
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Vehicle Counting using Deep Learning Models: A
Comparative Study

Azizi Abdullah1, Jaison Oothariasamy2
Center For Artificial Intelligence Technology

Faculty of Information Science and Technology
Universiti Kebangsaan Malaysia

43600 Bandar Baru Bangi Selangor, Malaysia

Abstract—Recently, there has been a shift to deep learning
architectures for better application in vehicle traffic control
systems. One popular deep learning library used for detecting
vehicle is TensorFlow. In TensorFlow, the pre-trained model is
very efficient and can be transferred easily to solve other similar
problems. However, due to inconsistency between the original
dataset used in the pre-trained model and the target dataset for
testing, this can lead to low-accuracy detection and hinder vehicle
counting performance. One major obstacle in retraining deep
learning architectures is that the network requires a large corpus
training dataset to secure good results. Therefore, we propose to
perform data annotation and transfer learning from an existing
model to construct a new model for vehicle detection and counting
in the real world urban traffic scenes. Then, the new model is
compared with the experimental data to verify the validity of the
new model. Besides, this paper reports some experimental results,
comprising a set of innovative tests to identify the best detection
algorithm and system performance. Furthermore, a simple vehicle
tracking method is proposed to aid the vehicle counting process
in challenging illumination and traffic conditions. The results
showed a significant improvement of the proposed system with
the average vehicle counting of 80.90%.

Keywords—CNN; transfer learning; deep learning; object de-
tection; vehicle detection

I. INTRODUCTION

In the earlier days before the rise of machine learning,
the process of vehicle counting was done manually. It was
performed by a person standing by the roadside; using an
electronic device to record the data using a tally sheet. In
some cases, the person may do the counting by observing
video footage captured by city cams or closed-circuit television
(CCTV) placed above the road or highway. According to a
study in [1], manual vehicle calculation performance is 99%
accurate. This investigation is based on manual calculation of
various vehicles from a 5 minutes video recording. Although
the manual method provides high accuracy, it requires an
extensive amount of human resources. Besides, it tends to be
error-prone, especially on severe traffic flow and multiple road
lines. Therefore, manual calculations are usually performed
with only a small sample of data, and the results are extrapo-
lated for the whole year or season for long-term forecasts.

Vision-based vehicle detection through highly cluttered
scenes is difficult. At present, this approach can be categorized
into traditional and complex deep learning methods. Recently,
deep learning networks (DLN) based on convolutional neural
networks (CNN) have obtained state-of-the-art performance
on many machine vision task. Therefore, researchers began

to use it for vehicle detection and counting. In the deep
learning architecture, it learns categories gradually throughout
the hidden layers. For example, in face image recognition, it
starts with identifying low level features such as bright and
dark areas and then proceeds to recognize lines and shapes for
facial recognition. Each neuron or node represents one feature
and combination of those nodes will give a full representation
of the image. The hidden node or layer is represented by a
weight value that will influence the outcome (output), and this
value can be changed during the learning process. All these
layers are learned in hierarchical order and it is very crucial
to determine the high-level features of the data to make an
accurate decision. The overall approach mentioned has shown
high accuracy in classifying objects. Zhang et al. [2] proposed
a vehicle counting system that utilized a deep learning network.
The system was implemented for a static image and detect
vehicles in every frame. However, there is no information
stated in this paper about the flow of moving vehicles.

In the literature, many works have utilized pre-trained
DLN models via transfer learning methodology for vehicle
detection. In [3] used a pre-trained model via transfer learning,
i.e. Yolo on vehicle counting. The model is trained using the
standard MS-COCO dataset. After that the researchers re-train
the model on different datasets, namely PASCAL VOC 2007,
KITTI and user’s custom annotated dataset. The mean accuracy
precision detection is around 75% achieved on an 80-20 train-
test split using 5562 video frames from four different highway
locations. Another research on vehicle counting was using
MobileNet [4]. A MobileNet model which was pre-trained on
the ImageNet dataset with a size of 224×224 pixels for each
image. With a limited set of training images, the accuracy of
vehicle detection was 97.4%. As for traffic volume estimates or
counting accuracy at the intersections, it was 78%. There were
two crucial observations in this study. First, the performance
was unsatisfactory in cases of a highly overlapping vehicles
such as occlusion due to partial information. The detection
performance results at night or under very low-illumination
conditions are also poor. In [5] proposed to use YOLOv3
Darknet-53 for vehicle detection and counting system. The
results have shown that DLN can provide higher detection
and counting accuracies, especially for the detection of small
vehicle objects.

Following this, some studies have been conducted to com-
pare various available CNN models as the detector for vehicle
counting systems in general, such as [6] [7] and [8] to name a
few. There are also studies specifically on using deep learning

www.ijacsa.thesai.org 697 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

models for vehicle counting systems such as [9] [3] and [10].
Each study has varying results which highlighted the strengths
and weaknesses of each pre-trained models. It seems that the
model’s performance is highly correlated with the local dataset
and the characteristics of the vehicle movement. Therefore,
there is no single CNN detector model that fits for all situation
and providing the optimal detection result. In [8] presents a
comparative study of CNN detector models using deep learning
library of TensorFlow which provide portability and ease of
use. They used the COCO dataset for evaluation.

The general availability of many pre-trained deep learning
models might ease the implementation of an automated vehicle
counting system. But the main challenge is to identify the
best model from among sets of similar pre-trained models that
can perform well on intended datasets. The direct comparison
to determine the optimal model is difficult due to different
environment settings used in experiments. Thus, a fair com-
parison using a similar environment for performance evaluation
is needed. One possible problem with the pre-trained models
performance is that the use of standard benchmark datasets
for training and completely different dataset for testing. It is
common experience for the user to get poor results from the
query of desired objects. Thus, instead of using the benchmark
datasets, one needs to re-train the model on other large custom
data for networks to learn patterns optimally [11]. But, re-
training on the large data can be costly and time-consuming
for deployment [12]. For example, training a deep learning
algorithm on huge datasets is time-consuming and computing-
intensive to secure good performance results. Therefore, one
possible solution is to use a pre-trained model and transfer
learning for better weight scaling and convergence speed-ups.
Thus, inspired by the work of [13], a set of images with
different illumination is used to re-train the existing model
via transfer learning. For vehicle counting, a simple method
is proposed, where the coordinate locations for each vehicle
are detected in every frame. The Euclidean distance is used
to computed between frames of a given video sequence for
tracking and trajectory estimation. A virtual reference line is
constructed, and the vehicle is counted if it crosses the line.

The contribution of this paper is as follows: (1) we
compare the most widely used TensorFlow’s object detection
model zoo, namely, Faster R-NN, SSD and Yolov3 for vehicle
counting application on urban traffic volumes. (2) we demon-
strate the effectiveness of using data annotation tool for vehicle
detection via transfer learning. TensorFlow’s detection model
zoo that trains on the standard datasets such as COCO alone
is not the best to describe real-world vehicle traffic conditions,
but re-training the model efficiently can enhance its ability in
detecting features. (3) we propose a simple vehicle counting
system that uses a virtual reference line and Euclidean distance
for tracking and trajectory estimations.

The rest of the paper is organized as follows. Section 2
describes the fundamental principles of deep neural network
and its application to object detection. Section 3 describes
our system for vehicle counting with a focus on TensorFlow’s
object detection model zoo with simple tracking and counting
algorithms. Experimental results on the urban traffic volumes
on different conditions, i.e. morning, day and night are shown
and discussed in Section 4. Section 5 concludes the paper.

II. RELATED WORK

With recent advancements in deep learning, computer
vision applications such as object classification and detection
can be developed and deployed more effectively. These appli-
cations have been proposed and shown significant performance
improvements and enabling real-time processing of streaming
data for analytic and making decision.

A. Deep Neural Networks

Deep architectures are useful in learning and have shown
impressive performance for example in the classification of
digits in the MNIST dataset [14]; CIFAR [15] and ImageNet
[16] for object classifications. In this scheme, the lowest layer,
i.e. feature detectors are used to detect simple patterns. After
that, these patterns are fed into deeper, following, layers that
form more complex representations of the input data. There
are several approaches to learn deep architectures. One of
the most frequently used in computer vision is convolution
neural networks (CNNs), where the networks preserve the
spatial structure of the problem by learning internal feature
representations using small squares of input data. Features
are learned and used across the whole image, allowing for
the objects in the images to be shifted or translated in the
scene and still detectable by the network. This is one of
the reasons why deep architecture is so useful for object
recognition such as in picking out digits, faces, objects and
so on with different challenging conditions. Thus, to get a
good classification result, the network is trained with a vast
number of images such as using ImageNet [16] as the dataset
to classify pictures. Besides the classification task, the deep
architecture is widely used for object detection that draws a
bounding box around each object of interest in the image and
assigns them a class label. The bounding box indicates the
position and scale of every instance of each object category.
There are several approaches to object detection in computer
vision such as Faster R-CNN, YOLO and SSD.

Typically, deep convolutional neural network models may
take days or even weeks to train on huge datasets for good
performance. A way to reduce the training time is to re-
use the model weights from pre-trained models that were
trained using millions of natural images such as from ImageNet
dataset. Such a methodology is called transfer learning. In this
technique, the constructed models can be downloaded and used
directly, whereby a neural network model is first trained on
a problem similar to the one we have chosen. One or more
layers from the pre-trained model are then used in a new model
trained on the problem of interest. The pre-trained model has
the advantage that it is already learned a rich set of image
features. Besides, the model is transferable to the new task
by fine-tuning the network. In this case, the model can be
re-trained on a small number of images such that the network
weights are small adjusted to support the new task. Thus, it has
the benefit not only to decrease the training time for a neural
network model but also can result in lower generalization
error. For example, in [17] use ImageNet initialized models
for object detection on the Pascal VOC dataset challenge, [18]
use ImageNet initialized models for semantic segmentation.
Other works that utilized the ImageNet dataset for training
deep learning models for image classification such as in [19],
[16].

www.ijacsa.thesai.org 698 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

B. Deep Learning for Object Detection

In general, object detection is a task in computer vision
that involves identifying the presence, location, and type of
one or more intended objects in a given test image. It is a
challenging problem that consists of three main processes,
namely object recognition, localization and classification. In
recent years, deep learning techniques have been applied to
many vehicle detection problems and show promising results
such as on standard benchmark datasets and in computer vision
challenges.

Several approaches are using deep learning techniques for
object detection. Shaoqing Ren et al. [17] proposed a method,
namely Faster R-CNN to improve both speeds of training
and detection of the existing Fast R-CNN [20]. The method
consists of two modules, namely, (a) region proposal network,
where the convolutional neural network is used for proposing
regions and the type of object to consider in the region and (b)
Fast R-CNN for extracting features from the proposed regions
and outputting the bounding box and class labels. Faster R-
CNN has proven to be efficient for object detection and secured
the first-place on both the ILSVRC-2015 and MSCOCO-2015
object recognition and detection competition tasks. Joseph
Redmon et al. [21] proposed an algorithm namely, you only
look once (YOLO) for object detection. The algorithm is
claimed to be much faster than the standard R-CNN [22]
and achieving object detection in real-time. The authors then
further improved the model performance and referred to as
YOLO v2 [23] and YOLO v3 [24]. Another widely used model
for object detection in the industry is the single-shot multi-box
detector (SSD) [25]. It improves R-CNN [22] detection speed
by eliminating the need of the region proposal network.

III. PROPOSED METHOD

The proposed method consists of three main steps. The
first step is to detect and draw bounding boxes around vehicles
for every n-frames employing transfer learning with the deep
CNN architecture. The detection algorithms were inspired by
the works of [17], [25] and [21] that introduced Faster R-
CNN, SSD and YOLO, respectively. Next, the trajectory of
each vehicle is extracted by tracking corner points through n
frames. In this step, a simple method is introduced to identify
the trajectory of each vehicle found in the first step. Finally, a
simple counting algorithm to count the number of vehicles on
the street is proposed. Details of the algorithms are as follows:

A. Faster R-CNN

As stated before, this method was proposed by Shaoqing
Ren et al. [17] which aims to improve both computational
speeds and the detection accuracy of existing Fast R-CNN
[20]. This technique mainly comprises of two modules which
are region proposal network and Fast R-CNN for extracting
features from the proposed regions. Similar to Fast R-CNN,
the image is provided as an input to a convolutional network
which will output a set of convolutional feature maps on the
last convolutional layer. Instead of using a selective search
algorithm on the feature map to identify the region proposals, a
separate network is used to predict the region proposals. In this
case, a sliding window of size n × n is run spatially on these
feature maps. For each sliding window, a set of 9 anchors are

Fig. 1. Faster R-CNN Generates Anchors of Different Ratios and Scales for
each Sliding Windows on Convolutional Feature Map. After that, the Output

of Regressor Determines a Predicted Bounding Box.

generated which all have the same centre, but with three differ-
ent aspect ratios and three different scales. Finally, the n × n
spatial features extracted from those convolution feature maps
are fed to a smaller network which performs classification and
regression. The predicted region proposals are then reshaped
using a region pooling layer which is then used to classify
the image within the proposed region and predict the offset
values for the bounding boxes. The regressor output determines
the position, width and height of the predicted bounding box.
The proposed method results outperform Fast R-CNN on a
detection speed of 0.2 seconds on each image. Fig. 1 shows the
Faster R-CNN model architecture. In this model, ResNet101
[26] CNN architecture is used for extracting in-depth features
and classification.

B. Single Shot MultiBox Detector (SSD)

The SSD architecture was published in 2016 by researchers
from Google for object detection in real-time [25]. It uses
VGGNet convolutional neural network [19] as the base net for
feature extraction. In contrast to Faster R-CNN, SSD improves
the detection speed by eliminating the need of the region
proposal network. In SSD, it provides a set of different default
boxes with varying scales for object detection. These features
(multi-scale features and default boxes) are used to recover the
drop in the object detection accuracy.

Furthermore, each element of the feature map has several
default boxes associated with it. The feature map sets came
from different layers of the CNN network. A typical CNN
network gradually shrinks the feature map size and increase
the depth as it moves to the deeper layers. The deep layers
cover larger receptive fields and construct more abstract repre-
sentation, while the shallow layers only cover smaller receptive
fields. By utilizing this information, it is possible to detect
small objects in shallow layers and large objects in deeper
layers. For detection, any default box with an Intersection
over Union (IOU) of 0.5 or higher with a ground truth box
is considered a positive sample. Fig. 2 shows the single-shot
multi-box model architecture. In this model, Inception [27]
CNN architecture is used for extracting in-depth features and
classification.

C. You Only Look Once (YOLO)

Joseph Redmon et al. [21] proposed an algorithm namely,
you only look once (YOLO) for object detection. The algo-
rithm is claimed to be much faster than the standard R-CNN
[22] and achieving object detection in real-time. In contrast
to the previous schemes, YOLO uses a neural network to
predict the bounding boxes and class labels for each bounding

www.ijacsa.thesai.org 699 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 2. (a) Original Image with Two Ground Truth Boxes, (b) Two of the
8x8 Boxes (Blue Color) are Matched with the Apple, and (c) One of the 4x4
Boxes (Red Color) is Matched with the Banana. It is Important to Note that
the Boxes in the 8x8 Feature Map are Smaller than those in the 4x4 Feature

Map. In Total, SSD has Six Different Feature Maps, and Each Map
Responsible for a Different Scale of Objects, Enabling it to Detect Objects

Cover a Large Range of Scales.

Fig. 3. Summary of Predictions made by YOLO Model. Taken from Joseph
Redmon et al. in (2015) YOLO Paper.

box directly. YOLO works by taking an image and splits
the input image into a grid of cells. Then, each grid cell
predicts a bounding box if the centre of a bounding box falls
within it. Each grid cell uses a confidence value to predict a
bounding box that involves spatial coordinate x,y and the width
and height of the box. For each bounding box, the network
calculates a class probability value and offset values for the
bounding box. The bounding boxes having the class probability
map above a threshold value are then combined into a final set
of bounding boxes and class labels. Fig. 3 shows the YOLO
model architecture taken from [21]. In this model, Darknet
[24] CNN architecture is used for exacting in-depth features
and classification.

D. Vehicle Tracking

A simple vehicle tracking algorithm is proposed in this
work. The process starts with converting video clips to frames.
The output from the object detection model is bounding boxes
with coordinates and class labels. The coordinates can be used
to determine the centre point of each object and in this case,
vehicles. Assuming the first two frames of a video clip is
depicted in Fig. 4.

In this figure, assume that we have two vehicles at different
location and frame. Here, by indicating (m1, n1) and (m2, n2)
for the first vehicle coordinates in the first and second frame
respectively. And (x1, y1) and (x2, y2) for the next vehicle
coordinates in the first and second frame respectively. These
coordinates are midpoints of the bounding boxes provided by
the object detector. For example, let’s say the object detector
detects a vehicle in a video frame and draws a bounding box
at (xstart, ystart) and (xend, yend), where xstart and ystart
are the x and y coordinates of the upper left corner of the
bounding box respectively. And xend and yend are the x
and y coordinates of the lower right corner of the bound-
ing box respectively. Thus, the midpoint of the coordinate

Fig. 4. (a) Sample Images from Two Consequent Frames, i.e. Frame#1 and
Frame#2. (b) The Vehicle is Tracked from the Minimum Displacement from

the First Frame to the Second Frame.

is (xstart + (xend−xstart

2), ystart + (yend−ystart

2)). Next, the
euclidean distance is computed for each point from the first
frame to the next frame resulting in four different distance
values. After that the minimum displacement for each point in
frame #2 is determined to obtain the nearest pair from frame
#1 (Fig. 4(a)). This will result in pairs, as shown in Fig. 4
and virtual trajectory lines can be seen between these pairs
(Fig. 4(b)). For counting, a reference line (dot-line) is defined
in these frames, which will be used to determine if a car has
passed or not to be counted in the vehicle counter algorithm.

To briefly explain the concept of the euclidean tracking
algorithm suppose the number of vehicles is {xi : i = 1, ..., L}
in the first frame and {yi : i = 1, ...,K} in the second frame.
The goal of the euclidean tracking algorithm is to identify the
nearest pair as follows:

TRACK(L) =
∑
i=L

min
1≤j≤K

||xi − yj ||2

Thus, the tracking algorithm works by iterating from the
first until all point pairs in the second frame are visited. After
that, assign each observation in the first frame to the closest
distance point in the second frame.

E. Vehicle Counting

The counting method is based on the vehicle regional
bounding box marks and the virtual reference line. This
technique assumes that the vehicle movement is in a direction.
For counting, each detected vehicle in the detection step is
assigned with a unique label and tracked until it reaches
the virtual line. In this work, we have used five different
class labels, namely bicycle, car, motorcycle, bus and truck.
And all these labels are categorized as vehicle object and
will be used in the counting system. After that, each vehicle
position is checked whether it has crossed the horizontal
reference line (yref) at the y-axis as drawn in Fig. 4(b). If
it passed the line, then it will be counted as one. In this case,
y2 coordinate value > yref coordinate value can be said to
cross the reference line.

F. Data Annotation

The need for efficient image recognition is crucial to be
used in various application, such as for vehicle detection. In
the literature, deep convolutional neural network models have
shown remarkable achievement on many computer recognition
tasks. However, these models are heavily reliant on big dataset
of images taken to form a variety of conditions, such as

www.ijacsa.thesai.org 700 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

different orientation, location, scale, illumination, etc. Unfor-
tunately, many existing deep learning models were trained in
a limited set of image conditions, which can increase prob-
lems of overfitting and hinder generalization performance. For
instance, a poorly trained deep learning network would give
high vehicle detection on the daytime condition but provide a
poor performance on the night time. Thus, different types of
illumination conditions would affect the model’s performance
in detecting vehicle objects. This results to lower accuracy
obtained for vehicle counting systems.

Inspired by the work of [13], the data annotation tool is
used to increase the variability of training images for gener-
alization performance detection models. This tool consists of
three main steps, namely, (a) main process - used to draw
the bounding box, i.e. top-left and bottom-right points on
image objects for yolo training; (b) convert - to transform the
bounding box points into yolo input scheme, i.e. class id, x,
y, width height of the image objects, whereby x and y is the
centre point of the bounding box; (c) the process - used to split
the train and test dataset for yolo training. In this work, about
510 new image objects from the video samples are used. The
breakdown of total annotated vehicle images are as follows:
bicycle (0), car (1866), motorcycle (457), bus (53) and truck
(74).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Our experiments contain two stages. In the first stage,
we compare the proposed object detection algorithms, namely
Faster R-CNN, SSD and Yolov3 on a set of videos. Based on
the results of the first stage, we further extend the experiments
by applying data augmentation using a data annotation tool
to improve the detection performance. All the pre-trained
models are trained on the COCO dataset and available on the
TensorFlow detection model zoo (2019) and TensorNets [28].
The counting process takes some time, and it depends on the
number of image frames and system configuration. We have
performed experiments on Intel i5-8250 CPU @ 1.60GHz with
8GB memory and GeForce MX150 GPU with 6GB memory.
In this work, vehicle accuracy counting is used to evaluate
the performance of each detection model. It is determined by
counting vehicles with ROI passing the reference line in image
frames. The vehicle counting accuracy (VCA) is computed in
equation (1) as follows:

V CA(%) =
Number of Detected V ehicles

Total Number of V ehicles
× 100 (1)

A. Dataset

In this work, 10 sample traffic video clips from the same
location in two different times of the day (day and night) are
used in the experiments. The video was recorded in Kuala
Lumpur, Malaysia from 06 a.m to 09 p.m under clear-sky
condition. Fig. 5 shows some examples of day and night
images with different traffic volume and day-night illumination
variations. Table I shows the video list recorded from a CCTV
camera and time information used in the experiments. Only
vehicles flow in one direction is considered for counting. These
videos are then converted to frames and each frame becomes
the input to object detection algorithm while, the output are

Fig. 5. Some Image Examples under Clear-Sky Condition in Kuala Lumpur,
Malaysia. Top Half shows the Day Condition and Bottom Half shows the

Night Condition.

TABLE I. DETAIL OF VIDEO FILES USED IN EXPERIMENT 1. THE VIDEOS
ARE TAKEN FROM 06 A.M TO 09 P.M. THE VALUE IN BRACKET SHOWS

THE GROUND-TRUTH NUMBER OF VEHICLES FOR EACH SESSION.

Video Files with time
Video File Time (a.m/p.m) Video File Time (a.m/p.m)
Video 1 06 a.m (140) Video 6 01 p.m (266)
Video 2 08 a.m (453) Video 7 02 p.m (322)
Video 3 10 a.m (262) Video 8 04 p.m (358)
Video 4 11 a.m (280) Video 9 07 p.m (237)
Video 5 12 p.m (299) Video 10 09 p.m (202)

bounding boxes with coordinate and object label. After that,
three detector models are used for comparison to be selected
as the best vehicle detector for the counting system. These
model are chosen based on the popularity in both past studies
and availability of pre-trained models. Besides, they are widely
used in industries for ease of implementation, especially on
TensorFlow framework. These models are (a) Faster R-CNN
(b) SSD and (c) YOLOv3. The first experiment (Experiment 1)
investigates the best deep detector models for vehicle counting
system in the day and night conditions for benchmarking. The
second experiment (Experiment II) looks at improving the best
method in the first experiment on selected conditions of traffic
flow.

B. Experiment I

The best model in Experiment I is YOLOv3 and a detailed
result is presented in the next section. Experiment I resulted in
YOLOv3 as the architecture with the highest average counting
accuracy for 10 sample videos tested, as shown in Table II.
However, it was found that the performance of this model
was worse in poor illumination, especially in the morning
and night conditions. The YOLOv3 scores average vehicle
counting accuracy of 66.29% compared to Faster R-CNN,
which obtains the second-best average accuracy of 38.12%.
On the other hand, SSD recorded the fastest processing time
of 0.135 seconds per frame but has the lowest accuracy of
14.53%. The high standard deviation of the YOLOv3 and other
models is due to the high variation of illumination change,
especially in the morning and night conditions. As shown in
Table III, YOLOv3 achieves very high accuracy during the
daytime (10 a.m. to 2 p.m.) but in the early morning (6 a.m.),
and night (9 p.m.) the accuracy is very low which is similar to
other models. The overfitting of the pre-trained models can be
seen appearing in all models tested here. Fig. 6 shows some
detection results using different detection models, i.e. SSD,
Faster R-CNN and Yolo V3. The accuracy vehicle counting
comparison between all three models on two different time
conditions (day and night) is shown in Table III.

www.ijacsa.thesai.org 701 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 6. Some Detection Results in Experiment I using Different Models i.e.
SSD, Faster R-CNN and YoloV3, respectively.

TABLE II. AVERAGE COUNTING ACCURACY AND PROCESSING TIME FOR
EACH MODEL

Model Counting Accuracy
(%)

Processing Time
(frame per second)

YOLOv3
DarkNetv19

66.29±33.35 0.26 ±0.013

FasterRCNN
ResNet101

38.12±26.26 0.532±0.037

SSD Inception 14.53±14.40 0.135±0.004

C. Experiment II

The best performing model in experiment I is selected for
further evaluation in Experiment II. The previous results have
shown that the pre-trained models have some problems with a
high variation of illumination in morning and night conditions.
Thus, to overcome the problem, the data annotation technique
is proposed. After that we compare the performance of the
retrained model with the pre-trained model using the suggested
data annotation tool. The retraining is done using a custom
dataset taken from the video files. Firstly, the video files of
type AVI are converted to a series of image frames of JPG
type. Using the YOLO Annotation Tool [13], which is a Python
executable program, the images of the vehicles are annotated
and labelled. Bounding boxes are drawn on images of vehicles
on video frames and labelled accordingly. To simulate the real
traffic flow, two video clips were used one which is taken in the
early morning (06 a.m.) and another at night (09 p.m.). In this
work, about 510 images from poorly illuminated video samples
were used. Breakdown of total annotated vehicles is bicycle
(0 image sample), car (1866 image samples), motorcycle (457
image samples), bus (53 image samples) and truck (74 image
samples). In this software, three additional files are required to
perform the retraining. The files are (a) obj.names - contains
the classes that need to be trained (b) obj.data - the pointers
towards the location of the annotation files and images and (c)

TABLE III. THE OVERALL ACCURACY VEHICLE COUNTING ACCURACY
FOR ALL DETECTOR MODELS.

Video time YOLOv3
DarkNet19
(%)

Faster RCNN
ResNet101
(%)

SSD Inception
v2 (%)

06 a.m 2.86 0.71 0.00
08 a.m 73.73 23.18 11.26
10 a.m 94.27 61.45 17.94
11 a.m 83.93 52.14 8.58
12 p.m 96.32 28.76 10.37
01 p.m 89.84 30.08 12.78
02 p.m 86.65 82.30 40.68
04 p.m 74.02 70.95 41.62
07 p.m 57.82 29.11 2.11
09 p.m 3.47 2.47 0.00

Fig. 7. Some Detection Results using YOLOv3 DarkNet Detector Model (a)
Top Half shows Detected Vehicle before Retraining (b) Bottom Half shows

Detected Vehicle after Retraining using a Data Annotation Tool.

TABLE IV. THE AVERAGE DETECTION ACCURACY BEFORE AND AFTER
DATA ANNOTATION

Detection
Model

Before annotation
(%)

After annotation
(%)

YOLOv3
DarkNet19

66.29 ± 33.35 80.90 ± 11.62

tiny-yolo.cfg - is the model configuration file. The retraining
process can be executed by using the training command to
YOLOv3 DarkNet framework in the YOLO data annotation
tool. The output of this process will be weight files for each
100th iteration.

The final weight file that is produced when the average
loss ratio has saturated will be used for Experiment II. Then,
results from this retrained YOLOv3 model is compared with
the result in Experiment I that corresponding to the same video
clip samples. The experiment shows that the counting accuracy
has improved very significantly with counting accuracy from
2.86% to 75.71% and 3.47% to 76.73% in the morning (06
a.m) and night (09 p.m) conditions respectively. This is due to
the model’s ability to detect more vehicles in poor illumination
conditions. Fig. 7 shows the average counting accuracy results
of YOLOv3 before and after retraining using a data annotation
for vehicle counting system. The counting system improves
very significantly with average accuracy from 66.29% to
80.90%. Table IV shows the average detection accuracy on
the standard Yolo V3 and the proposed data augmentation on
Yolo V3.

V. CONCLUSION AND FUTURE WORK

This paper addresses the challenges in the selection of
the best model for the development of a vehicle counting
system for a custom dataset. Comparison of three models
(Faster R-CNN ResNet101, SSD Inception, YOLOv3 Dark-
Net) which were pre-trained on the COCO dataset showed that
YOLOv3 DarkNet19 is achieving the best result. The results
presented can be used as a reference for future development
of a similar counting system. However, YOLOv3 DarkNet19
performs worse in the morning and night condition of the
custom dataset. Thus, the solution is to retrain the model
with a custom dataset from the poor illumination condition
environment using a data annotation tool and employs transfer
learning with the weight training initialization method. The
resulting model improves the counting accuracy very signif-
icantly. A tracking mechanism based on consecutive frames
comparison was also proposed to aid the counting system. This
mechanism may work only on vehicles moving in one direction
without occlusion. In future studies, perhaps some uniformity

www.ijacsa.thesai.org 702 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

can be done on the meta -architectures and detectors. Besides,
the model used for retraining was a light-weighted version
of YOLO, which is called tiny-YOLO. This is due to the
limitation on the available hardware specification. To retrain
YOLO the recommended minimum GPU memory is 4GB,
any specification below that is only suitable for training tiny-
YOLO. Thus, it is recommended that future studies need to
consider the retraining of YOLO instead of tiny-YOLO to
compare the performances.

ACKNOWLEDGMENT

This work has been supported by the Malaysia’s Min-
istry of Higher Education Fundamental Research Grant
FRGS/1/2019/ICT02/UKM/02/8.

REFERENCES

[1] P. Zheng and M. Mike, “An investigation on the manual traffic count
accuracy,” in 8th International Conference on Traffic and Transportation
Studies (ICTTS 2012), 2012.

[2] Z. Zhang, K. Liu, F. Gao, X. Li, and G. Wang, “Vision-based vehicle
detecting and counting for traffic flow analysis,” 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 2267–2273, 2016.

[3] M. S. Chauhan, A. Singh, M. Khemka, A. Prateek, and R. Sen,
“Embedded cnn based vehicle classification and counting in non-laned
road traffic,” in ICTD ’19, 2019.

[4] B. Dey and M. K. Kundu, “Turning video into traffic data - an
application to urban intersection analysis using transfer learning,” IET
Image Processing, vol. 13, pp. 673–679, 2019.

[5] H. Song, H. Liang, H. Li, Z. Dai, and X. Yun, “Vision-based vehicle
detection and counting system using deep learning in highway scenes,”
European Transport Research Review, vol. 11, pp. 1–16, 2019.

[6] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
2016.

[7] Á. A. Garcı́a, J. A. Álvarez, and L. M. Soria-Morillo, “Evaluation of
deep neural networks for traffic sign detection systems,” Neurocomput-
ing, vol. 316, pp. 332–344, 2018.

[8] N. Yadav and U. Binay, “Comparative study of object detection algo-
rithms,” IRJET, vol. 11, 2017.

[9] A. Arinaldi, J. A. Pradana, and A. A. Gurusinga, “Detection and
classification of vehicles for traffic video analytics,” in INNS Conference
on Big Data, 2018.

[10] B. Dey and M. K. Kundu, “Turning video into traffic data – an
application to urban intersection analysis using transfer learning,” IET
Image Processing, vol. 13, pp. 673–679, 2019.

[11] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” ArXiv, vol. abs/1808.01974, 2018.

[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 22, pp. 1345–1359,
2010.

[13] M. Murugave., “How to train yolov3 to detect cus-
tom objects,” https://medium.com/@manivannan data/
how-to-train-yolov3-to-detect-custom-objects-ccbcafeb13d2, 2018.

[14] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[15] A. Krizhevsky, V. Nair, and G. Hinton, “Learning multiple layers of

features from tiny images,” Tech. Rep., 2009. [Online]. Available:
http://www.cs.toronto.edu/∼kriz/cifar.html

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS 2012, 2012.

[17] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 1137–
1149, 2015.

[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[20] R. B. Girshick, “Fast r-cnn,” 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1440–1448, 2015.

[21] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 779–788,
2015.

[22] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
2014 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 580–587, 2013.

[23] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6517–6525, 2016.

[24] ——, “Yolov3: An incremental improvement,” ArXiv, vol.
abs/1804.02767, 2018.

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in ECCV, 2016.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–9, 2015.

[28] T. H. Lee., “Tensornets,” https://github.com/taehoonlee/tensornets,
2018.

www.ijacsa.thesai.org 703 | P a g e

