
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

An Automated Framework for Detecting Change in
the Source Code and Test Case Change

Recommendation
Niladri Shekar Dey1, Purnachand Kollapudi2, M V Narayana3, I Govardhana Rao4

Associate Professor, Department of CSE, B V Raju Institute of Technology, Narsapur, Medak Dist.Telangana State, India1, 2

Professor, Department of CSE, Guru Nanak Institutions Technical Campus, Hyderabad, India3

Assistant Professor, Department of CSE, Osmania University, Hyderabad, India4

Abstract—Improvements and acceleration in software
development has contributed towards high quality services in all
domains and all fields of industry causing increasing demands
for high quality software developments. In order to match with
the high-quality software development demands, the software
development industry is adopting human resources with high
skills, advanced methodologies and technologies for accelerating
the development life cycle. In the software development life cycle,
one of the biggest challenges is the change management between
versions of the source codes. The versing of the source code can
be caused by various reasons such as change in the requirements
or adaptation of functional update or technological upgradations.
The change management does not only affect the correctness of
the release for the software service, rather also impact the
number of test cases. It is often observed that, the development
life cycle is delayed due to lack of proper version control and due
to the improver version control, the repetitive testing iterations.
Hence the demand for better version control driven test case
reduction methods cannot be ignored. A number of version
control mechanisms are proposed by the parallel research
attempts. Nevertheless, most of the version controls are criticized
for not contributing towards the test case generation of
reduction. Henceforth, this work proposes a novel probabilistic
refactoring detection and rule-based test case reduction method
in order to simplify the testing and version control mechanism
for the software development. The refactoring process is highly
adopted by the software developers for making efficient changes
such as code structure, functionality or apply change in the
requirements. This work demonstrates a very high accuracy for
change detection and management. This results into a higher
accuracy for test case reductions. The final outcome of this work
is to reduce the development time for the software for making the
software development industry a better and efficient world.

Keywords—Change detection; pre-requisite detection; feature
detection; functionality detection and test case change
recommendation

I. INTRODUCTION
The improvements in the code development is a must to be

performed task for all software development cycles, due to the
continuous changing client requirements. The improvements or
the changes in the software source code can be done in various
ways such as version control or requirement tracking or using
third party tools. Nonetheless, the most frequent and highly
adopted method is the refactoring method as suggested by M.

Fowler et al. [1]. The effect of refactoring on the software
source code is highly compatible with the change management
process and further with the other phases of software
development life cycle. The notable outcome by the work of E.
R. Murphy-Hill et al. [2] have listed the standard phases of
refactoring of source code, which deeply influences the
adaptation of the process. The detailed comparative analysis of
other versioning methods with refactoring is performed by N.
Tsantalis et al. [3] highlighting the benefits of refactoring over
other methods. The challenges of refactoring process for any
source code cannot be ignored and can cause higher
complexity during versioning in case of improper management
as demonstrated by M. Kim et al. [4]. Another study focuses on
the software development improvisation by Microsoft,
suggesting similar measures as documented by Miryung Kim
et al. [5]. Also, the similar study is conducted on another open
source tool, GitHub, by D. Silva et al. [6] and the result is same
as the previous studies recommending similar measures to be
followed for safe refactoring of the source code (Fig. 1).

Therefore, understanding that the refactoring (Fig. 2) of the
source code can be highly helpful for source code changing,
most of the development practices uses this method.

Nevertheless, the process of refactoring the code can be
helpful for making controlled changes into the code, but these
changes results into further changes of testing process and test
case management. Hence, the demand for change detection and
test case verification without repeating the test cases for the
features, which has not changed during the refactoring process,
is highly prioritized by the industry practitioners and
researchers. Thus, this work attempts to provide a solution to
the change detection and test case reductions.

The rest of the work is furnished such as in the Section II,
the outcomes from the parallel researcher are analyzed, in
Section III, problem definition and the scope for improvements
are listed, in Section IV, the proposed change detection
algorithm is discussed, in Section V, the proposed test case
detection and reduction algorithm is elaborated, in the
Section VI, the proposed complete automated framework is
furnished, in the Section VII, the results are discussed, in the
Section VIII, the comparative analysis for understanding the
improvements are discussed and in the Section IX, this work
presents the final conclusion.

270 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 1. Source Code Change Detection.

Fig. 2. Refactoring of Source Codes.

II. PARALLEL RESEARCH OUTCOMES
The versioning of the source code is performed in order to

include changes in the source code. Often the changes are
recommended by the customer or the changes are made due to
the technical requirements fulfilments. Thus, refactor results
into changes in pre-requisites or the feature of the source code
or functionality of the source code. Hence, detecting the correct
changes are the prime important task.

In order to detect the correct changes after a source code is
refactored is the prime task. A number of parallel researches
are taken place to accomplish this task. In this section of the
work, the parallel research outcomes are analysed.

The first case study produced by E. R. Murphy-Hill et al.
[2] have reported a framework that collects the historical data
from the source code version control and integrates the changes
into popular Eclipse IDE. The advancements of this work are
done by S. Negara et al. [7], where the process of using meta
data generated by version history is used. Nevertheless, this
process is completely dependent on the refactoring trails or the
auto-generated information during the refactoring process.

Removing the dependencies on the auto-generated
information by the refactoring tools, the work of J. Ratzinger et

al. [8] proposes a framework to generate commit messages
during the refactoring process. This feature enables the
framework to detect all changes including the minor updates.
Regardless to mention, this framework is expected to be
deployed from the beginning of the code development life
cycles, which makes this framework being criticized among the
practitioner’s community. The other popular strategies
supporting this method were also made. The work of Miryung
Kim et al. [5] have finetuned the framework for detecting
further detection of changes.

Yet other popular methods for detecting the change are
analysing the pattern and behaviours of the source code as
demonstrated by G. Soares et al. [9] or analysing the software
code metrics as represented by S. Demeyer et al. [10].

In the other hand, detecting refactoring using the static code
analysis is also widely accepted method. The work by D. Dig
et al. [11] on component-based detection of changes made the
process of detection automated and specified. Also, the work
by K. Prete et al. [12] have proposed an alternative method for
detecting the source code changes using the templates. The
major bottleneck of this process is to separate the workable
templates from the templates, which does not defer any
functionality. In order to improve this process, M. Kim et al.
[13] proposed a logical separation of the templates using
querying the construction of the code.

Furthermore, all the bottlenecks of the existing works are
summarized and analysed by P. Weissgerber et al. [14]. This
work takes up the recommendations and frames the generic
scopes for improvements in the next section of the work.

III. IDENTIFICATION OF SCOPE FOR IMPROVEMENTS
Furthermore, with the detailed understanding of the

refactoring process outcomes by various research attempts and
the strong connection with the change detection with test case
management, in this section of the work, the research problems
are identified.

Based on the outcomes of the parallel researches, the
following short comings are identified:

• Firstly, the general-purpose regression testing is carried
out on a complete set of source code which is produced
and modified time to time in the software development
life cycle. Most of the instances it is been observed that
the pre-configured test cases are deployed in the new
version of the source code. Regardless to mention that
most of the test cases are configured to test the areas
where no changes are made. Hence, the optimizations
of the test cases are completely ignored.

• Secondly, during the manual generation of the test
cases, the identification of the high priority test cases is
carried out. Most of the parallel researches depends on
the pre-defined functional requirements given by the
customer to decide the priority of the functional
requirements and based on this available information,
the priority of the test cases is decided. It is natural to
understand that, due to this often the hidden and critical
functionalities are ignored and as well as the test cases
to validate these functionalities.

271 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

• Third, automation of the test case generation is
demanding area of research for regression testing.
Nonetheless, the processes are far from perfection and
complete acceptability.

• Finally, defining the priority test cases depends on
various factors. None of the parallel researches have
demonstrated all possible combinations to evolve the
optimization of test cases.

This work addresses the first problem mentioned in the
work.

Henceforth, in the next section of the work, the proposed
change detection algorithm is discussed.

IV. PROPOSED CHANGE DETECTION
The changes made into the source code using refactoring of

the codes, must be identified for reducing the test cases or
generating outline of test cases.

The proposed change detection algorithm is developed in
total four parts.

Algorithm - 1: Source Code Pre-Processor (SCPP)
Step - 1. Access the repository for source code files

Step - 2. Mark the previous version of the file as V(n)

Step - 3. Mark the recent version of the file as V(n+1)

Step - 4. Identify the number of lines in the V(n) and V(n+1)

Step - 5. If V(n) >= V(n+1), then mark counter = V(n)

Step - 6. Else, mark counter = V(n+1)

Step - 7. For each line in counter

a. Remove comments

b. Apply tokenizer

c. Check for variable change

d. Check for statement change

Step - 8. Report the pre-processed V(n+1) with the changes

The algorithm is visualized graphically here in Fig. 3.

Algorithm - 2: Prerequisite Requirement Change Detection
(PRCD)
Step - 1. Load the files as V(n) and V(n+1)

Step - 2. Accept the tokenizer report

Step - 3. Build the list of "package" and "import"

statements

Step - 4. For each line

a. Detect the changes in "package" and "import"

statements

Step - 5. List the inclusion of Prerequisite statements

Step - 6. List the exclusion of Prerequisite statements

Fig. 3. Process flow of SCPP Algorithm.

The algorithm is visualized graphically here in Fig. 4.

Fig. 4. Process flow of PRCD Algorithm.

272 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Algorithm - 3: Code Feature Change Detection (CFCD)
Step - 1. Load the files as V(n) and V(n+1)

Step - 2. Accept the tokenizer report

Step - 3. Build the list of variable identifiers

Step - 4. For each line

a. Detect the changes in variable identifiers

statements

Step - 5. List the inclusion of variable identifiers statements

Step - 6. List the exclusion of variable identifiers statements

The algorithm is visualized graphically here in Fig. 5.

Fig. 5. Process flow of CFCD Algorithm.

Algorithm - 4: Source Functionality Change Detection
(SFCD)
Step - 1. Load the files as V(n) and V(n+1)
Step - 2. Accept the tokenizer report
Step - 3. Apply programming parser on the token
Step - 4. Build the list of identified parsed token
Step - 5. For each line

a. Detect the changes in identified parsed token
statements

Step - 6. List the inclusion of identified parsed token
statements

Step - 7. List the exclusion of identified parsed token
statements

The algorithm is visualized graphically here in Fig. 6.

Fig. 6. Process flow of SFCD Algorithm.

Henceforth, with the detailed understanding of the
proposed change recommendation algorithm, this work
furnishes the test case change identification method in the next
section.

V. PROPOSED TEST CASE CHANGE RECOMMENDATION
The testing is one of the most important phases in the

software development life cycle. With the recent developments
in software, the automation in the test cases have grown
popularity. Due to the refactoring of the source codes, often the
test cases are also affected. These can cause the following
situations:

• Inclusion of the new test cases.

• Exclusion of the existing test cases, and.

• Removal of the duplicated test cases.

Thus, considering these factors, in this section of the work,
the proposed test case change recommendation algorithm is
proposed.

The algorithm is visualized graphically here in Fig. 7.

Furthermore, with the understanding of the proposed
algorithms, in the next section of this work the proposed
automated framework is elaborated.

273 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 7. Process flow of TCCR Algorithm.

Algorithm - 5: Test Case Change Recommendation (TCCR)
Step - 1. Accept the list of test cases
Step - 2. Identify the changes by PRCD algorithm
Step - 3. For each change detected by PRCD

a. If Prerequisite statements included
i. Update test case recommendation as

inclusion
b. Else

i. Update test case recommendation as
exclusion

Step - 4. For each change detected by CFCD
a. If variable identifiers statements included

i. Update test case recommendation as
inclusion

b. Else
i. Update test case recommendation as

exclusion
Step - 5. For each change detected by SFCD

a. If parsed token statements included
i. Update test case recommendation as

inclusion
b. Else

i. Update test case recommendation as
exclusion

Step - 6. Update the final change case recommendations

VI. PROPOSED AUTOMATED FRAMEWORK
In this section of the work, the proposed automated test

case change recommendation framework is elaborated. The
proposed framework demonstrates how different components
are collaborated and coupled together for making the complete
process automated (Fig. 8).

Fig. 8. Proposed Automated Test Case Change Recommendation

Framework.

The automated framework is designed to reduce the time
needed for verifying and reducing or introducing test cases to
the existing test case repositories.

Firstly, the source code version files are access from the
location where all source codes are stored, usually called the
source code repository. The source code repository is
maintained by the version control tools used by any
organization. This proposed framework does not apply any
constraints on the version control features, rather only expects
the versioning to be done only on separable source codes. After
the source code files are loaded, the pre-processing algorithm is
deployed on the source code to reduce the comments and to
tokenize the source code files. Once the tokenization is
completed, the same source code files are pushed to the
proposed PRCD, proposed CFCD and proposed SFCD
algorithms. The result from these algorithms are identification
of pre-requisite changes, identification of feature or variable
changes and identification of functionality changes,
respectively. Finally, the recommendation algorithm, TCCR,
generates the final recommendations based on the existing test
case repository.

Further, with the detailed understanding of the complete
framework work flow, in the next section of the work the
results are discussed.

VII. RESULTS AND DISCUSSION
The results obtained from the proposed automated

framework is highly satisfactory and are discussed in this
section of the work. Due to the highly integrated structure of
the framework, the results are discussed under multiple
separate factors as Experimental Setup, Pre-processor Output,
Change Detection Output, Pre-Requisite Test Case
Availability, Recommendation Output, Variable Test Case
Recommendation Output and Functionality Test Case
Recommendation Output.

A. Experimental Setup
Firstly, the experimental setup is discussed here. The

primary component of the experiment relies on the Java’s

274 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

“diff” utility. Diff Utilities library is an Open Source library for
playing out the correlation/diff activities between writings or
some sort of information: processing diffs, applying patches,
creating bound together diffs or parsing them, producing diff
yield for simple future showing (like one next to the other
view) et cetera. The other details are discussed here in Table I.

TABLE I. EXPERIMENTAL SETUP

Artefacts Description

Repository Source GitHub

Total Number of Repositories 5

Version Control Tool Used (Can be integrated with any tool) Git

Syntax Perser Parse Tree

Number of Iteration for Detection in each repository 10

B. Pre-Processor Output (SCPP Algorithm)
Secondly, the pre-processing outputs are listed here in

Table II.

TABLE II. SCPP ALGORITHM

Source Code
Repository
Name

Number of
Versions
Present

Number of
Versions
Detected

Number
of Lines
Present

Number of
Lines
Detected

Repository - 1 2 2 335 335

Repository - 2 2 2 336 336

Repository - 3 2 2 283 283

Repository - 4 2 2 332 332

Repository - 5 2 2 344 344

The result is visualized graphically here in Fig. 9.

Fig. 9. Initial Pre-Processing Phase Results.

Further, the tokenizer output is discussed in Table III.

The result is visualized graphically here in Fig. 10.

Furthermore, the comment removal phase output is
discussed in Table IV.

TABLE III. TOKENIZER OUTPUT

Source Code Repository
Name

Number of Prime
Tokens Present

Number of Prime
Tokens Identified

Repository - 1 17 15

Repository - 2 10 8

Repository - 3 16 14

Repository - 4 15 13

Repository - 5 13 12

Fig. 10. Tokenizer Phase Results.

TABLE IV. COMMENT REMOVAL OUTPUT

Source Code
Repository
Name

Number of
Comment
Lines Present

Number of
Comment Lines
with Functionality

Number of
Comment
Lines
Detected

Repository - 1 3 3 3

Repository - 2 3 2 2

Repository - 3 3 0 0

Repository - 4 11 10 10

Repository - 5 10 8 8

The result is visualized graphically here in Fig. 11.

Fig. 11. Comment Line Removal Analysis.

275 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

C. Change Detection Process Output
Thirdly, the change detection process outputs are listed here

in Table V.

TABLE V. DETAILED REPORT FOR CHANGE DETECTION

Source Code
Repository Name Change Type Change

Position
Change
Size

Repository - 1 Code Removed 34 0

Repository - 1 Code Removed 20 13

Repository - 1 Code Removed 5 0

Repository - 1 Code Removed 0 1

Repository - 1 Code Added 22 2

Repository - 1 Code Added 5 2

Repository - 1 Code Added 0 1

Repository - 2 Code Removed 139 0

Repository - 2 Code Removed 138 0

Repository - 2 Code Removed 134 3

Repository - 2 Code Removed 131 2

Repository - 2 Code Removed 118 12

Repository - 2 Code Removed 77 40

Repository - 2 Code Removed 76 0

Repository - 2 Code Removed 75 0

Repository - 2 Code Removed 71 3

Repository - 2 Code Removed 29 41

Repository - 2 Code Removed 26 2

Repository - 2 Code Removed 7 17

Repository - 2 Code Removed 0 6

Repository - 2 Code Added 164 1

Repository - 2 Code Added 159 4

Repository - 2 Code Added 157 1

Repository - 2 Code Added 136 20

Repository - 2 Code Added 117 18

Repository - 2 Code Added 114 2

Repository - 2 Code Added 111 2

Repository - 2 Code Added 88 22

Repository - 2 Code Added 28 59

Repository - 2 Code Added 19 8

Repository - 2 Code Added 2 15

Repository - 2 Code Added 0 1

Repository - 3 Code Removed 144 0

Repository - 3 Code Removed 143 0

Repository - 3 Code Removed 139 3

Repository - 3 Code Removed 136 2

Repository - 3 Code Removed 123 12

Repository - 3 Code Removed 82 40

Repository - 3 Code Removed 81 0

Repository - 3 Code Removed 80 0

Repository - 3 Code Removed 76 3

Repository - 3 Code Removed 34 41

Repository - 3 Code Removed 33 0

Repository - 3 Code Removed 0 32

Repository - 3 Code Added 164 1

Repository - 3 Code Added 159 4

Repository - 3 Code Added 157 1

Repository - 3 Code Added 136 20

Repository - 3 Code Added 117 18

Repository - 3 Code Added 114 2

Repository - 3 Code Added 111 2

Repository - 3 Code Added 88 22

Repository - 3 Code Added 45 42

Repository - 3 Code Added 43 1

Repository - 3 Code Added 0 42

Repository - 4 Code Removed 166 25

Repository - 4 Code Removed 164 1

Repository - 4 Code Removed 159 4

Repository - 4 Code Removed 157 1

Repository - 4 Code Removed 136 20

Repository - 4 Code Removed 117 18

Repository - 4 Code Removed 114 2

Repository - 4 Code Removed 111 2

Repository - 4 Code Removed 88 22

Repository - 4 Code Removed 45 42

Repository - 4 Code Removed 43 1

Repository - 4 Code Removed 0 42

Repository - 4 Code Added 143 0

Repository - 4 Code Added 139 3

Repository - 4 Code Added 136 2

Repository - 4 Code Added 123 12

Repository - 4 Code Added 82 40

Repository - 4 Code Added 81 0

Repository - 4 Code Added 80 0

Repository - 4 Code Added 76 3

Repository - 4 Code Added 34 41

Repository - 4 Code Added 33 0

Repository - 4 Code Added 0 32

Repository - 5 Code Removed 25 4

Repository - 5 Code Removed 22 2

Repository - 5 Code Removed 5 2

Repository - 5 Code Removed 0 1

Repository - 5 Code Added 20 13

Repository - 5 Code Added 5 0

Repository - 5 Code Added 0 1

Further, the change detection summary is presented here in
Table VI.

276 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE VI. COMMENT REMOVAL OUTPUT

Source Code
Repository Name

Actual
Number of
Changes

Number of
Changes
Detected

Change
Detection
Accuracy (%)

Repository - 1 8 7 87.50

Repository - 2 27 25 92.59

Repository - 3 23 23 100.00

Repository - 4 26 23 88.46

Repository - 5 9 7 77.78

The result is visualized graphically here in Fig. 12.

Fig. 12. Change Detection Accuracy Analysis.

D. Prerequisite Requirement Change Detection Output
Fourthly, the Prerequisite Requirement Change Detection

outputs are listed here in Table VII.

TABLE VII. DETAILED REPORT FOR PREREQUISITE REQUIREMENT CHANGE
DETECTION

Source Code
Repository Name Change Type Prerequisite Details

Repository - 1 Added import java.io.*;

Repository - 1 Added java.util.LinkedList;

Repository - 1 Added java.util.List;

Repository - 2 Removed net.contentobjects.jnotify.
JNotifyListener;

Repository - 2 Removed java.io.*;

Repository - 2 Removed java.text.SimpleDateForma;

Repository - 2 Removed java.util.Calendar;

Repository - 2 Removed java.util.LinkedList;

Repository - 2 Added java.lang.reflect.Array;

Repository - 2 Removed java.awt.Dimension;

Repository - 2 Removed java.awt.Toolkit;

Repository - 2 Removed javax.swing.JTextArea;

Repository - 2 Removed javax.swing.JPanel;

Repository - 2 Removed javax.swing.JFrame;

Repository - 2 Removed javax.swing.JScrollPane;

Repository - 2 Added difflib.ChangeDelta;

Repository - 2 Added difflib.Chunk;

Repository - 2 Added difflib.DeleteDelta;

Repository - 2 Added difflib.Delta;

Repository - 2 Added difflib.DiffAlgorithm;

Repository - 2 Added difflib.InsertDelta;

Repository - 2 Added difflib.Patch;

Repository - 3 Removed net.contentobjects.jnotify.
JNotifyListener;

Repository - 3 Removed java.io.*;

Repository - 3 Removed java.text.SimpleDateForma;

Repository - 3 Removed java.util.Calendar;

Repository - 3 Removed java.awt.Dimension;

Repository - 3 Removed java.awt.Toolkit;

Repository - 3 Removed javax.swing.JTextArea;

Repository - 3 Removed javax.swing.JPanel;

Repository - 3 Removed javax.swing.JFrame;

Repository - 3 Removed javax.swing.JScrollPane;

Repository - 3 Added java.lang.reflect.Array;

Repository - 3 Added java.util.List;

Repository - 3 Added difflib.ChangeDelta;

Repository - 3 Added difflib.Chunk;

Repository - 3 Added difflib.DeleteDelta;

Repository - 3 Added difflib.Delta;

Repository - 3 Added difflib.DiffAlgorithm;

Repository - 3 Added difflib.InsertDelta;

Repository - 3 Added difflib.Patch;

Repository - 4 Removed java.util.List;

Repository - 4 Removed difflib.ChangeDelta;

Repository - 4 Removed difflib.Chunk;

Repository - 4 Removed difflib.DeleteDelta;

Repository - 4 Removed difflib.Delta;

Repository - 4 Removed difflib.DiffAlgorithm;

Repository - 4 Removed difflib.InsertDelta;

Repository - 4 Removed difflib.Patch;

Repository - 4 Added net.contentobjects.jnotify.
JNotify;

Repository - 4 Added net.contentobjects.jnotify.
JNotifyListener;

Repository - 4 Added java.io.*;

Repository - 4 Added java.text.SimpleDateFormat;

Repository - 4 Added java.util.Calendar;

Repository - 4 Added java.awt.Dimension;

Repository - 4 Added java.awt.Toolkit;

Repository - 4 Added javax.swing.JTextArea;

Repository - 4 Added javax.swing.JPanel;

Repository - 4 Added javax.swing.JFrame;

Repository - 4 Added javax.swing.JScrollPane;

Repository - 5 Added net.contentobjects.jnotify.JNotify;

Repository - 5 Removed java.util.LinkedList;

Repository - 5 Removed java.util.List;

277 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Further, the Prerequisite Requirement Change Detection
summary is presented here in Table VIII.

TABLE VIII. PREREQUISITE REQUIREMENT CHANGE DETECTION SUMMERY

Source Code
Repository Name

Number of
Prerequisite Added

Number of Prerequisite
Removed

Repository - 1 3 0

Repository - 2 8 11

Repository - 3 9 10

Repository - 4 11 8

Repository - 5 1 2

The result is visualized graphically here in Fig. 13.

Fig. 13. Pre-Requisite Change Detection Analysis.

E. Code Feature Change Detection Output
Fifthly, the Code Feature Change Detection outputs are

listed here in Table IX.

TABLE IX. DETAILED REPORT FOR CODE FEATURE CHANGE DETECTION

Source Code
Repository Name Change Type Feature Details

Repository - 1 Remove watchSubtree

Repository - 1 Remove watchID

Repository - 1 Remove res

Repository - 2 Added N

Repository - 2 Added M

Repository - 2 Added MAX

Repository - 2 Added size

Repository - 2 Added middle

Repository - 2 Added kmiddle

Repository - 2 Added kplus

Repository - 2 Added kminus

Repository - 2 Added j

Repository - 2 Added i

Repository - 2 Added j

Repository - 2 Added ianchor

Repository - 2 Added janchor

Repository - 2 Added static

Repository - 2 Added newLength

Repository - 3 Remove watchSubtree

Repository - 3 Remove watchID

Repository - 3 Remove res

Repository - 3 Added N

Repository - 3 Added M

Repository - 3 Added MAX

Repository - 3 Added size

Repository - 3 Added middle

Repository - 3 Added kmiddle

Repository - 3 Added kplus

Repository - 3 Added kminus

Repository - 3 Added j

Repository - 3 Added i

Repository - 3 Added j

Repository - 3 Added ianchor

Repository - 3 Added janchor

Repository - 3 Added static

Repository - 3 Added newLength

Repository - 4 Added watchSubtree

Repository - 4 Added watchID

Repository - 4 Added res

Repository - 4 Remove N

Repository - 4 Remove M

Repository - 4 Remove MAX

Repository - 4 Remove size

Repository - 4 Remove middle

Repository - 4 Remove kmiddle

Repository - 4 Remove kplus

Repository - 4 Remove kminus

Repository - 4 Remove j

Repository - 4 Remove i

Repository - 4 Remove j

Repository - 4 Remove ianchor

Repository - 4 Remove janchor

Repository - 4 Remove newLength

Repository - 5 Added watchSubtree

Repository - 5 Added watchID

Repository - 5 Added res

Further, the Code Feature Change Detection summary is
presented here in Table X.

278 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE X. CODE FEATURE CHANGE DETECTION SUMMERY

Source Code
Repository Name

Number of Feature
Added

Number of Feature
Removed

Repository - 1 0 3

Repository - 2 15 0

Repository - 3 15 3

Repository - 4 3 14

Repository - 5 3 0

The result is visualized graphically here in Fig. 14.

Fig. 14. Code Feature Change Detection Analysis.

F. Source Functionality Change Detection Output
Sixthly, the Source Functionality Change

Detection summary is presented here in Table XI.

TABLE XI. SOURCE FUNCTIONALITY CHANGE DETECTION SUMMERY

Source Code
Repository Name

Number of
Functionality Added

Number of Functionality
Removed

Repository - 1 7 8

Repository - 2 5 8

Repository - 3 8 8

Repository - 4 5 9

Repository - 5 5 6

The result is visualized graphically here in Fig. 15.

Fig. 15. Source Functionality Change Detection Analysis.

G. Test Case Change Recommendation Output
Finally, the Test Case Change Recommendation outputs are

presented here in Table XII and Table XIII.

TABLE XII. SOURCE FUNCTIONALITY CHANGE DETECTION SUMMARY –
INCLUSIONS

Source Code
Repository
Name

Prerequi
site
Added

Featur
e
Added

Functiona
lity Added Recommendations

Repository -
1 3 1 3

Prerequisite TC
Update:3 Feature TC
Update:1
Functionality TC
Update:3

Repository -
2 8 16 78

Prerequisite TC
Update:8 Feature TC
Update:16
Functionality TC
Update:78

Repository -
3 9 16 78

Prerequisite TC
Update:9 Feature TC
Update:16
Functionality TC
Update:78

Repository -
4 11 3 92

Prerequisite TC
Update:11 Feature
TC Update:3
Functionality TC
Update:92

Repository -
5 1 3 6

Prerequisite TC
Update:1 Feature TC
Update:3
Functionality TC
Update:6

TABLE XIII. SOURCE FUNCTIONALITY CHANGE DETECTION SUMMARY –
EXCLUSIONS

Source Code
Repository
Name

Prerequi
site
Remove
d

Feature
Remove
d

Function
ality
Removed

Recommendations

Repository -
1 0 3 4

Prerequisite TC
Update:0 Feature TC
Update:3
Functionality TC
Update:4

Repository -
2 11 1 58

Prerequisite TC
Update:11 Feature
TC Update:1
Functionality TC
Update:58

Repository -
3 10 3 61

Prerequisite TC
Update:10 Feature
TC Update:3
Functionality TC
Update:61

Repository -
4 8 15 47

Prerequisite TC
Update:8 Feature TC
Update:15
Functionality TC
Update:47

Repository -
5 2 1 1

Prerequisite TC
Update:2 Feature TC
Update:1
Functionality TC
Update:1

279 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Henceforth, with the complete discussions of results, in the
next section, this work carries outs the comparative analysis in
the next section.

VIII. COMPARATIVE ANALYSIS
The improvements over the existing studies are the primary

objective of every research and in order to justify the claim of
improvements, it is must to carry out the comparative analysis.
Hence in this section of the work, the comparative analysis
with the popular existing works are performed on the framed
metric for comparison (Table XIV).

TABLE XIV. COMPARATIVE ANALYSIS

System
Details

Change
Detection
Capabilit
ies

Pre-
Requisite
Detection
Capabilit
ies

Feature
Detection
Capabilit
ies

Function
ality
Detection
Capabilit
ies

Test Case
Change
Recomme
ndation

M. Fowler
et al. [1]
2018

Yes No Yes No No

Miryung
Kim et al.
[5]
2016

Yes No No Yes No

D. Silva et
al. [6]
2016

Yes No No Yes No

M. Kim et
al. [13]
2014

Yes No Yes No No

Proposed
Automated
Framework
2018

Yes Yes Yes Yes Yes

It is natural to understand that with the significant
improvements and incorporation of Change Detection
Capabilities, Pre-Requisite Detection Capabilities, Feature
Detection Capabilities, Functionality Detection Capabilities
and Test Case Change Recommendations, the proposed
automated framework have outperformed the other parallel
research outcomes.

IX. CONCLUSIONS
The software development industry completely relies on

the accurate change management. The change driven structure
or process of any organization makes it ahead of the
competition among the other providers. Accommodating the
client requests in terms of changes can be highly cost and time
ineffective as the changes in the source code can affect the
other phases of the life cycle specifically the testing. Due to
any modification to the source code, the testing operations also

has to change. The challenge is to identify the current change
and reduce repetition of the testing tasks. Thus, this work
provides an automatic framework with Change Detection
Capabilities, Pre-Requisite Detection Capabilities, Feature
Detection Capabilities, Functionality Detection Capabilities
and Test Case Change Recommendation for better test case
managements. The major and most unique outcome of this
work is to identify and recommend any changes in the test
cases for making the world of software development faster and
economically affordable.

REFERENCES
[1] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 2018.
[2] E. R. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and

how we know it,” IEEE Transactions on Software Engineering, vol. 38,
no. 1, pp. 5–18, 2012.

[3] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A multidimensional
empirical study on refactoring activity,” in Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON), 2013, pp.
132–146.

[4] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of
refactoring challenges and benefits,” in 20th Symposium on the
Foundations of Software Engineering (FSE), 2017, pp. 50:1–50:11.

[5] Miryung Kim et al., “An empirical study of refactoring challenges and
benefits at Microsoft,” IEEE Transactions on Software Engineering, vol.
40, no. 7, July 2016.

[6] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor?
confessions of GitHub contributors,” in 24th Symposium on the
Foundations of Software Engineering (FSE), 2016, pp. 858–870.

[7] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
comparative study of manual and automated refactorings,” in 27th
European Conference on Object-Oriented Programming (ECOOP), 2016,
pp. 552–576.

[8] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of
refactorings and software defect prediction,” in 5th Working Conference
on Mining Software Repositories (MSR), 2012, pp. 35–38.

[9] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE software, vol. 27, no. 4, pp. 52–57, 2010.

[10] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” in ACM SIGPLAN Notices, vol. 35, no. 10, 2010, pp.
166–177.

[11] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in 20th European
Conference on Object-Oriented Programming (ECOOP), 2006, pp. 404–
428.

[12] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in 26th International
Conference on Software Maintenance (ICSM), 2010, pp. 1–10.

[13] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-Finder: A
refactoring reconstruction tool based on logic query templates,” in 8th
Symposium on Foundations of Software Engineering (FSE), 2014, pp.
371–372.

[14] P. Weissgerber and S. Diehl, “Identifying refactorings from sourcecode
changes,” in 21st International Conference on Automated Software
Engineering (ASE), 2016, pp. 231–240.

280 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Parallel Research Outcomes
	III. Identification of Scope for Improvements
	IV. Proposed Change Detection
	V. Proposed Test Case Change Recommendation
	VI. Proposed Automated Framework
	VII. Results and Discussion
	A. Experimental Setup
	B. Pre-Processor Output (SCPP Algorithm)
	C. Change Detection Process Output
	D. Prerequisite Requirement Change Detection Output
	E. Code Feature Change Detection Output
	F. Source Functionality Change Detection Output
	G. Test Case Change Recommendation Output

	VIII. Comparative Analysis
	IX. Conclusions

