare, customer experience,
weather prediction, etc. Nowadays, it is important that kids are
aware of how the world works and understand the capabilities
of deep learning. This paper presents DeepScratch, a new
programming language extension to Scratch that provides
powerful language elements to facilitate deep learning
concepts to allow kids and high schoolers to understand
and develop deep learning applications. This research is an
extension of the paper: “Extending Scratch: New Pathways
into Programming” [2].

DeepScratch provides two options to implement deep
learning models: training a neural network based on built-in
datasets, or using pre-trained deep learning models. The
two options are provided to serve different age groups and
educational stages.

This paper introduces two main contributions:

• Extend the vocabulary of Scratch visual programming
language to enable developing deep learning applica-
tions using Scratch, which opens an opportunity for
researchers to continue and expand our work.

• A tool for educators to teach kids basic deep learning
concepts (different neural networks architectures,
hyper-parameters tuning, and classification metrics).

Being able to build deep learning application with visual
programming language should be very useful for kids. In
addition, high schoolers who are interested in deep learning
can implement various applications in an environment that
does not require understanding of programming, mathematics,
and calculus concepts. We believe that this work will help in
closing the knowledge gap between educators and students,
thus enabling them to explain machine learning concepts in an
environment that are more suitable for novice programmers.
Our preliminary evaluation showed significant effects of using
DeepScratch on students’ understanding of deep learning.

The rest of this paper is organized as follows: Section II in-
troduces the background. Section III presents previous studies
that proposed related applications. Section IV introduces the
methodology followed in this study. Section V describes the
syntactical definition (grammar) used for DeepScratch exten-
sion. Section VI presents the lexical definition of DeepScratch
by explaining the functionalities of the extended vocabulary.

www.ijacsa.thesai.org 642 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Section VII demonstrates some examples of simple programs
developed using DeepScratch. Section VIII discusses the sig-
nificance DeepScratch and describes the conducted evaluation
process to ensure the functionality and the usability of the
developed extension. Finally, the conclusion is presented in
Section IX.

II. BACKGROUND

Visual programming languages allow users to develop
programs by manipulating elements graphically instead of
writing a program as a text. These languages can potentially
allow young people to acquire the computational concepts
more easily by reducing unnecessary syntax and facilitating
the use of dragging and snapping the command blocks. With
such features, these frameworks can help reduce the cognitive
load on novices by allowing them to focus on the logic and
structures of a program rather than worrying about the syntax
and the mechanism of coding [3].

There is a rich history of different visual programming
tools designed for novices comprehensively surveyed in [4].
AgentSheets by Repenning and Sumner [5] is a tool that
introduced the blocks programming in 1995 to create games
and simulations. Their work marked a substantial step in the
field of visual programming language [6]. Several block-based
programming language were designed after AgentSheet, such
as Squeak eToys, Alice, and Scratch [6].

Scratch was created by MIT Media Lab’s Lifelong Kinder-
garten Group in collaboration with Yasmin Kafai’s group
at UCLA [7]. The main idea for Scratch was inspired by
LEGO bricks, as Scratch research team worked closely with
LEGO company [8]. Scratch grammar was converted to a
programming blocks which represent the bricks in the LEGO.
To create a program, users need to simply tinker the blocks
together [8]. Thereafter, in the third version of Scratch, they
collaborated with Blockly, a project developed by Google.
Blocks are end-user composable, editable, and can be ar-
ranged geometrically to represent tree structure and to define
syntax [9]. The previous four keys form the properties of a
highly accessible visual programming paradigm combined by
the AgentSheets [6]. According to [6], Scratch and Blockly
adopted these properties to be in their core, and became the
popular blocks programming language. Fig. 1 demonstrates
how a Python code block looks like in Scratch programming
language.

Fig. 1. Scratch blocks and its equivalent Python code

In 2015, Scratch team presented the scratch extension
system to enable programmers to innovate on the language
itself by extending it [2]. In addition, “enabling learners with a
diverse set of interests to engage in programming with Scratch
by opening up a number of previously unavailable pathways,
through new domain-specific programming primitives” [2].
However, deep learning development is not supported yet
by the original Scratch language or as an extension to this
language.

Deep learning is a sub-field of machine learning dealing
with algorithms that are similar to how nervous system struc-
tured, where each neuron is connected and passing information
to each other [10]. Deep learning aims to learn complex
relationships among data that make out meaningful results,
and predict from multiple applications.

III. RELATED WORK

Machine learning, deep learning, and data science are Key
topics that are not yet addressed much in the existing tools
dedicated to youths. These are advanced fields for novices,
but becoming essential to learn for the world we live in today
and the one we will experience in the future.

Few systems have been designed to provide a
straightforward and simple understanding of data science and
machine learning geared towards kids or high school students.
For Data Science applications, Scratch Community Blocks [11]
is a system that enables children to programmatically analyze
and visualize data about their participation in Scratch, and
learn how to reason about complex information visualizations.
DataSnap [12] is an extension to the block-based language
Snap which can fetch and analyze data from online sources.

Similarly, Machine Learning is available as an education
tool using different programming languages. Machine
Learning for Kids project [13] brings in the power of the IBM
Watson engine by presenting Machine Learning Building
Blocks such as image recognizers and text classifiers that can
then be imported to a Scratch program. Ken Kahn [14] has
created resources to allow beginners to create AI applications
such as speech synthesis, speech recognition, and image
recognition, in the block-based language Snap.

Teachable Machine [15] is a web-based tool developed
by Google that allows users to train and test machine
learning model without writing code. However, Teachable
Machine is a very abstract tool and does not introduce basic
machine learning concepts such as hyper-parameters, different
algorithms, and evaluation metrics. Our research aims to
introduce an extension of Scratch programming language that
covers more advanced machine learning concepts, specifically,
deep learning concepts.

Our literature review revealed the need to develop an envi-
ronment that supports teaching kids different machine learning
concepts including learning about different neural network
architectures, optimizing a neural network, and performing

www.ijacsa.thesai.org 643 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

hyper-parameter tuning. Previous studies tackled this topic
in a more abstract level, allowing the kids to build machine
learning applications without learning the underlying processes
and concepts of the machine learning models.

IV. METHODOLOGY

The Incremental Model is used to develop the Deep-
Scratch extension. This model is based on developing an
initial component, which usually includes the fundamental
requirements. After evaluating the initial component, several
other components are added until the software is fully devel-
oped. The Incremental Model can be Plan-Driven or Agile.
In this research, the Agile approach is adopted as it does not
require a pre-planned set of increments. Agile model makes
the development process flexible and cost-efficient to adapt to
the changes [16]. Since this is a research-based project, and
research is expected to be exposed to changes; the Incremental
Agile Model is selected.

A. Process Activities

• Software specification: It is the process of under-
standing and identifying the required services for the
software [16]. In general, the specifications of this ex-
tension include implementing the following features:
◦ Input methods: since deep learning appli-

cations require a lot of data that need to
be labeled, built-in datasets are available in
DeepScratch, which are the Iris and MNIST
data sets.

◦ Neural networks: Dense, RNN, and CNN.
◦ Predicting new data.
◦ Evaluation metrics: loss function (cross-

entropy), training accuracy, and testing
accuracy.

• Software design and implementation: It is the pro-
cess of converting the software specifications into exe-
cutable software. However, this activity might include
some refinements on the software specification [16].
The design of our extension follows the design
principles established by Scratch. These design
principles aim to help the developers to design
simple and easy to use language that encourages
users to quickly explore and experiment with the
language functionalities [9]. Scratch allows extending
the programming language using JavaScript [2].
Therefore, TensorFlow.js 1; a library for deep learning
in JavaScript will be used for the implementation.

• Software validation: Verification and validation is
applied to each increment based on its requirements.
Once the software is complete, a full system
functionality testing will be applied as the final stage
of the testing process. Functionality testing is used to
ensure that the software meets its specifications and
is ready to be published [16].

1https://www.tensorflow.org/js/

Moreover, usability testing will be conducted by a
focus group of kids to validate the extension’s ease
of use.

• Software evolution: As this is a research-based
project, this step is considered as the future work.

V. SYNTACTICAL DEFINITION

Any visual programming language (VPL) is characterized
by two main elements: a grammar (syntactical definition) and
a vocabulary (lexical definition) [17]. Together they define the
set of concepts that can be expressed with the programming
language. The grammar of VPL is described by the visual
metaphor, such as blocks and wires. Whereas the vocabulary
is the collection of blocks, icons, or other components that
allow a programmer to express concepts.

This section explains the grammar of Scratch, which will
be the base of the proposed extension. In practice, to run
a text-based program, a program takes the program as an
input and extracts lexemes (sequence of characters in the
source program) and tokens (categories of lexical units).
Then, following the context-free grammar, a program takes
the tokens and creates a parse tree. Since Scratch is not a
text-based language, the interpreter does not need to tokenize
and parse the program.

The grammar of a text-based language is usually
defined by metasyntax notation such as EBNF (Extended
Backus–Naur Form). However, the grammar of Scratch is
described by defining blocks of different shapes representing
expressions, statements, and control structures. These shapes
are fitting together in only syntactically-correct ways. This
eliminates syntax errors by setting geometric relations rules
(containment, horizontal/vertical concatenations, etc.) to
connect the blocks together [18].

There are six shapes of Scratch blocks: Hat (trigger
blocks), Stack (command blocks), Boolean, Reporter
(function blocks), C (control structure), and Cap [1]. Each
shape has its own function and properties [1], [18]. In our
work, we will use the Stack and Reporter blocks to build
Scratch-based deep learning models. The Stacks (command
blocks) are like the statements of a text-based language, they
are shaped with a notch at the top and a bump on the bottom,
so that blocks can be placed above and below them to create
a sequence of commands [1]. Whereas Reporters (function
blocks) hold values (Number or String) as constants or in
a variable. They can be used as arguments to commands to
build expressions [1].

According to [2], the affordances of the Scratch extension
system allow for extending the vocabulary rather than the
grammar, and thus, DeepScratch extends the language by
augmenting the vocabulary. The following section will describe
the extended vocabulary in detail.

www.ijacsa.thesai.org 644 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

VI. EXTENSION’S VOCABULARY

There are 119 blocks working as the standard Scratch
vocabulary (not including extensions) [18]. The syntax of
some of these blocks is illustrated in [18]. This section
demonstrates the vocabulary of DeepScratch, which are
custom programming blocks written in JavaScript. While
adhering to Scratch grammar, each extension block is mapped
to a JavaScript script that gets invoked through a “bridge”
layer implemented within Scratch. In addition, Tensorflow.js
library is utilized for building and executing deep learning
models that run in a web browser and in the Node.js.

Our Scratch extension will provide the users with two
options to implement deep learning models. The first option
enables the user to train the model, by giving the ability to
choose the dataset, the architecture of the neural network,
and a variety of hyper-parameters. Dense, RNN, and CNN
are the architectures of neural networks available for training
in DeepScratch. The other option allows the user to run
pre-trained models that can be used to predict new data.
DeepScratch will support different pre-trained models offered
by TensorFlow from Google, such as object detection model.
Sections VI-A and VI-B describe these two options in detail.

The complete vocabulary of DeepScratch is represented in
Tables I and II. The DeepScratch blocks can be combined with
other Scratch blocks to build an application, such as adding
“say” block by Scratch to present the prediction result. Lastly,
to save our work and for further development, we made our
code available through GitHub2.

A. Training Deep Learning Model Blocks

Training a deep learning model needs expertise in certain
programming languages. This process is simplified through
DeepScratch blocks that bind together as in Fig. 1.

Each machine learning program consists of three
main stages: pre-processing data, training a model, and
predicting new data. Preparing and pre-processing data can be
complicated and frustrating for young people, and moreover,
it’s not in the scope of how machine learning models work.
Hence, the proposed extension provides built-in datasets that
are ready to be trained. These datasets are the popular Iris3

and MNIST4 datasets.

In DeepScratch, the first step in training a machine learning
model is to choose which combination of a dataset and a neural
network model to use. The available NN models are Dense,
RNN, and CNN. Each model can be tweaked by changing
some hyper-parameters specific to that model. For example,
in the CNN model, the user can change the batch size and
set the number of epochs as optional hyper-parameter. During
training, the user will be able to monitor how the model
optimizes by displaying accuracy and loss values. Once the
training is done, the user will be able to check the accuracy
on the testing data. This way, the user can learn how different

2https://github.com/Noufst/DeepScratch
3https://archive.ics.uci.edu/ml/datasets/Iris
4http://yann.lecun.com/exdb/mnist/

hyper-parameters settings can affect the performance of the
model. In Fig. 2, the user used the train Dense block to train
the Iris dataset using a Dense model with two hidden layers
and 20 epochs. If the user trains the model without setting
the optional block (number of epochs), it will take the default
value: 10 epochs. At last, the user used the basic say block to
display the testing accuracy once the training is done.

Fig. 2. Training Iris Data using Dense Model

After training the model, the user can use predict block to
classify new data. There are different predict blocks to cover
the variety of datasets that have been trained. The user needs
to enter new data, and based on the input data, he/she will
pick the suitable predict block. Fig. 3 illustrates an example
of using predict iris block for the Iris data. The result of this
prediction and the training performance is presented in Fig. 4.
Fig. 5 illustrates all the logically possible combinations of the
blocks.

The blocks used for training and prediction are imple-
mented using the Stack blocks from Scratch. To present to the
user how the model optimizes during training; Reporter blocks
were used to display the training accuracy, testing accuracy,
and loss values during training (Fig. 4).

Fig. 3. Predicting Iris Data

Fig. 4. Result of Training a Neural Network in DeepScratch

www.ijacsa.thesai.org 645 | P a g e

https://archive.ics.uci.edu/ml/datasets/Iris
http://yann.lecun.com/exdb/mnist/


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

TABLE I. VOCABULARY OF DEEPSCRATCH (STACK BLOCKS)

ID Block Description Parameters Pre-condition
Name Data Type

S1 Change the number
of epochs N/A None

S2 Train Dense neural
network

Dataset Drop down list None#Layers Number

S3 Train RNN neural
network Dataset Drop down list None

S4 Train CNN neural
network

Dataset Drop down list NoneBatch size Number

S5 Predict new Iris
data.

Sepal length Number Should be stacked
anywhere under Train
Dense block (2) with
Iris data selected

Sepal width Number
Petal length Number
Petal width Number

S6 Predict new hand
written image. N/A

Should be stacked
under the Camera block
(S8) with On selected.

S7 Detect objects from the
current video frame. N/A

Should be stacked
under the Camera block
(S8) with On selected.

S8 Turn on/off the
camera On/Off Drop down list

TABLE II. VOCABULARY OF DEEPSCRATCH (REPORTER BLOCKS)

ID Block Description

R1 Holds the value of the accuracy during training. The value gets updated after each epoch.

R2 Holds the value of the loss during training. The value gets updated after each epoch.

R3 Holds the value of the accuracy on the testing data. The value is set after the model
training is complete.

R4 Holds the prediction value after running one of the prediction blocks (S5 or S6).

R5 Holds the name of the detected object after loading the pre-trained model (S7) (the user
can choose between three detected objects using the drop-down list if they exist).

R6 Holds the confidence percentage of the detected object (the user can choose between
three detected objects using the drop-down list if they exist).

R7 Holds the x position for the detected object in the video frame (the user can choose
between three detected objects using the drop-down list if they exist).

R8 Holds the y position for the detected object in the video frame (the user can choose
between three detected objects using the drop-down list if they exist).

B. Pre-Trained Deep Learning Model Blocks

A pre-trained model is a model that is already trained
on a large dataset, and can be used directly to predict new
examples. Providing pre-trained model blocks in DeepScratch
should be very useful for kids, as they will be able to
build deep learning applications with a visual programming
language. TensorFlow from google offers many pre-trained
models; our extension will provide the object detection model,
that localize and identify multiple objects from an image or a
video.

In order to use the object detection model within Deep-
Scratch, the user should drag the detect objects block and
give permission to enable the video camera. Once the user
turn the video camera on, it will be used as an input for
prediction based on the object detection model. detect objects
block will capture three objects as maximum from the current
frame in the video. The detected objects have four outputs:
object class, confidence score, and their position coordinates
(x,y). Each output is presented in a reporter block with a drop-
down list (1, 2 or 3) that represent the number of the detected
object. The object class block recognizes the detected object
and return its class (e.g. person, cell phone, tie, or bottle).

www.ijacsa.thesai.org 646 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 5. Different Possible Combinations of Training and Prediction Blocks in
DeepScratch

The confidence score indicates confidence that the object was
genuinely recognised, and presented in the object correctness
block. For the position coordinates, the video frame placed in
Scratch stage deal with x and y as coordinates in Cartesian
plane. The origin is the axes cross located in the center of
the video frame, thus the coordinates will be in one of the
four quadrants. However, the object detection model considers
the upper right corner as the origin for x and y coordinates.
Consequently, we convert the x and y that model returns to
fit in the Cartesian plane to be returned by X and Y positions
block, which will locate the position of the detected object in
the video frame.

VII. ILLUSTRATIVE EXAMPLES

This section presents some examples of how DeepScratch
can be used and utilized in combination with the basic Scratch
blocks to build a variety of applications.

Fig. 6 demonstrates a simple program to train and predict
Iris data. The left-hand side represents the program code (the
blocks), where the right-hand side shows the output of the
program.
The first set of blocks are used to set the number of epochs
to 20, and to train a Dense neural network with two hidden
layers. As the model is training, the user can observe how the
accuracy and the loss values are being optimized after each
epoch. Once the training is done, the accuracy of the testing
data will be available to the user. The second set of blocks
are used to build the prediction phase. Based on the values
the user typed inside the predict block, the prediction (name
of the iris) is presented to the user by utilizing the basic say
block.

In Fig. 7, the user built a program that detects hand-written
numbers by training the MNIST data. For the training step,
a CNN model is trained with 20 epochs and a batch size of
320. Similarly, training accuracy, loss, and testing accuracy
values are available to the user. To predict a new image, the
user must use the turn video block and show a picture of a
hand-written number to the camera. After that, predict block
captures the image, converts it to a tensor, and gives it to
the model to generate the prediction to be displayed to the user.

The last example illustrates how a pre-trained model can

Fig. 6. Simple Program to Train and Predict Iris Data using Dense Neural
Network

Fig. 7. Simple Program to Train and Predict Hand-Written Images using
CNN Model

be used to build a deep learning application. The program in
Fig. 8 works as follows: First, the camera is turned on. Then,
the model is loaded and a capture of the camera screen is
passed to the model to detect objects. After that the sprite (the
cat character) will move to the coordinates of the first detected
object and say its name. At last, after 5 seconds, the sprite will
do the same for the second detected object. Fig. 9 demonstrates
the output of the first and second detected objects.

VIII. DISCUSSION AND PRELIMINARY EVALUATION

In this section, we discuss how DeepScratch will contribute
to educating kids about machine learning principles compared
to the similar work highlighted in Section III. Additionally,
we present the evaluation process design and the preliminary
results.

Scratch Community Blocks [11] and DataSnap [12] aim
to develop the programming and the analytical skills in
preference to teaching kids the principles and the concepts of
machine learning. Machine Learning for Kids [13], Kahn’s
and Winters’s project [14], and Teachable Machine [15]
are developed to teach kids how machine learning models
work in abstract level. They provide a high-level overview of
the machine learning pipelines. In contrast, DeepScrach is

www.ijacsa.thesai.org 647 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 8. Simple Program to Detect Object using the Pre-Trained Object
Detection Model

Fig. 9. Output of the Pre-Trained Object Detection Model

developed to promote teaching kids more technical skills that
aim to pave the way for them to engage in more sophisticated
concepts and models. The skills supported by DeepScratch
are: learning about different deep learning architectures, how
a model’s performance is evaluated, and how to tune a model
to produce a better performing model.

In order to evaluate DeepScratch extension, we conducted
a full system functionality testing. Functionality testing is used
to ensure that the software meets its specifications and is ready
to be published. In addition, we conducted a usability study
with a focus group of 5 students to validate the extension’s ease
of use. The plan was to conduct the user study in a school with
more than 30 students; however, this could not be achieved as
this research conducted during the COVID-19 curfew.

A. Functionality Testing

The functionality testing was conducted by constructing a
test case for each vocabulary in DeepScratch. Each test case is
described by input, pre-requisite, expected output, and actual
output. If the actual output matches the expected output, the
test case is considered as passed. In total, we constructed 16
test cases, all of them passed with the expected results.

B. Usability Testing

This section describes how the usability testing was de-
signed, how the metrics were selected and measured, and the
results of the usability evaluation process.

1) Usability Testing Design: A user study was conducted
to inspect the usability of the proposed extension. As stated
earlier, this research was conducted during the COVID-19
curfew which leads to a very limited number of participants.
A preliminary experiment is conducted with a focus group of
five students selected based on their availability. Participants
were asked to perform two tasks to build \use deep learning
networks.

Participants’ sociodemographic characteristics (gender,
age, spoken language) were recorded. Their ages ranged from
8 to 17 years (4 females, 1 male). In terms of their spoken
language, all users were Arabic native speakers, 3 of them
have intermediate English level and 2 are beginners. We
interviewed the participants’ to assess their level of familiarity
with Scratch and deep learning on a 4-point scale (1 = not
at all familiar, 4 = very familiar). The results show that all
participants have basic experience of using Scratch and similar
knowledge of deep learning concepts. Their description of
“deep learning” concept was very similar, they described it
as a way to imitates the way humans gain certain knowledge
and to automate predictive analytic.

In order to measure the usability, a set of specific metrics
should be used as a mean of the evaluation process. The
International Organization for Standardization (ISO) defined
usability as “the extent to which a product can be used by
specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use” [19].
In other words, without measuring the effectiveness, efficiency,
and satisfaction, usability evaluation cannot be achieved. The
definitions of the usability metrics (according to ISO), and
how each metric will be measured in our study are presented
next.

• Effectiveness: Measures the completeness and
accuracy of the goals achieved by the users. In this
study, the effectiveness will be measured by the
number of the completed tasks. Each task will be
marked as: completed or not completed.

• Efficiency: Measures the expended resources to
achieve the user’s goals in relation to the level of
effectiveness. Based on the goal of this extension, the
temporal (time-based) efficiency will be measured,
which is the effectiveness divided by the time used
to complete the tasks.

• Satisfaction: Measures the extent to which the users
are comfortable, and the positive attitudes of using
the extension. As a mean to measure the satisfaction,
questionnaires were provided to the users to answer
subjective questions about their satisfaction with
using the extension.

2) Usability Testing Results: On the day of the experiment,
participants received a printed form that briefly describes
DeepScratch, and explains the details of two tasks, followed

www.ijacsa.thesai.org 648 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

by a questionnaire to evaluate their experience.

We analyzed the data for all participants in accomplishing
each task and answering the questionnaire. The three metrics
were used as means of the evaluation process (effectiveness,
efficiency, and satisfaction). For the effectiveness, the total
number of completed tasks is divided by the total number
of undertaken tasks. All the users completed the two tasks
successfully in our experiment (i.e. the completion rate is
100%).

Effectiveness =
Number of completed tasks

Total number of undertaken tasks
× 100%

(1)
In order to examine the efficiency, we considered the time-
based efficiency, which is the user effectiveness divided by the
user time spent. Since our completion rate is 100%, all the
user time spent will be considered in efficiency calculations,
as shown in Table III. The average time that the user spends
on both tasks is 6.18 minutes.
To calculate the time-based efficiency we applied the following
equation:

T∑
i=1

U∑
j=1

uij

tij

UT
(2)

Where U equal to the number of users and T is the total
number of tasks. Thus, Uij represents the result of task i by
user j (Uij=1 when the user successfully completes the task,
Uij=0 otherwise). Tij is the time spent by user j to complete
task i. By applying the above equation, the overall efficiency
is 0.37 tasks/minute. This infers that the DeepScratch is
efficient and supports users in achieving their goals and tasks
in minimal time. Furthermore, we can infer that implementing
deep learning models using DeepScratch takes a considerable
less time than implementing the same models with textual
programming.

TABLE III. THE TIME SPENT BY USER IN EACH TASK IN MINUTES

Uesr Task1 Task2

user 1 2.2 2.0
user 2 3.1 1.8
user 3 4.3 2.6
user 4 5.6 4.0
user 5 3.2 2.1

To measure the satisfaction, the questionnaire asked the
participants to rate their experience with DeepScratch, in terms
of usefulness and ease of use, along with their perceived
knowledge of deep learning concepts. All participants reported
that the applications were very easy to create, and supple-
mented their understanding of deep learning models. However,
three students raised the need of translating the blocks into
Arabic Language.

IX. CONCLUSION

In this paper, we presented the motivation and the
design of DeepScratch; an extension to Scratch programming
language. We explained how the system is designed to allow

kids to engage with the concepts of deep learning -normally
practiced only by expertise- in a simple and attractive way.
We built this programming language extension in order to
satisfy our goal of promoting new pathways to understand
deep learning concepts and applications. This paper presented
the implementation process of DeepScratch, and explained
the functionality of the extended vocabulary. DeepScratch
provided two options to implement deep learning models:
training a neural network based on built-in datasets, and
using pre-trained deep learning models. The two options are
provided to serve different age groups and educational levels.

To inspect the functionality and the usability of the pro-
posed extension, we conducted a full system functionality
testing and a user study. Both methods revealed the effective-
ness of the proposed extension, and the participants reacted
positively to the experiment of DeepScratch. As this was a
preliminary user study, the obtained results were encouraging.
However, for more concrete results, it will be necessary to ex-
pand the experiment with a larger group of kids. Furthermore,
future studies can extend DeepScratch to include more neural
network architectures and different applications.

REFERENCES

[1] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education, vol. 10, no. 4, pp. 1–15, 2010.

[2] S. Dasgupta, S. M. Clements, A. Y. Idlbi, C. Willis-Ford, and
M. Resnick, “Extending Scratch: New pathways into programming,”
Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, vol. 2015-Decem, pp. 165–169, 2015.

[3] C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” 2005.

[4] S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of
computational thinking through programming: What is next for K-12?”
Computers in Human Behavior, vol. 41, pp. 51–61, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.chb.2014.09.012

[5] A. Repenning and T. Sumner, “Agentsheets: A Medium for Creating
Domain-Oriented Visual Languages,” Computer, vol. 28, no. 3, pp. 17–
25, 1995.

[6] A. Repenning, “Moving Beyond Syntax: Lessons from 20 Years of
Blocks Programing in AgentSheets,” Journal of Visual Languages and
Sentient Systems, vol. 3, no. 1, pp. 68–91, 2017.

[7] J. Maloney, N. Rusk, L. Burd, B. Silverman, Y. Kafai, and M. Resnick,
“Scratch: A sneak preview,” Proceedings - Second International Confer-
ence on Creating, Connecting and Collaborating Through Computing,
pp. 104–109, 2004.

[8] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for All,” Communications of
the ACM, vol. 52, no. 11, pp. 60–67, 2009. [Online]. Available:
http://scratch.mit.edu

[9] Scratch, “Scratch for Developers,” 2019. [Online]. Available: https:
//scratch.mit.edu/developers

[10] L. Deng and D. Yu, “Deep learning: Methods and applications,”
Foundations and Trends in Signal Processing, vol. 7, no. 3-4, pp. 197–
387, 2013.

[11] S. Dasgupta and B. M. Hill, “Scratch community blocks: Supporting
Children as data scientists,” Conference on Human Factors in Comput-
ing Systems - Proceedings, vol. 2017-May, pp. 3620–3631, 2017.

[12] J. D. Hellmann, “DataSnap: Enabling Domain Experts and Introductory
Programmers to Process Big Data in a Block-Based Programming
Language,” 2015. [Online]. Available: https://vtechworks.lib.vt.edu/
handle/10919/54544

www.ijacsa.thesai.org 649 | P a g e

http://dx.doi.org/10.1016/j.chb.2014.09.012
http://scratch.mit.edu
https://scratch.mit.edu/developers
https://scratch.mit.edu/developers
https://vtechworks.lib.vt.edu/handle/10919/54544
https://vtechworks.lib.vt.edu/handle/10919/54544


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

[13] D. Lane, “Machine Learning for Kids.” [Online]. Available: https:
//machinelearningforkids.co.uk

[14] K. Kahn and N. Winters, “AI Programming by Children,” Proceedings
of the Constructionism 2018 Conference, pp. 315–324, 2018.

[15] Google, “Teachable Machine,” 2019. [Online]. Available: https:
//teachablemachine.withgoogle.com

[16] I. Sommerville, Software Engineering, 2013.
[17] E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for creating a

block language with blockly,” Proceedings - 2017 IEEE Blocks and
Beyond Workshop, B and B 2017, vol. 2017-Novem, pp. 21–24, 2017.

[18] Scratch Wiki, “Scratch blocks,” Feb 2020. [Online]. Available:
https://en.scratch-wiki.info/wiki/Blocks

[19] “Ergonomic requirements for office work with visual display terminals
(VDTs) — Part 11: Guidance on usability,” International Organization
for Standardization, Geneva, Switzerland, Standard, Mar. 1998.

www.ijacsa.thesai.org 650 | P a g e

https://machinelearningforkids.co.uk
https://machinelearningforkids.co.uk
https://teachablemachine.withgoogle.com
https://teachablemachine.withgoogle.com
https://en.scratch-wiki.info/wiki/Blocks

	Introduction
	Background
	Related Work
	Methodology
	Process Activities

	Syntactical Definition
	Extension's Vocabulary
	Training Deep Learning Model Blocks
	Pre-Trained Deep Learning Model Blocks

	Illustrative Examples
	Discussion and Preliminary Evaluation
	Functionality Testing
	Usability Testing
	Usability Testing Design
	Usability Testing Results


	Conclusion
	References

