
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

19 | P a g e
www.ijacsa.thesai.org

Impacts of Decomposition Techniques on

Performance and Latency of Microservices

Chaitanya K. Rudrabhatla

Executive Director-Solutions Architect

Media and Entertainment Domain, Los Angeles, USA

Abstract—Micro service architecture (MSA) has undoubtedly

become the most popular modern-day architecture, often used in

conjunction with the rapidly advancing public cloud platforms to

reap the best benefits of salability, elasticity and agility. Though

MSA is highly advantageous and comes with a huge set of

benefits, it has its own set of challenges. To achieve the

separation of concerns and optimal performance, defining the

boundaries for the services clearly and their underlying

persistent stores is quintessential. But logically segregating the

services is a major challenge faced while designing the MSA.

Some of the guiding principles like Single responsibility principle

(SRP) and common closure principle (CCP) are put in place to

drive the design and separation of microservices. With the use of

these techniques the service layer can be designed either by

(i) Building the services related to a business subdomain and

packaging them as a microservice; (ii) or Defining the entity

relationship model and then building the services based on the

business capabilities which are grouped together as a

microservice; (iii) or understanding the big picture of the

application scope and combining both the strategies to achieve

the best of both worlds. This paper explains these decomposition

approaches in detail by comparing them with the real-world use

cases and explains which pattern is suitable under which

circumstances and at the same time examines the impacts of

these approaches on the performance and latency using a
research project.

Keywords—Microservices; decomposition techniques; single

responsibility principle; common closure principle; performance;

latency

I. INTRODUCTION

In the recent past all the applications were built using a
monolithic design pattern. This design pattern was a great
advancement from the traditional client-server architecture
which was prevalent before [1]. Monolithic design pattern was
well suited and worked fine in the waterfall software
development methodology. But the cutthroat competition and
everchanging nature of the businesses demanded a software
model which is more agile and nimble enough to cope up with
the business needs. This thought process gave birth to the
agile methodology. In the agile methodology, the software
needs to be developed quickly in smaller pieces and deployed
continuously to production. Monolithic systems struggled hard
to find their place in the agile methodology. It was soon
discovered that monoliths are more complex in nature due to
their fundamental design, where the entire application code
into a single deployable unit. Due to this design, the code
changes need to be well planned in advance and need to be
thoroughly tested before deploying to production and thus

leading to longer build cycles. This was found to be anti-agile.
These issues have prompted the search for the newer design
patterns which involved breaking down the monolith to a
more loosely coupled services. Service Oriented Architecture
(SOA) is one such pattern which evolved on these lines [2]. In
this pattern, backend services are isolated and distributed. But
these services are handled by a layer called Enterprise Service
Bus (ESB) which is an integration and guarding layer for the
entire backend. Though ESB pattern has the advantages of
conducting the health checks, performing the routing for the
backend services, it was soon found to be a cumbersome layer
and a bottle neck as the application services grow in size. To
handle these shortfalls, Microservice Architecture (MSA) was
introduced with the similar premise of isolation and separation
of concerns as proposed by SOA [3], but with a lightweight
design.

In MSA, the application services are designed to be
heterogeneous, light weight, independent, isolated and highly
distributed in nature [20]. The biggest advantage of micro
services is that it supports the services to be built in any
technology of choice and permits them to be deployed
independently from each other. This greatly reduces the
efforts and simplifies the development, testing, build and
deployment cycles as the changes are limited to a single
service rather than the entire monolith. With the proliferation
of cloud technologies and advancements in containerization
and their orchestration technologies like Kubernetes, Docker
swarm etc., the microservice architecture became even more
efficient. This has resulted in a continuous integration and
continuous delivery (CI/CD) which is the most important
feature of agile methodology [6]. But these benefits can only
be harnessed if the backend services are carefully examined
and decomposed in the most optimal way by considering the
big picture of the entire application scope rather than in an ad-
hoc way. If not, this design might prove counter-productive
and lead to latency, complexity and inefficiency [4]. Rest of
this paper is organized as follows – In section (II) various
decomposition techniques and their benefits and shortfalls are
explained by considering a real-world e-commerce scenario.
In section (III) the research project which was conducted to
examine the impacts of decomposition techniques on latency
and performance [12] of the system is explained and the
results are compared. In section (IV) summary, conclusions
are provided and an overview of future research work is given.

II. DECOMPOSITION OF MICROSERVICES

For gaining the benefits of MSA, it is very important to
strategize the decomposition of micro services [17]. As the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

20 | P a g e
www.ijacsa.thesai.org

name suggests, the services must be designed to be fine
grained and independent. There are two major guiding
principles which can drive the decomposition of services.
(i) Single Responsibility Principle (SRP) is a guiding principle
which states that a service class should exist to serve a single
major responsibility and that class should only have one
reason to change. Due to the isolation proposed by this theory,
it is highly beneficial to apply SRP to build the microservices
that implement a small set of closely related business
functions. (ii) The second guiding principle states that it is not
only in the initial development but also that the design should
consider the future changes in such a way that they impact a
single service. That is because changes that affect multiple
services require more planning, coordination and testing. This
slows down development and deployment cycles and would
present the same issues of a monolithic application design.
This constitutes the fundamental essence of Common Closure
Principle (CCP), which is a second guiding principle for
service decomposition. As per this principle if there are
multiple micro services which serve a business functionality, a
change in the business rule should only impact one single
service rather than all the microservices involved. Using these
two guiding principles, the services can be decomposed into
granular microservices [15][16]. The below section examines
the ways to implement the decomposition by taking a real-
world example of a module from an e-commerce system [19].

A. Decomposition based on Domain Driven Desgin

Domain Driven Design is a decomposition technique
which is based on the common closure principle (CCP). As
per this principle, all the functions and classes which get
impacted by a single business rule change should be packaged
together as a single microservice. Some of the key
considerations for this implementation are:

1) Services must be designed to be cohesive in nature.

Which means that the methods, functions and services

included in a microservice should strongly relate to activities

related to a granular business functionality.

2) Each service should be designed to be completely

autonomous. Which means if the business rule changes, it

should be possible to apply a patch and deploy the service

independently without impacting anything else.

To explain these designs, let us consider an e-commerce
application module [5]. This module has three primary
business entities: (i) User entity; (ii) Order entity; and (iii)
Item Details entity. Here are some of the important business
functionalities around each of these entities:

1) User Entity Responsibilities

 It stores the user details.

 It maintains the user profile settings.

 It has the user address details.

 It stores the payment details like credit card
information.

2) Order Entity Responsibilities

 It maintains the Order history.

 It stores the item details of the Order.

 It stores the Order shipment details.

 It stores the payment details for each order.

3) Item Entity Responsibilities

 It contains the Item sku details.

 It maintains the item inventory details.

 It maintains the like score of the other items to give
recommendations.

As it can be visualized from the Fig. 1, the business
entities in the real world are not independent of each other.
They need to overlap with one another for various use cases.
For example – User entity relates to Order entity when there is
a screen in the UI interface which displays the order history of
the user. There will be a foreign key relationship between the
User to Order entities. Similarly, an Order entity maintains a
relationship with Item entity, such that when the item in a
particular order is clicked, it takes to the details page of that
particular item. In the same lines, User entity maintains a
relationship with Item entity as the application might show the
recommended items for purchase for that particular user based
on the items purchased by the user in earlier transactions.

Now applying the Decomposition technique based on the
Domain Driven Design [18], it can be visualized that the
application module might be designed to have three
microservices which can deal with the business functionality
of each domain as shown in Fig. 2.

Using this principle there is one microservice per each
business domain. Applying the Database per Service Pattern
[7], there would be one database per microservice to achieve
the isolation needed. This model is advantageous for the
following reasons: (i) Each business functionality is
encapsulated in its own micro service. Thus, it complies to
Single Responsibility Principle (SRP). (ii) Changes related to
a business functionality are mostly limited to its own micro
service. Which means faster time to deploy the changes.

Fig. 1. Overlapping Business Entities in an E-commerce Application.

http://www.objectmentor.com/resources/articles/srp.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

21 | P a g e
www.ijacsa.thesai.org

Fig. 2. Domain Driven Model for Microservice Decomposition.

However, it is not always advantageous as this design
might lead to cross service events and communications which
might complicate the maintenance as the application and
business functionality grows. Here are some of the scenarios
where the interservice dependency or communication is
needed:

 Consider a scenario where the order is in progress and
user updates the shipping address in the user profile. In
this case, the address for the current order in progress
may need to be updated as well upon the user
confirmation. In this case, “update address” event on
the User DB need to trigger the action for Order
Service.

 Consider the other scenario where the order is in
progress for shipment and there is a change in
inventory because of which the shipment needs to be
cancelled. In this case an “update inventory” event on
the Item DB needs to trigger an action for the Order
Service.

 In the same lines, when user changes the personal
preferences, this event needs to trigger an action on the
Item Service so that the recommended items are shown
as per the new preferences.

There are multiple ways to handle this cross-service events
and communication:

1) Inter-Service communication based on the Event

Choreography technique [8], where each service can discover

the other service using private load balancers and there by

trigger the action in the destination service. This can be seen

in Fig. 3.

Although this technique works for limited use cases, it has
the following challenges:

a) It becomes difficult in the larger applications as the

number of events [11] and triggers grow in number due to the

intricacies of the business functionalities.

b) Also, the microservices no longer become

independent as one team developing the Service1 may need to

depend on the other team developing Service2 to call the

actions in it.

c) The network traffic would also increase which might

be another factor to consider.

d) It might also cause latency due to the inter service

communication over network.

That gives rise to the second approach for communication.

2) Central orchestrator approach [9] where services are

unaware of each other but post the events to a central

orchestrator which takes care of firing the relevant actions in

the destination services. This can be seen in Fig. 4.

Fig. 3. Inter-Service Communication using Event Choreography and Service

Discovery-Routing.

Fig. 4. Inter-Service Communication using Orchestrator or Central

Coordinator.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

22 | P a g e
www.ijacsa.thesai.org

This alternative works fine even in large and complicated
applications. But it comes with its own set of challenges:

a) When the number of event handlers grow, the central

coordinator becomes a fat layer. This becomes an anti-pattern

for micro service architecture where each component needs to

granular and light weight.

b) There is a risk that the central coordinator can act as

a single point of failure. If this layer fails, entire application

functionality might get impacted as it is responsible for

multiple service actions.

c) Eventually this pattern might also introduce latency

as the logical decisions to trigger the actions to the relevant

services based on the incoming events might get tricky.

B. Decomposition based on Business capability

Decomposition based on Normalized Entity Relationship
model is a design pattern where the major entities are
normalized to the optimal level [14] and services are designed
for the management of normalized entities involved in the
business transaction. In this design, the services are designed
around the activities of the entities. This can be visualized
based on the Fig. 5. In this model the entities are broken down
to the level where they can be considered standalone and the
CRUD operations needed for managing the entities.

This approach is considered as an anti-pattern in the
microservice architecture as it might pose a risk where a single
transaction might have to flow through lot of management
services before persisting finally. In case of a roll back this
might get even more complex due to the large number of
services which are granular and identifying the roll back steps
might become challenging.

C. Decomposition based on the Hybrid approach

This is a third approach where the bigger picture of the
application flows is analyzed and a hybrid approach which is a
combination of both the approaches – domain based, and
capability-based decompositions are used to come up with a
hybrid model to gain the efficiencies. Fig. 6 shows the hybrid
approach where a combination of subdomains like, user
service, item service and order service are used and capability-
based services like, address management service and
inventory management service are used.

Fig. 5. Decomposition of Services based on the Business Capabilities.

Fig. 6. Decomposition of Services based on Hybrid Approach.

This approach is beneficial because it combines the
benefits of both the approaches. It packages the subdomain in
the single service for the most part. But in some cases which
lead to actions across multiple entities and warranting
interservice communication can be isolated as business
capability-based services.

III. RELATED WORK

Related work is done to compare the performance [10]
[13] and latency of decomposition techniques by building the
micro services using each of the techniques mentioned in the
earlier section and response times are observed when a
database transaction is invoked. For this work Java based
Spring boot microservices are used. MongoDB is used as the
backend database.

A. Run 1 – Domain Driven Decomposition

For this simulation, four micro services MS1, MS2, MS3
and MS4 were used each of them having their individual
MongoDB databases DB1, DB2, DB3 and DB4. DB1 with 2
dependent collections C11, C12 is used. Similarly, C21, C22
in DB2 C31, C32 in DB3 and C41, 42 in DB4. Eureka is used
as the service discovery layer and Zuul as the routing
mechanism for this experiment. First run is performed where a
small message of size 50 bytes is persisted by calling one
micro service MS1 and recorded the time in milli seconds.
Later a test is performed where the transaction would persist
in multiple collections C12 and C22. For this MS1 would
make a call to a method hosted in MS2 to persist the data in
C22 via discovery and routing layers. The tests are repeated
couple more times where it would persist in 3, 4 and 5
collections in one transaction and time taken is recorded.
Fig. 7 shows the performance of this technique.

B. Run 2 – Business capability Decomposition

In this run, the dependent collections were split as
individual databases and built as six microservices MS1 to
MS6. The reason for this is that in this model the services are
built based on the business capability. This is to replicate the
manager services for the normalized entities. In this approach
a logic is added such that the transaction progresses
sequentially in all steps. This is to replicate the behavior
where the persistence would wait for the previous step to
complete. Though this technique made the complexity of
management services simple, the transactions were more time
consuming as can be seen in Fig. 8.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

23 | P a g e
www.ijacsa.thesai.org

C. Run 3 – Hybrid Decomposition

A hybrid approach is simulated where the same number of
micro services as Run 1 are used, namely, MS1, MS2 MS3
and MS4. But the number of dependent collections are

increased in MS1 and MS2 to 3 from 2 and reduced the
collections in DB3 and DB4 to 1. This is to simulate a hybrid
approach. The transaction which spans multiple collections is
run and the timing is recorded as shown in Fig. 9.

Fig. 7. Performance of Domain Driven Approach.

Fig. 8. Performance of Entity Driven Approach.

Fig. 9. Performance of Hybrid Approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

24 | P a g e
www.ijacsa.thesai.org

IV. CONCLUSION

Though there is no standard approach for decomposing the
micro services, it is found that Domain driven decomposition
technique to be more superior than the entity model driven
business capability-based decomposition. However, in any
real time application design, choosing a hybrid approach by
considering the big picture of the business functionalities and
transactions involved would yield better results in the
performance. Future scope of work includes simulating more
complex transactions in each of the models and analyzing the
resource consumption, throughput and latency.

REFERENCES

[1] Salah, Tasneem & Zemerly, Jamal & Yeun, Chan & Al-Qutayri,

Mahmoud & Al-Hammadi, Yousof. (2016). The evolution of distributed
systems towards microservices architecture. 318-325.

10.1109/ICITST.2016.7856721.

[2] K., Chaitanya. (2018). A Systematic Study of Micro Service

Architecture Evolution and their Deployment Patterns. International
Journal of Computer Applications. 182. 18-24. 10.5120/ijca2018918153.

[3] S. Newman, Building Microservices. " O'Reilly Media, Inc.", 2015.

[4] Zhu, Yuhao & Richins, Daniel & Halpern, Matthew & Reddi, Vijay.

(2015). Microarchitectural implications of event-driven server-side web
applications. 762-774. 10.1145/2830772.2830792. R. Nicole, “Title of

paper with only first word capitalized,” J. Name Stand. Abbrev., in
press.

[5] Asrowardi, Imam & Putra, S & Subyantoro, E. (2020). Designing

microservice architectures for scalability and reliability in e-commerce.
Journal of Physics: Conference Series. 1450. 012077. 10.1088/1742-

6596/1450/1/012077.

[6] Balalaie, Armin & Heydarnoori, Abbas & Jamshidi, Pooyan. (2016).
Microservices Architecture Enables DevOps: an Experience Report on

Migration to a Cloud-Native Architecture. IEEE Software. 33. 1-1.
10.1109/MS.2016.64.

[7] Messina, Antonio & Rizzo, Riccardo & Storniolo, Pietro & Tripiciano,

Mario & Urso, Alfonso. (2016). The Database-is-the-Service Pattern for
Microservice Architectures. 9832. 223-233. 10.1007/978-3-319-43949-

5_18.

[8] Rudrabhatla, Chaitanya. (2018). Comparison of Event Choreography

and Orchestration Techniques in Microservice Architecture.
International Journal of Advanced Computer Science and Applications.

9. 10.14569/IJACSA.2018.090804.

[9] Malyuga, Konstantin & Perl, Olga & Slapoguzov, Alexandr & Perl,

Ivan. (2020). Fault Tolerant Central Saga Orchestrator in RESTful
Architecture. 278-283. 10.23919/FRUCT48808.2020.9087389.

[10] Jayasinghe, Malith & Chathurangani, Jayathma & Kuruppu, Gayal &

Tennage, Pasindu & Perera, Srinath. (2020). An Analysis of Throughput
and Latency Behaviours Under Microservice Decomposition.

10.1007/978-3-030-50578-3_5.

[11] Dayarathna, Miyuru & Perera, Srinath. (2018). Recent Advancements in
Event Processing. ACM Computing Surveys. 51. 1-36.

10.1145/3170432.

[12] Dayarathna, Miyuru & Suzumura, Toyotaro. (2013). A Performance
Analysis of System S, S4, and Esper via Two Level Benchmarking.

8054. 225-240. 10.1007/978-3-642-40196-1_19.

[13] G. Mazlami, J. Cito and P. Leitner, "Extraction of Microservices from
Monolithic Software Architectures," 2017 IEEE International

Conference on Web Services (ICWS), Honolulu, HI, 2017, pp. 524-531,
doi: 10.1109/ICWS.2017.61.

[14] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, Yuanfang Cai,
"Functionality-Oriented Microservice Extraction Based on Execution

Trace Clustering", Web Services (ICWS) 2018 IEEE International
Conference on, pp. 211-218, 2018.

[15] Justas Kazanavičius, Dalius Mažeika, "Migrating Legacy Software to

Microservices Architecture", Electrical Electronic and Information
Sciences (eStream) 2019 Open Conference of, pp. 1-5, 2019.

[16] Francisco Ponce, Gastón Márquez, Hernán Astudillo, "Migrating from

monolithic architecture to microservices: A Rapid Review", Chilean
Computer Science Society (SCCC) 2019 38th International Conference

of the, pp. 1-7, 2019.

[17] Sara Hassan, Rami Bahsoon, Rick Kazman, "Microservice transition and
its granularity problem: A systematic mapping study", Software:

Practice and Experience, 2020.

[18] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga and D. Kröger,
"Microservice Decomposition via Static and Dynamic Analysis of the

Monolith," 2020 IEEE International Conference on Software
Architecture Companion (ICSA-C), Salvador, Brazil, 2020, pp. 9-16,

doi: 10.1109/ICSA-C50368.2020.00011.

[19] W. Hasselbring and G. Steinacker, "Microservice Architectures for
Scalability Agility and Reliability in E-Commerce", Proceedings of the

IEEE International Conference on Software Architecture Workshops,
pp. 243-246, 2017.

[20] Holger Knoche, Wilhelm Hasselbring, "Using Microservices for Legacy
Software Modernization", Software IEEE, vol. 35, no. 3, pp. 44-49,

2018.

