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Abstract—Early diagnosis and accurate identification to 
tomato leaf diseases contribute on controlling the diffusion of 
infection and guarantee healthy to the plant which in role result 
in increasing the crop harvest. Nine common types of tomato leaf 
diseases have a great effect on the quality and quantity of tomato 
crop yield. The tradition approaches of features extraction and 
image classification cannot ensure a high accuracy rate for leaf 
diseases identification. This paper suggests an automatic 
detection approach for tomato leaf diseases based on the fine 
tuning and transfer learning to the pre-trained of deep 
Convolutional Neural Networks. Three pre-trained deep 
networks based on transfer learning: AlexNet, VGG-16 Net and 
SqueezeNet are suggested for their performances analysis in 
tomato leaf diseases classification. The proposed networks are 
carried out on two different dataset, one of them is a small 
dataset using only four different diseases while the other is a 
large dataset of leaves accompanied with symptoms of nine 
diseases and healthy leaves. The performance of the suggested 
networks is evaluated in terms of classification accuracy and the 
elapsed time during their training. The performance of the 
suggested networks using the small dataset are also compared 
with that of the-state-of-the-art technique in literature. The 
experimental results with the small dataset demonstrate that the 
accuracy of classification of the suggested networks outperform 
by 8.1% and 15% over the classification accuracy of the 
technique in literature. On other side when using the large 
dataset, the proposed pre-trained AlexNet achieves high 
classification accuracy by 97.4% and the consuming time during 
its training is lower than those of the other pre-trained networks. 
Generally, it can be concluded that AlexNet has outstanding 
performance for diagnosing the tomato leaf diseases in terms of 
accuracy and execution time compared to the other networks. On 
contrary, the performance of VGG-16 Net in metric of 
classification accuracy is the best yet the largest consuming time 
among other networks. 

Keywords—Deep learning; Alex; squeeze; VGG16 networks; 
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I. INTRODUCTION 
In the past decades, the plant diseases identification were 

mostly performed through the optical observation by farmer. 
Unfortunately, the process of detection and diagnosis of crop 
diseases by this method were error-prone, expensive and time 
consuming. In addition, there is no local experience for dealing 
with any new diseases maybe occur in places that were 
previously unidentified [1]. Machine learning techniques has 

been emerged as an intelligent technique to be used in large 
scale of this field. They were applied in early stage of plant 
diseases diagnosis and classification.  Li et al. [2] suggested the 
K-means clustering segmentation method to the grape disease 
images. The authors in this work proposed a SVM classifier 
which was designed using thirty one of significant features that 
were selected to identify both of grape downy mildew disease 
and grape powdery mildew disease. The classification rates in 
testing phase were respectively 90% and 93.33%.  Athanikar 
and Badar [3] implemented Neural Network to classify the 
potato leaf image into category of healthy and diseased. Their 
results demonstrated that BPNN could effectively detect the 
spots leaf disease and could particularly categorized the disease 
type with accuracy 92%. 

Recently, the deep learning is getting more interest, 
particularly the Convolutional Neural Network (CNN). CNN is 
a type of deep learning structure that was designed for the 
classification purposes especially for digital image 
classification and it has been regarded as one of the best 
approaches for pattern recognition tasks. The Manual 
extraction of features in the conventional techniques is a 
tedious task and researches need mostly a lot of time to test and 
extract the suitable features for the classification. On contrast, 
CNN can automatically extract features of image by tuning the 
parameters in both of convolutional and pooling layers. CNN 
also has another advantage which is the ability of learning from 
big data set. On contrary, the algorithms of the conventional 
machine learning usually needs only hundreds samples that are 
used for training but when larger training sets are used, these 
algorithms converge slowly or maybe cannot converge.  Deep 
learning method has the robustness and the ability of 
generalization so that it outperforms in many fields such as: 
signal processing [4], pedestrian detection [5], face recognition 
[6], road crack detection [7], and biomedical image analysis 
[8]. Deep learning techniques have also accomplished 
impressive outcome in the agriculture field and were benefit 
for horticultural workers and smallholders including: 
recognition of weeds [9] selection of fine seeds [10], pest 
identification [11], fruit counting [12], and research on land 
cover [13].  The wide spread of deep CNNs in the agriculture 
field has lead to a big progress especially in plant diseases 
classification, in which they can find high variance of 
pathological symptoms in visual appearance. In addition to 
this, CNN can find the high dissimilarity in intra-class and 
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even the low similarity between inter-classes that perhaps are 
noticed only by the botanists [14].  More studies of using CNN 
in the field of crop disease recognition and identification as a 
new hot spot research in agricultural field were presented in 
[15-23]. These studies demonstrated that CNNs have not only 
reduced the requirements of image preprocessing, but also 
improved the accuracy of diseases recognition. Lee et al. [24] 
proposed a CNN approach to identify leaf images and reported 
an average accuracy of 99.7% on a dataset covering 44 species, 
but the scale of datasets was very small. 

In this paper three pre-trained deep networks based on the 
transfer learning and fine tuning are suggested for tomato leaf 
diseases classification.  The performance analysis of the three 
networks in existence of different number of images and with 
variation to the values of learning parameters are evaluated 
through the comparison and results analysis. The rest of the 
paper is organized as follows. Section 2 reviews the related 
works of the application of transfer learning to CNN in a 
different fields. Section 3 introduces the structures of the three 
pre-trained networks: AlexNet, VGG-16Net and SqueezeNet in 
addition to the used data set of tomato leaf diseases. The 
experimental results of the fine tuning and the transfer learning 
-based pre-trained networks are presented in Section 5. Finally 
Section 6 concludes the analysis to the suggested networks 
performances and the results in addition to the future work. 

II. RELATED WORKS 
Deep learning networks can  implemented  the transfer 

learning either by using the pre-trained network to extract 
attributed features that can be applied to a new field or via  fine 
tuning the weights of network  through its training  with a new 
data set.  The transfer learning has been applied to deep 
networks in different domains with different applications. In 
the work [25], the transfer learning was utilized in the 
biometrics domain in which the joint probabilistic was 
exploited for face recognition to cope the problem of 
insufficient images of the wanted identities. Also, among the 
applications of applying transfer learning-based deep leaning in 
the biometrics are the ear recognition as they were introduced 
in the works [26-27]. In [28], they also compared AlexNet 
architecture, the 16-layer VGG model architecture, and the 
latest SqueezeNet architecture for ear recognition using limited 
training data. The outcomes of this work showed that the 
architecture of SqueezeNet trained by using the learned 
parameters with ImageNet data and its fine tuned through 
utilizing 1383 of ear images was the best model. In [29], the 
authors applied transfer learning to the well-known AlexNet 
Convolution Neural Network (AlexNet CNN) for human 
recognition based on ear images. The work in [30] compared 
the performance of the pre-trained CNN AlexNet with the 
same network but with its fine tuning for the application of 
Arabic characters recognition. Their results proved that the 
transfer learning based on fine tuning to AlexNet produced a 
higher accuracy compared to the same AlexNet model without 
tuning as a fixed feature extractor. Meanwhile, the plants 
identification using the 2015 LifeCLEF dataset based on the 
transfer learning through the fine tuning to the pre-trained deep 
networks GoogleNet, VGGNet and AlexNet as proposed in 
[31]. Their output results showed that the most affecting factor 
on the performance of the transfer learning based-fine tuning 

was the number of iterations.  Mohanty et al. [17] made a fine 
tuning to deep learning models that pre-trained on ImageNet to 
be used in identifying 14 crop species with 26 leaf diseases. 
The models were tested on the available a public dataset 
including 54,306 images of healthy and diseased plant leaves 
collected under controlled conditions. They achieved the best 
accuracy of 99.35% on a hold-out test dataset. Zhang et al. [32] 
addressed the detection issue of cherry leaf powdery mildew 
disease using GoogLeNet which achieved accuracy of 99.6%. 
Their results also demonstrated that the performance of deep 
learning model can be boosted by the transfer learning in crop 
disease identification. In [33], a united convolutional neural 
networks (CNNs) architecture based on an integrated method is 
suggested. The proposed United Model is designed to 
distinguish leaves with the common grape diseases, it achieves 
an average accuracy of validation 99.17% and accuracy of test 
98.57%. Also the work in [34] used the pre-trained models and 
multiple classifiers for detecting the potato leaf diseases. The 
logistic regression classifier with VGG19 outperformed the 
other classifiers by a classification accuracy 97.8% with the 
test dataset. 

CNN and the three pre-trained deep networks based on the 
transfer learning and fine tuning are explained in the next 
section. 

III. CONVOLUTIONAL NEURAL NETWORKS 
Convolutional Neural Network (CNN) is emerged inspiring 

from the researches in human brain cortex. It is developed to 
extract significant features by sequential operations of 
convolution and pooling [35]. Convolutional layers, pooling 
layer, activation function layers, dropout layers, and fully-
connected layers are the main layers in CNN architecture.  
Convolutional layers carry the outputs of convolution filters 
or kernels with preceding layer. The main parameters of these 
filters or kernels are the weights and biases which can be 
learned in each iteration through optimization function.  
Purpose of the optimization function is generating kernels that 
are a good data representation without error. Pooling layers 
are used for the down sampling to lower size of neuron and 
reduce the performance issue of over-fitting.  Max pooling 
operation is the most type used in pooling layers which 
captures the maximum value of the pooling window. 
Activation function layers are used to add non-linearity to the 
network. In the literature, there are a lot of activation functions 
such as sigmoid, tanh and ReLU that is the most one used 
[12].  Dropout layers are used to overcome the problem of 
over-fitting by randomly shut down the neurons in the network. 
Fully connected layers are utilized to calculate the scores or 
probabilities of classes. The classifier inputs are the results of 
the fully connected layers, the most well-known classifier is the 
softmax classifier. Since CNN is a supervised learning, the loss 
between the ground truth data and the network output is 
calculated and this loss is an input to the optimization 
algorithm. The most common optimization algorithm is the 
Stochastic Gradient Descent (SGD) algorithm in which this 
algorithm updates the weights according to the loss value 
calculated in each iteration. Both of the loss function and SGD 
are depicted in equations 1 and 2 as follows: 

𝐽(𝜔) = 1
𝑛
∑ 𝑦𝑖log (ℎ𝜔(𝑋𝑖))𝑛
𝑖=1              (1)  
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𝜔𝑡+1 = 𝜇𝜔𝑡 − 𝛼∇𝐽(𝜔𝑡)                      (2)  

where: x is the training sample with number of input data n, 
𝑦𝑖  is the true label data and ℎ𝜔(𝑋𝑖) is the predicted label of  
CNN network in a given current weights 𝜔. Also, 𝜇 is the 
momentum weight for both of current weights 𝜔𝑡  and learning 
rate 𝛼.  The most common CNN deep learning architectures 
such as AlexNet, SequezzeNet, and VGG-16 Net are briefly 
explained in the next section. 

A. AlexNet 
The first well known CNN was AlexNet and it  was among 

the early successful architectures of deep learning developed 
by author in [36] and it consists of several layers of  
convolution layers, Rectified Linear Unit (ReLU) and may be 
with batch normalization and Max-pooling in some layers. 
Each layer has many kernels and each kernel is initialized 
randomly at the beginning of training and through the 
optimization function the kernels are learned. The number of 
kernels at the preceding layer determines the dimension depth 
of the convolutional layers. Through the convolution, each 
kernel maps the preceding layer to new space. In this paper, the 
pre-trained model used in our study consists of five 
convolutional (conv) layers and three fully connected layers as 
shown in Fig. 1. The first convolution layer consists of 96 
filters, each one with dimension of 11 x 11 x 3 which is the 
height, width and depth, respectively and it is applied on an 
input image of size 227 x 227 x 3. Thus, the Rectified Linear 
Unit (ReLU) from the first convolution layer generates 96 
activation map. In the same fashion, the four remaining 
convolutions layers for performing the convolutional 
operations are respectively as follows: conv2 includes 256 
filters each one with dimension 5x5x48, conv3 includes 384 
filters each one with dimension 3x3x256, conv4 contains 384 
filters each one with dimension of 3x3x192 and finally conv5 
includes 256 filters each of them with dimension 3x3x192.  
Findings from these layers are activation maps with various 
neuron which activated in each map. The convolutional layers 
followed by ReLU, Max-pooling and normalization layers. 
ReLU is a nonlinear and a non-saturating activation function 
which is applied to the output of both of the 5 convolution 
layers and the last two fully connected layers. The function of 
Max-pooling layers are reducing the dimension of the previous 
convolution layer output through finding and saving the 
maximum value in the concerning field. The last two fully 
connected layers 6 and 7 have 4096 neurons where all of them 
are linked to each other, while the fully connected layer 8 (fc8) 
has 1000 output classes as trained with ImageNet data. The 
objective of Dropout layer is to randomly prevent the number 
of a network connections for training and this showed its 
ability to improve the network performance over test phase 
[37]. The final fc8 layer is followed by the softmax and 
classifier with 1000 output categories in which the loss 
function used is the cross entropy. 

B. VGG-16Net 
VGG-16Net is deeply learning series network and it 

consists of thirteen convolutional (conv) layers [38], each layer 
followed by ReLU layer and its architecture is shown in Fig. 2 
in which all conv layers are with green color. 

 
Fig. 1. The AlexNet Structure. 

 
Fig. 2. VGG-16 Net Structure. 

The first conv1 layer receives an input image with size 
equal to 224 x 224x3. The input image propagated through a 
set of conv layers having filters with receptive field of 3×3. 
Also the net architecture contains five max-pooling layers 
which are used for down-sampling with stride equals two. 
Max-pooling layers are implemented over a window of 2×2- 
pixels and they follow some of the conv layers.  In addition, 
there are three fully connected layers (fc) following the conv 
layers with channel size equal 4096, 4096, and 1000 
respectively.  Each neuron in fc layer accepts the input from 
the activations of the previous neuron layer. The output size of 
1000 in final fc layer represents the number of ImageNet 
categories used in training the global classifier. The final layers 
in the VGG-16 Net are the soft-max layer and the classification 
layer. The rectification non-linearity layer (ReLU) equips all 
the hidden layers [38]. The main advantage of using VGG-16 
architecture is that it can be generalized well with any new 
datasets. From experimental results of VGG-16 Net 
applications, it was concluded that the features of the previous 
layers of a pre-trained network usually include information 
about the edge and color. With other meaning, the later layers 
hold features more specific to the classes’ details. Hence, the 
earlier layers parameters of VGG-16 network does not need for 
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the fine-tuning as explained in [39]. Motivation from this, only 
the fine tuning to the last layers of the network has been 
proposed in the present literatures [40-41]. VGG-16 was 
trained by one million images or more, thus it has the 
capability to categorize the input images into 1000 classes. 

C. SqueezeNet 
It consists of 68 layers; a squeeze convolution layer 

comprise nine fire modules that has filters with only of size 
1x1 and it feeds an expand layer that has convolution filters 
with  size 1x1 or 3x3 [42]. Also each fire-expand layer feeds a 
fire-ReLU-expand layer. The final conv10 layer has 1000 
output categories and followed by a classification layer. The 
full architecture of SqueezeNet is shown in Fig. 3 and the 
structure with two fire modules is shown in Fig. 4. 

 
Fig. 3. SqueezeNet Structure with All Layers. 

 
Fig. 4. SqueezeNet Structure with Exposition to  the Fire Modules 2 and 9. 

IV. THE PROPOSED NETWORKS MODELS AND DATASET 
A brief explanation to the architecture of the pre-trained 

networks based on transfer learning and the fine tuning to the 
learning parameters in addition to the utilized dataset are 
introduced in this section. 

A. The Pre-trained Networks based on Transfer Learning 
In this paper, transfer learning is suggested for the pre-

trained deep networks AlexNet, VGG-16Net and SqueezeNet 
with application to tomato leaf diseases diagnosis.  Concerning 
the transfer learning to the pre-trained AlexNet, the two last 
fully connected layers have been modified with the desired 
number of categories under consideration in the field of tomato 
leaf diseases. Also, with regard to VGG-16 Net, the transfer 
learning is implemented on it through excluding only the three 
last layers in VGG-16 Net architecture and retaining the 
remaining layers of the network structure. The last three layers 
are substituted by a new layer of fc layer, a softmax layer, and 
a new classification layer so that its classification output should 
be suitable to the new classification task. The transfer learning 
is also applied to the pre-trained SqueezeNet by modifying 
both of the final convolution layer named conv10 and the 
classification layer to be convenient with the desired number of 
classes assigned in our study cases. Also, fine-tuned is 
suggested to all the pre-trained networks through assigning 
both factors of the learning rate of weight and learning rate of 
bias of the fully connected layer to are 10. In case of the fine-
tuned AlexNet, the learning rate of both weight and bias are 10 
and 5 times the learning rate of the fully connected layer in the 
global AlexNet. While these learning parameters are 
respectively 10 and 10 times thos of learning rate of the fully 
connected layer (fc8) in the global VGG-16Net. Regarding the 
fine-tuned SqueezeNet, the learning rate of both weight and 
bias are 10 and 10 times those of learning rate of the final 
convolutional layer (conv10) of the global SqeezeNet. 

B.  Data Set 
In this paper, the pre-trained networks based on transfer 

learning and the fine tuning of the learning rate parameters and 
adjusting the Mini-Batch Size to be at a suitable value are 
carried out to resolve the diagnosis issue of tomato leaf 
diseases. Nine different diseases in addition to healthy leaves 
of tomato crop from Plant Village dataset [43] are utilized in 
our study. The Nine tomato leaf diseases are Late Blight (LB), 
Leaf Mold (LM), Septoria leaf Spot (SS), Mosaic Virus (MV), 
Bacteria Spot (BS), Early Blight (EB), Yellow Leaf Curl Virus 
(YC), Spider mites Two-spotted Spider mite (SM), Target Spot 
(TS). The tomato leaf  images of Plant Village data set are in 
three channels of red, green and blue (RGB) with dimension of 
256x256 with total numbers equal 18160 images. All the used 
images are resized to be convenient with the input data size to 
each network. Images of six samples from each class are 
shown in Fig. 5.  Four diseases and healthy leaves with a few 
number of images for each class are only used in the first test 
for evaluating the performance of the suggested networks and 
the comparison with the work in literature. While all the above 
mentioned nine leaf diseased and healthy leaves with the 
aforementioned of total number images are used in the second 
test for the performance analysis and the evaluation of the 
suggested networks. 
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Fig. 5. (a-j) Nine tomato Leaf Diseases and Healthy Tomato Leaf. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
The performance of the pre-trained networks based on 

transfer learning and the fine tuning are verified through their 
diagnosis results and classification for tomato leaf diseases. 
Two set of data in which each of them has different numbers of 
images with different numbers of diseases are used for 
evaluating the suggested networks performance.  In the first 
part of our study to the networks performance evaluation, the 
suggested fine-tuned networks are carried out on four tomato 
leaf diseased and healthy leaves. The suggested networks Alex, 
Squeeze and VGG-16 are trained with the following tomato 
leaf diseases: Bacteria Spot (BS), Late Blight (LB), Spetoria 

Spot (SS), Yellow leaf Curl (YC) and healthy leaves in which 
100 images are used from each class. The tomato leaf images 
in each category are split to 80 images to be used for the 
training phase and the remaining images are used to the test 
phase. The learning parameters for training the suggested 
networks are tuned and selected to be as follows: the Initial 
Learning Rate is set to be as 0.0001, the maximum number of 
epochs is chosen to be 15 and finally the Mini-Batch Size 
parameter to the three networks is tested with the following 
values 5, 15, 22 and 30 respectively. The performance of the 
suggested networks in terms of the overall classification 
accuracy, the  accuracy  of classification for each category 
besides the comparison of their performance with that of the 
state-of-the-art technique are evaluated. The classification 
accuracy of the suggested networks in test phase and the 
elapsed time during the training of the three networks using the 
above mentioned values of Mini-Batch Size are depicted in 
Tables I and II. Also, the comparison of the three pre-trained 
networks in terms of the accuracy and the elapsed time during 
their training using the different Mini-batch size are shown in 
Fig. 6 and 7. The confusion matrix to the classification outputs 
of the suggested networks using the Mini-Batch Size values at 
30, 15 and 5 are depicted in Tables III, V and VII.  The 
Confusion matrix shows the number of samples of the 
corresponding detected class for each true class. Also, the 
classification accuracy of each class, in addition to both of the 
true and false samples of each class using Alex, Squeeze and 
VGG-16 networks at different Mini-Batch sizes are depicted in 
Tables IV, VI and VIII. In addition, the performance of the 
suggested networks is evaluated through their comparison with 
the classifier used in literature [15].  The authors in this paper 
presented a Convolutional Neural Network model and 
Learning Vector Quantization (LVQ) algorithm based method 
for tomato leaf disease detection and classification. The dataset 
used in their work contains 500 RGB images of tomato leaves 
with four symptoms of diseases in which 20 images from each 
class are used in the test phase of the classifier. The LVQ 
classifier had been fed with the output feature vector of 
convolution part for training the network in which the 
maximum number of epochs was 300. The classifier 
performance using the state-of-the-art technique [15] in terms 
of the confusion matrix, classification accuracy to each 
category and the average accuracy are depicted in Table IX. 

From the results given in tables, the overall accuracy of 
classification using the three suggested networks ranged   from 
93% to 99% according to the Min-Batch sizes. The accuracy of 
classification to recognize the tomato healthy leaves was the 
best one and reached to 100% with all the suggested networks 
and at different values of Mini-Batch sizes. The accuracy of 
classification of all leaf diseases except the Spetoria Spot 
disease was ranging from 90% to 100% according to the type 
of used network and the size of Mini-Batch parameter. It was 
found that the  classification accuracy of Spetoria Spot  disease 
using  SeqeezeNet  with  Mini-Batch sizes at 30 and 15 was 
poor compared to that of the other tomato diseases when using 
the other two suggested networks. The main reason to this low 
accuracy in diagnosing the Spetoria Spot disease perhaps due 
to the similarity of its symptom with the other symptoms of 
diseases and this led to difficult discrimination using 
squeezeNet at large size of min-batch parameter. The 
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classification accuracy increased to 100% in diagnosing the 
Spetoria Spot disease with the three suggested networks when 
using Mini-Batch size at value 5. Also concerning the elapsed 
time during training the networks, it was ranging from 8 
minutes with AlexNet to almost 160 minutes with VGG-16Net 
which was the longest time among the other networks. Also 
from the results given in tables, it was verified that with the 
small value of Mini-Batch size, the classification accuracy rate 
of AlexNet is low, while with increasing the Mini-Batch size 
the accuracy rate of AlexNet is also increasing.  On contrast, 
the elapsed time in training the AlexNet at a small value of 
Min-Batch size was larger than that time when the Mini-Batch 
size was large. The accuracy rate of SquezeeNet classification 
reduces with increasing the value of Min-Batch size, while it 
increases with reducing the value of Min-Batch size. On the 
other side, the elapsed time in training the SqueezeNet is 
inversely proportional to the value of Mini-Batch size.  Its 
training execution time is big when the value of Mini-Batch 
size is small and vice versa. SqueezeNet takes a smallest 
execution time during its training when using a small value of 
Mini-Batch size compared to the two other networks. As VGG-
16 Net is network with a deep structure, it generally takes the 
longest time during its training among other networks. 
Therefore, the execution process of training VGG-16 Net may 
be failed as a result of error of out of memory when increasing 
the size of Mini-Batch parameter to value greater than 30.  On 
other side, at a small Mini-Batch size its classification accuracy 
rate was larger than its accuracy at a large value of Min-Batch 
size. 

Regarding the comparison of our suggested networks with 
the classifier in literature [15], our pre-trained networks 
outperformed the classifier in literature. The average rate of the 
suggested networks accuracy with the same dataset used in 
literature was ranging from 93% to 99% either with a small or 
large Mini- Batch size and with maximum number of iterations 
equals 15 epochs. While, the average accuracy of this work in 
literature was 86% at maximum number of iterations equals 
300 epochs. Hence, the accuracy rate of the suggested 
networks improved by 8.1% to 15% over the accuracy rate of 
the classifier introduced in [15]. 

TABLE I.  THE ACCURACY OF CLASSIFICATION USING THE THREE PRE-
TRAINED NETWORKS WITH DIFFERENT MINI BATCH SIZE 

 
Pre-Trained 
Networks 

Accuracy of classification in test phase 

Mini Batch 
Size 
 
5 

Mini Batch 
Size 
 
15 

Mini Batch 
Size 
 
22 

Mini Batch 
Size 
 
30 

AlexNet 
 96% 97% 97% 99% 

SqueezeNet 
 98% 94% 94% 93% 

VGG-16 Net 99% 97% 97% 96% 

TABLE II.  THE ELAPSED TIME TAKEN DURING THE TRAINING OF THE 
THREE PRE-TRAINED NETWORKS WITH DIFFERENT MINI BATCH SIZE 

Pre-Trained 
Networks 

Elapsed Time using different Batch size in minutes 

Mini Batch 
Size 
 
5 

Mini Batch 
Size 
 
15 

Mini Batch 
Size 
 
22 

Mini Batch 
Size 
 
30 

AlexNet 22 min 
 11min,29sec 12min,  45sec 8 min, 

44sec 

SqueezeNet 
13min, 
57 sec 
 

10min,50sec 10min,50sec 9min, 51 
sec 

VGG-16 Net 157min 123 min 160min 155 min 

 
Fig. 6. The Classification Accuracy of the Pre-Trained Networks with 

Different Sizes of the Mini- Batch Size Parameters. 

 
Fig. 7. The Elapsed Time of Training the Pre-Trained Networks with 

Different Sizes of the Mini- Batch Parameters. 
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TABLE III.  THE CONFUSION MATRIX TO THE CLASSIFICATION OUTPUTS USING THE ALEX, SQUEEZE AND VGG-16 NETWORKS AT MINI-BATCH SIZE=30 

Confusion Matrix of the classification with 
 Mini Batch Size=30 
AlexNet SqueezeNet VGG-16 Net 

   

TABLE IV.  THE ACCURACY OF CLASSIFICATION FOR EACH LABEL LEAF OF TOMATO DISEASES WITH ITS TRUE AND FALSE SAMPLES USING ALEXNET, 
SQUEEZENET AND VGG-16 NET AT MINI-BATCH SIZE=30 

Leaf Diseases 

Accuracy at Batch Size 
30 

AlexNet SqueezeNet VGG-16 Net 

Accuracy True 
Sample 

False 
Sample Accuracy True 

Sample 
False 
Sample Accuracy True 

Sample 
False 
Sample 

B S 

 

100% 20 0 

100% 20 0 
100% 20 0 
95% 19 1 
100% 20 0 

 

90% 18 2 

100% 20 0 

95% 19 1 

80% 16 4 

100% 20 0 

 

90% 18 2 

100% 20 0 

95% 19 1 
100% 20 0 
95% 19 1 

H 
L B 
S S 

Y C 

TABLE V.  THE CONFUSION MATRIX TO THE CLASSIFICATION OUTPUTS USING THE ALEX, SQUEEZE AND VGG-16 NETWORKS AT MINI-BATCH SIZE=15 

Confusion Matrix of the classification with 
 Mini Batch Size=15 

AlexNet SqueezeNet VGG-16 Net 

   

TABLE VI.  THE ACCURACY OF CLASSIFICATION FOR EACH LABEL LEAF OF TOMATO DISEASES WITH ITS TRUE AND FALSE SAMPLES USING THE ALEX, 
SQUEEZE AND VGG-16 NETWORKS AT MINI-BATCH SIZE=15 

Leaf Diseases 

Accuracy at Batch Size 
15 
AlexNet SqueezeNet VGG-16 Net 

Accuracy True 
Sample 

False 
Sample Accuracy True 

Sample 
False 
Sample Accuracy True 

Sample 
False 
Sample 

B S 

 

90% 18 2 

100% 20 0 

100% 20 0 
95% 19 1 
100% 20 0 

 

95% 19 1 

100% 1 20 

95% 19 1 

85% 17 3 

95% 19 1 

 

95% 19 1 

100% 20 0 

95% 19 1 
95% 19 1 

100% 20 0 

H 
L B 
S S 

Y C 
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TABLE VII.  THE CONFUSION MATRIX TO THE CLASSIFICATION OUTPUTS USING THE ALEX, SQUEEZE AND VGG-16 NETWORKS AT MINI-BATCH SIZE=5 

Confusion Matrix of the classification with 
 MiniBatch Size=5 
AlexNet SqueezeNet VGG-16 Net 

   

TABLE VIII.  THE ACCURACY OF CLASSIFICATION FOR EACH LABEL OF LEAF TOMATO DISEASES WITH ITS TRUE AND FALSE SAMPLES USING THE ALEX, 
SQUEEZE AND VGG-16 NETWORKS AT MINI-BATCH SIZE=5 

Leaf Diseases 

Accuracy at Batch Size 
5 
AlexNet SqueezeNet VGG-16 Net 

Accuracy True 
Sample 

False 
Sample Accuracy True 

Sample 
False 
Sample Accuracy True 

Sample 
False 
Sample 

B S 
 

90% 18 2 

100% 20 0 

90% 18 2 

100% 20 0 

100% 20 0 

 

90% 18 2 

100% 20 0 

100% 20 0 

100% 20 0 

100% 20 0 

 

95% 19 1 

100% 20 0 

100% 20 0 
100% 20 0 

100% 20 0 

H 
L B 
S S 

Y C 

TABLE IX.  THE CONFUSION MATRIX AND THE AVERAGE OF CLASSIFICATION ACCURACY OF THE CLASSIFIER USED IN LITERATURE[15] 

Leaf 
diseases 

B S L B S S Y C H 
 
 

B S 18 0 0 2 0 

L B 0 17 0 3 0 

S S 0 0 16 3 1 

Y C 0 0 3 17 0 

H 0 0 0 2 18 

 

Accuracy of each class 
 

 
90% 
 
85% 
 
80% 
 
85% 
 
90% 

 
Average Accuracy 

 
86% 

In the second part of our study to the networks 
performance evaluation for tomato leaf diseases classification, 
the fine-tuned networks are applied on tomato leaves with the 
aforementioned nine diseases and healthy leaves. Large 
numbers of the given images for each class are used in this 
part, the number of images range from 373 images of Mosaic 
Virus disease to 5357 images of Yellow Curl disease. The 
dataset is split randomly into 0.8 that is utilized for the training 
phase and the remaining of them is used for the test phase.  In 
order to adjust the last three layers of the pre-trained Alex and 
Squeeze networks for the new classification task with 10 
categories, both the learning rate of weight and learning rate of 
bias of the fully connected layer are set to be 10.  Also both of 
AlexNet and SqueezeNet are trained by setting the following 
parameters values: maximum number of epochs at 15, the 

learning rate at 0.0001 and the Mini-Batch size at 30. The 
confusion matrix to the classification results by the fine-tuned 
AlexNet is depicted in Table X. Also, the accuracy rate of 
classification for each class of tomato leaves, the number of 
true and false samples and the average accuracy of overall 
classification are depicted in Table XI. The training progress 
and the loss values during training AlexNet against the number 
of epochs are shown in Fig. 8.  Also, the confusion matrix of 
classification results by the fine-tuned SqueezeNet is depicted 
in Table XII. Furthermore, the accuracy rate of classification 
for each class of tomato leaves, the number of true and false 
samples and the average accuracy of overall classification are 
depicted in Table XIII.  Fig. 9 shows the training progress and 
the loss values of training SqueezeNet against the number of 
epochs. 
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TABLE X.  THE CONFUSION MATRIX OF CLASSIFICATION USING 
ALEXNET WITH THE LARGE DATASET OF 9 TOMATO LEAF DISEASES AND 

HEALTHY LEAVES 

 
Predicted Classes 

BS E
B H L

B 
L
M 

M
V 

S
M 

S
S 

T
S 

Y
C 

T
ru

e 
C

la
ss

es
 

B
S 

 

42
3 

1       1  

10 18
2 

 3    1 4  

 1 31
5 

   1  1  

 9 1 36
5 

2  1 2 2  

1 1   18
0 

1 1 4 1 1 

    1 7
3 

1    

    1 1 32
7 

 6  

2 2  1 2 1 1 34
3 

2  

1    2 2 13 3 25
9 

1 

          
107
1 

E
B 
H 
L
B 
L
M 
M
V 
S
M 
S
S 
T
S 

Y
C 

 

TABLE XI.  ACCURACY OF CLASSIFICATION WITH THE TRUE AND FALSE 
SAMPLES USING ALEXNET WITH LARGE DATASET OF 9 TOMATO LEAF 

DISEASES AND HEALTHY LEAVES 

 
Fig. 8. The Training Progress of the Tuned AlexNet Versus the Number of 

Epochs. 

TABLE XII.  THE CONFUSION MATRIX OF CLASSIFICATION USING THE 
SQUEEZENET WITH THE LARGE DATASET OF 9 TOMATO LEAF DISEASES AND 

HEALTHY LEAVES 

 
Predicted Classes 

BS E
B H L

B 
L
M 

M
V 

S
M 

S
S 

T
S 

Y
C 

T
ru

e 
C

la
ss

es
 

B
S 

 

41
7 

3  1    2 1 1 

 18
1 

 9   1 6 3  

1  31
6 

     1  

1 9 1 36
6 

1     4 

   1 18
5 

2 1  1  

    1 7
3 

1    

    1  33
1 

 2 1 

4 5  3 1   33
9 

2  

5 3  1 1  9 3 25
9 

 

8      1   106
2 

E
B 
H 
L
B 
L
M 
M
V 
S
M 
S
S 
T
S 

Y
C 

TABLE XIII.  THE ACCURACY OF CLASSIFICATION WITH THE TRUE AND 
FALSE SAMPLES USING THE SQUEEZENET AND THE LARGE DATA SET OF 9 

TOMATO LEAF DISEASES AND HEALTHY LEAVES 

 
Fig. 9. The Training Progress of the Tuned SqueezeNet Versus the Number 

of Epochs. 

Leaf 
Diseases 

 
Total 
Samples 

Test 
samples 

True 
samples 

False 
sample accuracy 

B S 2127 425 423 2 99.5% 
E B 1000 200 182 18 91% 
Healthy 1591 318 315 3 99.1% 
L B 1909 382 365 17 95.5% 
L M 952 190 180 10 94.7% 
M V 373 75 73 2 97.3 
S M 1676 335 327 8 97.6% 
S S 1771 354 343 11 96.8% 
T S 1404 281 259 22 92.2% 
Y C 5357 1071 1071 0 100% 

Accuracy                                                                        97.4% 

Leaf 
Diseases 

 
Total 
Samples 

Test 
samples 

True 
samples 

False 
sample 

Accuracy 
% 

B S 2127 425 417 8 98 
E B 1000 200 181 19 91 
H 1591 318 316 2 99 
L B 1909 382 366 16 95.8 
L M 952 190 185 5 97 
M V 373 75 73 2 97 
S M  1676 335 331 4 98.8 
S S 1771 354 339 15 95.7 
T  S 1404 281 259 22 92 
Y  C 5357 1071 1062 9 99 

Accuracy                                                                       97.2%                                                                 
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From the results given in tables, the accuracy of AlexNet of 
tomato leaf diseases classification in test phase was 97.4% 
while the elapsed time taken in its training was 296 minutes 
and 50sec. On the other side from the results given in tables 
with SqueezeNet, the accuracy of tomato leaf diseases 
classification in test phase was 97.2% and the elapsed time 
taken in training the SqueezeNet was almost 316 minutes and 
50sec (5hour and 17minutes). The classification accuracy of 
tomato leaves with symptoms of Early Blight either using 
AlexNet or SqueezeNet was the lowest among the diagnosis 
accuracy of other tomato diseases. The reason may be back to 
that the Early Blight disease appears first on old and  mature 
leaves near the base at stem end of fruits with a spot of ring  
shape and this made a difficulty in its discrimination. AlexNet 
achieves high accuracy of diagnosing YC disease that reaches 
to 100% and was larger than SqueezeNet that achieves 
accuracy reaching to 99%.  The accuracy of classification in 
diagnosing Target Spot disease with both of the fine-tuned 
Alex and Squeeze networks has an acceptable and was almost 
92.2% due to its similar symptoms with the Spider Mites 
symptoms. Also, because the similarity of symptoms of both 
Spider mites and target spots, there are false numbers of them 
with both of their attributed categories. On the other side, 
AlexNet and SqueezeNet prove their ability in diagnosing the 
other diseases categories with high classification accuracy 
reached up to 99%.  Also due to the deep learning structure of 
VGG-16 Net comparing to the structure of other networks, it 
was verified that this network was costly computationally.  It 
was found that the time needed for training VGG-16 Net 
reached to 69 hours in which it was the largest among other 
networks. Therefore, only the results of AlexNet and 
SqueezeNet were enough for exposition. 

VI. CONCLUSION 
In this paper, the classification of tomato leaf diseases 

utilizing the images from Plant Village dataset was performed 
by the suggested pre-trained deep networks AlexNet, 
squeezeNet and VGG-16 Net.  The main challenge in tomato 
diseases diagnosis and classification in our study was that the 
symptoms of tomato leaf diseases are very similar to each other 
which results in some leaves may be embedded and classified 
into wrong classes. The accuracy of classification of AlexNet, 
SqueezeNet and VGG-16Net using 500 images of tomato 
leaves as assigned to the first part of the work and with Mini-
batch size at 30 were 99%, 93% and 96% respectively. 
Whereas, the classification accuracy of AlexNet, SqueezeNet 
and VGG-16 Net using the same number of images and with 
Mini-batch size at 5 were 96%, 98% and 99%, respectively. 
Furthermore, the performance of the three fine-tuned networks 
for tomato leaf diseases diagnosis is evaluated through the 
comparison with that of the-state-of-the-art technique. The 
accuracy rate of our pre-trained networks increased by 8.1% to 
15% over the value of accuracy rate of the classifier introduced 
in literature.  The execution time of training AlexNet using 
small dataset and with Mini-Batch size at 30 was the shortest 
among training times for other networks. Also, the 
performance of AlexNet in terms of both classification 
accuracy and elapsed time using dataset of 18160 images as 
assigned to the second part of the work was efficient network 
and outperformed over to other networks. It achieves 

classification accuracy of 97.4% with elapsed time in training 
of almost 296 minutes.  On contrary, VGG-16 Net has large 
execution time during its training either using small Mini-
Batch size or large Mini-Batch size compared to that of other 
networks. 

In the future work, Internet of Things and mobile 
applications are suggested with the deep learning CNN to 
identify and classify the plant diseases type. 
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