
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Attendance System using Machine Learning-based
Face Detection for Meeting Room Application

Rahmat Muttaqin1

Telematika, Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Bandung, Indonesia

Nopendri2

School of Industrial and System Engineering
Universitas Telkom, Bandung, Indonesia

Syifaul Fuada3

Universitas Pendidikan Indonesia
Bandung, Indonesia

Eueung Mulyana4

School of Electrical Engineering and Informatics
Institut Teknologi Bandung, Bandung, Indonesia

Abstract—In a modern meeting room, a smart system to make
attendance quickly is mandatory. Most of the existing systems
perform manual attendance, such as registration and fingerprint.
Despite the fingerprint method can reject the Unknown person
and give the grant access to the Known person, it will take time
to register first a person one-by-one. Moreover, it is possible to
create long queues for fingerprint checking before entering the
meeting room. Machine learning, along with the Internet of
Things (IoT) technology is the best solution; it offers many
advantages when applied in the meeting rooms. Generally, the
method used is to create a presence by detecting faces. In this
paper, we present a facial recognition authentication based on
machine learning technology for connection to the meeting
rooms. Furthermore, specific website to display the detection
result and data storage design testing is developed. The method
uses 1) the Dlib library for deep learning purposes, 2) OpenCV
for video camera processing, and 3) Face Recognition for Dlib
processing. The proposed system allows placing the multiple
cameras in a meeting room as needed. However, in this work, we
only used one camera as the main system. Tests conducted
include identification of one Known person, identification of one
Unknown person, identification of two people, and three people.
The parameter to be focused is the required time in detecting the
number of faces recorded by the camera. The results reveal that
the face can be recognized or not recognized, then it will be
displayed on the website.

Keywords—Detection; face; IoT; meeting room; attendance

I. INTRODUCTION
In this industry 4.0 era as nowadays, the development of

machine learning technology is growing rapidly. Research in
this area and its use-case in various fields have been
demonstrated widely [1]. By using machine learning, the
devices can perform separate types of learning, such as image
[2-3], voice, shortest path, video pattern recognition, fault in
power transmission systems [4], patterns in communication
systems [5], etc. Besides, there are also developments in the
Internet of Things (IoT) technology that utilize internet
connections for data transfer without human intervention. This
technology is usually applied to communication on
microcontroller devices to send sensor data, gateways in the
form of single board computers, and clouds [6]. Machine
learning can be incorporated with IoT to build an intelligent

system, one of them is a real-time attendance system. This
technology can be a solution to streamline existing systems
where most of the attendance systems still utilize the
fingerprint method (including RFID-based machines). Indeed,
it consumes a lot of time, especially at the personal
registration and fingerprint checking (check-log) stages [7-
11]. With machine learning, a person’s or the people’s
presence in a meeting room can be detected quickly and
accurately. This learning machine requires a lot of data to
perform excellent detection.

Another technique like the Histogram Oriented Gradients
(HOG) actually can be used as a method for face recognition
application [12-15]. Facial recognition is a method for
character recognition on faces that are successfully detected.
To get better results compared to the method of skin color-
based face detection; it can be performed by using a
combination of Haar Cascade & Binary Pattern [16], or Haar-
like & Adaboost features [17]. The detected objects are then
classified into three types orientation based on the object’s
motion: horizontal, vertical, and rotational. But Machine
learning method is able to provide various advantages over
traditional methods when trained using large amounts of data.
The more data, the better the results. For facial recognition
application, we can employ two commonly used open-source
libraries, i.e., Dlib and OpenCV [18]. Dlib is created using
C++ language, which includes tools used for machine learning
[19]. In addition, Dlib offers linear algebra where the central
core uses the Basic Linear Algebra Subprogram (BLAS) [19].

Face detection is one area of research that has great
potential for further development. By far, there have been
many studies on Machine Learning-based face detection, the
most recent research is reported by S. Khan, et al. [20]. Their
system has successfully detected 2 to 12 people within the
classroom and got 100% accurate detection results. Even so,
we still want to explore this topic to get the most optimal
performance facial recognition, where the system can work in
real-time, which is then applied to meeting rooms. The faster
the face detection, the more efficient the attendance process.
Since [20] focused on the detection accuracy and the time
required for detection was not explicitly presented; therefore,
for this work, we will more emphasize on detection speed.

286 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

In this work, the system limitations are determined as
follows: A node contains a single PC and a single camera. In
the system implementation, the server and node have resided
in the same PC. We limit the dataset in the form of an image
under 1600 x 1500 pixels. Similar to [20], we only analyze the
detection between the Unknown and Known person(s). The
Unknown data used for every detected person is determined
one Unknown without specific ID, it means there is the same
ID for all Unknown people. The detection method employs
only HOG and convolutional neural network (CNN).

Four sections compose this paper. First is Introduction that
elaborates the related work and research motivation,
2) Methods discusses the intelligent attendance system for
meeting room including the division of subsystems to be
developed, 3) Results and Analysis, and the last section is
4) Conclusion.

II. METHODS
This system was developed under the Linux OS Ubuntu

Desktop 18.04 LTS. The smart meeting room consisted of
three subsystems, namely, Back-End, Front-End, and Node as
illustrated in Fig. 1.

Each subsystem has a specific purpose. In this system, data
is first obtained from the camera to the node. Local stream
uses Real Time Streaming Protocol (RTSP). The node will
process the data to be recognized by all the datasets existed on
the node. After processing, the data is sent to the server (Back-
End) to be saved to the database. Then Front-End will request
data at specific intervals to the Back-End for real-time data up
to 10 seconds before. The data will be displayed under the
Back-End. To support IoT, the HyperText Transfer Protocol
(HTTP) was utilized as a communication protocol between
Client to Front-End.

A. Front End Design
In general, Front-End functions are for: 1) Requesting data

to the Back-End by using the RESTful API; 2) Displaying
data and images obtained from Back-End; and 3) giving the
grant access to user/admin to the system. This section used the
Vue.js framework based on the Javascript programming
language. On Linux OS, the platforms that must be available
are NPM and Node.js, which can be installed using the
Ubuntu package manager. Some commands were carried out
first until finally, it produced a folder called dist, which
contained an index.html file. The file can be installed on
the webserver to be accessed.

The main modules used are 1) Axios, used for RESTful
API requests in the form of an HTTP POST or GET methods,
2) Vue-Router, used for routing or addressing from the
display, 3) Vuetify, used for material design, and 4) Vuex as
state management. The of Front-End’s work-flow diagram can
be seen in Fig. 2. The flowchart initially shows a list of
available rooms. When a room is clicked or selected, the
person/face data in the database will be displayed. A more
detailed explanation will be explained in the next paragraph.

As in Fig. 2, first step is the Dashboard requests a list of
rooms by doing an HTTP GET request to the Back-End part to
the following link http://[IP:port]/attendance/room/. IP and

port are matched with server address where Back-End is
installed. The response received by the Front-End is in the
form of data in JavaScript Object Notation (JSON) format,
i.e., {“listdata”:[{“id”:1,”name”:”Kelas A”},{“id”:2,
“name”:”Ruang Rapat”}]}. Later, the data is parsed to take the
ID and name parts. For example, to retrieve the ID data:
[“listdata”][0][“id”]. If the room data has been obtained, the
list will be displayed on the dashboard using v-for and v-bind:
href tags. Later, the dashboard display is appeared; when the
room name is clicked, the system will request the Back-End
server, which is a list of people within the room. The data is
requested using HTTP POST to the following address:
http://[ip]:[port]/attendance/currentposition/.

A JSON formatted parameter that is {“location“:
[room_id]} must exist and be set in the body of HTTP
requests. Id_ruangan is obtained on previous requests. For
example, the data obtained is in the form of codes as below,
where the data is a list of JSON:
{“listdata:[{“person_id”:1,”person__name”:”syifaul”,”timesta
mp”:1568689950.1496825,”profile_image_link”:“/storage/im
age/profile/0000001_c.jpg”},{“person_id”:2,”person__name”:
”tq”,”timestamp”:1568699955.1496825,”profile_image_link”:
“/storage/image/profile/0000002_c.jpg”}]”}. If we want to
take the link of profile image data, it can be achieved by the
following way: data[“listdata”][0][“profile_image_link”]. This
data is used to display images of people present which are
appeared on the dashboard.

http

http

rtsp

rtsp

Front-End .
Database

.

.

Node

Node

http

http

http

Client2

Client3

Client1

Back-End

Camera

Camera

Fig. 1. Smart Meeting Room System Architecture.

Start

No

Yes

Home Dashboard

Request list room

Request data based on Room

Room Clicked

Show Data

Room Clicked

Request data based on Room

Show Data

Show Current Data

Yes

No

Fig. 2. Flowchart of Front-End.

287 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

B. Back End Design
In general, the functions of Back-End are: 1) Providing an

API to be accessed by Front-End in requesting data,
2) Providing an API used by nodes to send and store captured
data, 3) Saving data to the database as seen in Table I, and
4) Registering the user names and rooms.

TABLE I. DATA BASE STRUCTURE

Name of Table Function Components

Person
Contains users that
are recognized by
the node.

ID: Integer
Name: String (Length limit 40)
Profile_image: Image File

Location place / location of
the camera is

ID: Integer
Name: String (40)

Camera Camera ID ID: Integer
Location: Foreignkey (Location)

Position

A collection of
users detected,
both registered and
not

ID: Integer
Person: Foreignkey (Person)
Camera: Foreignkey (Camera)
Location: Foreignkey (Location)
Timestamp: Float
Profile_image_link: String

In this work, the Back-End employs the Django v2.2
Framework, so the programming language is Python3.6.
However, on Ubuntu 18.04 version, Python3.6 is already
installed. Therefore, we do not need install Python again. To
register, we need access to Django Admin which can be traced
using a web browser to the following address:
http://[ip]:[port]/admin. The first step is a request to enter the
superuser’s username and password that has been created. If it
has been filled-in and submitted, the dashboard of Back-end
admin will appear. On the dashboard, the superuser can
register person, location and camera. However, registering a
camera requires a room parameter. Herein, before registering
it, we need to register the room first.

In the Back-End, there are several APIs that function as a
communication tool with other parts, namely Login, Refresh,
Position, and Current Position. Each function is described as
follows:

• Login, which is used to get tokens in the form of JWT
format, which are then used to access several available
APIs. The method used is HTTP Post, the body is
JSON with the following format: {"username"
"admin","password" "bandung"}. Username is
registered in the create superuser menu or in the
Django admin window. In the response section, there
are two keywords, namely refresh and access. Access
is used in subsequent API requests, whereas refresh is
for requesting a new token or re-requesting the token if
the access has expired. The token duration before being
refreshed is about 5 minutes. Meanwhile, the use of a
refreshed token can be up to 1 day before the validity
period expires.

• Position, which is used to transmit a person’s data
detected by the camera. A person is a list of user IDs in
the dataset. Location is the location’s ID where the user
was detected, the camera is the ID of the camera used,
and the timestamp is the time when the data was sent to
the server.

• The Unknown, which is used to send data to the server
if the camera detects an Unknown person. An
Unknown person is a person who is not registered in
the existing dataset. Each Unknown ID has a face
photo that is sent to the server. The face photo data is
converted to base64. When received by the server, the
photo data is decoded into a JPG file format. The
image is then saved in the storage media folder, which
is useful as a link for the detected Unknown ID profile
image.

• Current Position, which is used to get a list of users
who are currently in the meeting room, even some time
ago. The data taken for the past time can be adjusted
according to the need, usually the time is set 2 to 300
seconds ago.

C. Node Design
In general, the functions of the node are: 1) Face coding,

which is converting the image data sets in the provided data
set into a 128-d vector, 2) Face capturing, which detects the
location of face captured by the camera, 3) Face recognition,
which is finding the owner face, and 4) Sending data to the
server. Two libraries that are needed for this purpose: Python
library and NVDIA CUDA.

Phyton library consists of Dlib and OpenCV: the libraries
that provide tools for machine learning and image processing,
respectively. Later, Face_recognition, a library that simplifies
the use of Dlib. Meanwhile, NVIDIA CUDA is used as a
driver to utilize the NVIDIA graphics card core in machine
learning processing.

Face Encoding is the process of classifying faces into 128-
d vectors (128 real numbers) that represent faces Known to the
computer, as exhibited in Fig. 3. The classification is done
using previously trained network (pre-trained network) using
approximately three million images in the Dlib library, so we
only need to use the pre-trained network. In the trainer, there
is a configuration that must be set in the config.ini file, as
follows:
 File faceconfig.ini

[Trainer]
dataset_folder= dataset
encodings_output=
trainer_output/djangodata.pickle
detection_method=cnn

These parameters are filled depending on the needs. The
detection method can use CNN or HOG. Dataset_folder is a
folder containing the datasets in the form of images collection.
The image folder can be different depending on the image
identity (in the form of the name or the personal identity
concerned in the image or photo). For example, in folder A
contains photos of A, in folder B contains B, in folder C
contains photos of C, and so on. These folders are all stored in
a folder called dataset. The dataset folder is placed in the root
folder so that the settings are written as follows dataset_folder
= dataset. While Encodings_output is the output file encoded
in this process.

In Fig. 3, initialization is processed at the beginning, such
as determining the location of the dataset, encoding the output

288 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

location, the face detection method, etc. For the face detection
method, CNN is used by using the Dlib library, which is set
using an NVIDIA CUDA graphics card. Thus, the processing
is more accurate and faster.

For each detected image, a name for the image folder will
be taken and named according to the detected person’s name.
Then the image color changes from RGB OpenCV to RGB
Dlib format. Afterward, the face detection was carried out
using CNN. The detected faces are marked by making a
rectangle around the face which is then converted into 128 real
numbers. For each encoding of that one image, the existing
encoding list is updated with matching names. The resulting
encoding and name are made into a JSON model with the
given format: {"encodings": knownEncodings, "names":
knownNames}. KnownEncodings is a list of detected
encoding (128-d vector), whereas knownNames is a detected
name. Each encoding and name detected at one time occupies
the same list element. The JSON result is written into a file
with a pickle extension. When the format is written, all of
them are converted into Hex numbers. This pickle extension
file will be used to recognize faces detected by the camera.

In the Face recognition process, it requires a file with a
pickle extension generated from the Face Encoding process. In
this process, the faceconfig.ini file must be set up first,
as follows:

Faceconfig.ini
[Detector]
camera_id= 3
location_id = 2
; time periodic for sending message to server
in seconds
periodic = 2
; time periodic for capturing/save to disk
unknown picture and send unknown data to server
in seconds
periodic_unknown = 3
; input file.pickle
encodings_input =
trainer_output/djangodata.pickle
; hog or cnn
detection_method=cnn
; 1 to show display or 0 to hide display
display = 1
; 1 to save video to disk, 0 not save video
save_video_to_disk = 1
;input_type can be a file,stream_local or
stream_ip
;input_type= file
input_type= stream_ip
;if input_type = file, set the video
destination file
input_video = lunch_scene.mp4
;if input_type = stream_ip, set ip
camera_address
camera_address =
rtsp://admin:QXJMCF@192.168.0.100
; unknown id
unknown_id = 99999999
[Server]
;username and password server
username = admin
password = bandung
server_address = 127.0.0.1
server_port = 8000
secure = 0

Start

Init

• Read Dataset
• Take name folder
• Change Picture’s RGB from

OpenCV to Dlib

• Find face
• Encoding

• Append list encoding
• Append list name

Encoding Ien>0

A

A

Image Ien>0

Output encoding pickle

Finish

No

Yes

Yes

No

Fig. 3. Flowchart of Face Encoding.

In the file above, the camera_id and location_id values are
integers, in which the values were determined by the admin
during the Back-End setup. Periodic denotes the length time
required for transmission of detected data. Periodic_unknown
denotes the period for sending Unknown data if the detected
face is not found in the encoding file with the pickle
extension. Encodings_input represents a file from the face
encoding process which is used as a reference for face
detection. Detection_method is used as a method for detecting
faces: if CNN is selected, it can be written cnn, or hog if HOG
is selected. Display is used to display video from a camera
where the value 1 = yes, and 0 = no. Save_video_to_disk to
save the video from the camera to a storage place, where value
1 = yes, and 0 = no. Input_type is used for input data settings.
If it comes from an input file, write File, then stream_local for
local stream and stream_ip for RTSP inputs. Input_video
contains the address of the video input if input_type is filled
with files. Camera_address represents the camera address
when using stream_ip. Later, Unknown_id is the Unknown
identification set on the Back-End by the admin. Username
and password are created by the admin on the Back-End,
where the username is used as authentication in sending files
to the server. Server_address and Server_port are Back-End
addresses. Secure is set to 0 if using HTTP, and 1 if HTTPS.

In Fig. 4 initialization is done at the beginning, such as
specifying the location of the timeout dataset, etc.

After that in each loop, it reads the streaming video data
per frame, changes the color from BGR to RGB. Accordingly,
it can be read by Dlib, and reduces the reading frame size to
speed up the process. The next step is face detection using
CNN by utilizing an NVIDIA graphics card. Every detected
face is made a kind of square or box-shaped divider to mark
the face area. The marked area is encoded into a 128-d vector.
The results of the encoding if there are two faces, there will be
two different results. The encoding results are stored in a list.
Each data in the list is compared with the encoding data that is
already owned. Compare_face with the input pickle extension
file can be used to perform the comparison function.

289 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Start

Init

• Read Video Stream
• Convert from BGR to RGB

and resize
• Detect Face

• Locate Face
• Encodings

• Compare encodings
• Match name = name_id
• Un-matches name = unknown_id

Time pass = Periodic unknown

A

A

Time pass = Periodic send

Send known data to server

Finish

No

Yes
Name = Unknown_id

• Save face image to
local

• Send unknown data to
server

No

Yes

List_name.append(name_id)

Encoding Ien-I > 0

Yes

No

Fig. 4. Flowchart of Face Recognition.

In the compare_face function, the tolerance parameter is
set to 0.5. Every data that matches, its name or ID is stored in
a name index list. In that list, a name is taken based on how
often that name appears in the name index list. Only one name
that comes out is put into a list again, that is the list of names
containing anyone detected in a frame. If the encoding result
data does not match the data in the pickle extension file, then
the data is classified as Unknown. Image files (faces) retrieved
from unknown data are then stored on the local drive, part of
the captured data is sent to the server for display. The APIs
used to send Unknown data are:

Method: POST
URL: http://ip:port/attendance/unknown/
Body:{"person":[99999999],"location":2,"camera":
3,"timestamp": 1556783276,’
profile_image_unknown_data’:<base64encoding>}
Response: status= HTTP_201_CREATED

The APIs, as mentioned earlier, send Unknown data every
certain period if Unknown data is detected. In this case, the
Unknown data cannot be distinguished from one another. All
Unknown images will be stored in the local media/Unknown
folder. The admin can sort these images into additional
datasets and send some of them to the server using the API
above. The Unknown image sent to the server will first be
converted to base64 format. The data is wrapped in a JSON,
as can be seen in the previous API. If the data sent can be
recognized, then the data is sent to the server within a certain
period using the API. In the API, there is no image sending
because the image which will be displayed taken from the
profile.

Method: POST
URL: http://ip:port/attendance/position/
Body:{"person":[1,5,6],"location":2,"camera":3,"t
imestamp": 1556783276"}
Response: status= HTTP_201_CREATED

III. RESULTS AND DISCUSSION
The implementation of a real-time attendance system uses

a camera with a resolution of 1080p, a laptop, a router, and
connecting cables, as shown in Fig. 5.

Testing is carried out using a two-person dataset following
with ID as the name of each dataset folder, where the ID used
is 1 and 6. In folder 1 is inserted a user image with ID 1 and
folder 6 with user ID 6. Initially, face encoding is carried out.
Hence, the pickle format data is generated. Next, the first
thing to do is to set the Back-End, Front-End, and Node
sections, respectively. Then, Node will run face recognition.

A. Single Person Test (Known vs Unknown)
In this section, tests are performed on faces that have been

registered with the system. The face has ID = 6. The face that
is detected and recognized by the system will be displayed on
the website, as in Fig. 6(a), where the Known’s face captured
by the video can be displayed smoothly on the website. The
left-side image is the video display captured by the camera
and processed using a particular script, whereas the right-side
image is the display on the website. The data displayed is the
most recent data up to 10 seconds ago. The data retrieval
period can be changed as needed. The website display is
updated (refreshed) every second.

Camera

Laptop Wireless Router

Wired

Wireless

Fig. 5. System Implementation.

(a)

(b)

Fig. 6. Testing for: (a) One Known Person; (b) One Unknown Person.

290 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 7. Testing for One Known Person with a Data Interval of 3 Seconds.

Fig. 7 depicts a comparison chart between registered
(Known) and unregistered (Unknown) person. Data collection
was done every 3 seconds with 60-second intervals. The
graphics obtained are quite stable. There should be two
Known straight lines on line 1 and Unknown on line 0. It
showed that at 48 seconds, an error has occurred on the
detected face. The Unknown test is performed on a user with
an Unknown identity as visualized in Fig. 6(b). The user’s
face does not exist in the data set and is not even registered to
the existing system. Any faces that are Unknown, will be set
their ID as 99999999.

In Fig. 8, we obtain a very stable graph. There is no wrong
data at all. This situation indicates that data retrieval with a
more extended period can achieve more stable data than
shorter periods.

Fig. 9 and Fig. 10 exhibit the Unknown graph with sample
periods at intervals of 3 seconds and 5 seconds, respectively.
The detection of the Unknown person tends to be unstable;
this is because the Unknown faces sometimes tend to be
detected as a registered user. Since the dataset has no
Unknown images, the system will tend to group Unknown
faces into one of the existing datasets. This tendency is caused
by the tolerance factor in the library used. The tolerance value
is set to 0.5; if set to be smaller, the face will be more
challenging to identify. When the two images are compared,
then a graph with data capture at a larger interval shows better
results.

B. Two People Test
This test involves two people, namely Known and

Unknown in the same camera as shown in Fig. 11. The
obtained known to the unknown test chart with data interval of
3 seconds and 5 seconds are delineated in Fig. 12 and Fig. 13,
respectively. A graph that should be obtained is a straight line
at the number = 1. In this situation, data retrieval at intervals
of 3 seconds is better than 5 seconds.

Every detected unknown face will be stored in an
“Unknown” folder at a node, as shown in Fig. 14. The
obtained data are set at certain intervals depending on the
determined configuration. The images that have been stored in
that folder are then sorted by the admin and labeled as a new
dataset.

C. Three People Test
This test employs three people, composed of two known

faces and one unknown face, as visualized in Fig. 15. The

result is depicted in Fig. 16. The expectation result is known
as a straight line at number 2 and an unknown line at number
1. However, the results obtained are very oscillating. At that
time, in 60 seconds, eight data were correctly known and five
were utterly unknown. The results obtained in this study are
still not stable in detecting the presence of Known and
Unknown faces. This condition is probably caused by an
algorithm that has not been able to handle large-scale users.

Fig. 8. Testing for One Known Person with a Data Interval of 5 Seconds.

Fig. 9. Testing for One Unknown Person with a Data Interval of 3 Seconds.

Fig. 10. Testing for One Unknown Person with a Data Interval of 5 Seconds.

Fig. 11. Testing for Two People: Known Person vs. Unknown Person.

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50 60

To
ta

l P
eo

pl
e

Time (seconds)

known unknown

0
0.2
0.4
0.6
0.8

1

0 20 40 60

To
ta

l P
eo

pl
e

Time (seconds)

known unknown

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50 60

To
ta

l p
eo

pl
e

Time (seconds)

known unknown

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50 60

To
ta

l p
eo

pl
e

Time (seconds)

known unknown

291 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 12. Comparison Chart of Testing Two People, One Known and One

Unknown, by Data Interval of 3 Seconds.

Fig. 13. Comparison Chart of Testing Two People, Known and Unknown, by

Data Interval of 5 Seconds.

Fig. 14. Folder of Unknown Database in the Node.

Fig. 15. Testing Three People.

Fig. 16. Graph Testing Three People with an Interval of 3 Seconds.

IV. CONCLUSION AND FUTURE WORKS
In this work, we have developed a system that can be

applied for smart meeting rooms and get results well
functionally as expected. The system can detect faces, send
data to the server, display the data, and save unknown faces in
a folder on the node. If the detection is carried out on a
registered user (known), then the system is quite stable.
However, if the detection is done on an unregistered user
(unknown) user is less stable. Instability result can occur when
detecting the faces of three or more people in one camera.
Also, there is a minimum distance to be able to detect faces
accurately; which is about 2 meters.

Based on the summarized results, it is worth to improve
the stability aspect in detecting more than three people for
further research. Special algorithms will be applied in the
system.

REFERENCES
[1] J.M. Zhang, et al., “Machine Learning Testing: Survey, Landscaped and

Horizons,” IEEE Transaction on Software Engineering, 2020.
[2] A. Elmahmudi and H. Ugail, “Deep face recognition using Imperfect

Facial Data,” Future Generation Computer Systems, Vol. 99, pp. 213-
225, October 2019.

[3] S. Sharma, et al., “Face Recognition System using Machine Learning
Algorithm,” Proc. of the 5th Int. Conf. on Communication and
Electronics Systems, 2020.

[4] S. Fuada, H.A. Shiddieqy, and T. Adiono, “A High-Accuracy of
Transmission Line Faults (TLFs) Classification based on Convolutional
Neural Network,” Unpublished.

[5] N. Kato, et al., “Ten Challenges in Advancing Machine Learning
Technologies toward 6G,” IEEE Wireless Communications, Vol. 27(3),
pp. 96-103, June 2020.

[6] T. Adiono, “Challenges and opportunities in designing Internet of
Things,” Proc. of the 1st Int. Conf. on Information Technology,
Computer, and Electrical Engineering, Nov 2014.

[7] S. Fuada, et al., “Workshop Internet-of-Things untuk Guru dan Siswa
Sekolah Menengah di Purwakarta, Jawa Barat, Guna Menunjang
Kompetensi Era Industri 4.0,” Unpublished.

[8] E. Setyowati, et al., “Mesin Absensi RFID berbasis Internet-of-Things
(IoT) untuk Meningkatkan Pengetahuan Siswa di Purwakarta terhadap
Teknologi,” J. Pengabdian Kepada Masyarakat (DIKEMAS), Vol. 3(3),
pp. 67-74, 2019.

[9] K.P. Aji, U. Darussalam, N.D. Nathasia, “Perancangan Sistem Presensi
untuk Pegawai dengan RFID berbasis IoT Menggunakan NodeMCU
ESP8266,” J. of Information Technology and Computer Science, Vol.
5(1), pp. 25-32, 2020.

[10] Gagandeep, et al., “Biometric Fingerprint Attendance System: An
Internet of Things Application,” Innovations in Computer Science and
Engineering, pp. 523-530, 2018.

[11] M.D. Rahmatya and M.F. Wicaksono, “Design of Student Attendance
Information System with Fingerprints,” IOP Conf. Series: Materials Sci.
and Eng., Vol. 662(2), 2019.

[12] T. Adiono, K.S. Prakoso, C.D. Putratama, B. Yuwono, and S. Fuada,
“HOG-AdaBoost Implementation for Human Detection Employing
FPGA ALTERA DE2-115,” Int. J. of Advanced Computer Science and
Applications, Vol. 9(10), pp. 353-358, 2018.

[13] D. Monzo, et al., “A Comparative Study of Facial Landmark
Localization Methods for Face Recognition Using HOG descriptors,”
Prof. of the 20th Int. Conf. on Pattern Recognition, pp. 1330-1333, 2010.

[14] T. Adiono, K.S. Prakoso, C.D. Putratama, B. Yuwono, and S. Fuada,
“Practical Implementation of Real-time Human Detection with HOG-
AdaBoost in FPGA,” Prof. of IEEE Region 10 Conf. (TENCON, pp.
October 2018. DOI: 10.1109/TENCON.2018.8650453.

[15] S. Fuada, et al., “A High Frame-rate Cell-based HOG Human Detector
Architecture and Its FPGA Implementation,” Unpublished.

0
0.5

1
1.5

2

0 10 20 30 40 50 60

To
ta

l p
eo

pl
e

Time (seconds)

known unknown

0
0.5

1
1.5

2

0 10 20 30 40 50 60

To
ta

l p
eo

pl
e

Time (seconds)

known unknown

0

1

2

3

0 10 20 30 40 50 60

To
ta

l p
eo

pl
e

Time (seconds)

known unknown

292 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

[16] D. Qu, et al., “An Automatic System for Smile Recognition Based on
CNN and Face Detection,” Proc. of the IEEE Int. Conf. on Robotics and
Biomimetics (ROBIO), pp. 243-247, 2018.

[17] B.T. Chinimili, et al., “Face recognition-based attendance system using
Haar Cascade and Local Binnary Pattern Histogram Algorithm,” Proc.
of the 4th Int. Conf. on Trends in Electronics and Informatics, June 2020.

[18] Suwarno and Kevin, “Analysis of Face Recognition Algorithm: Dlib and
OpenCV,” J. of Informatics and Telecommunication Engineering
(JITE), Vol. 4(1), pp. 173-184, July 2020.

[19] S. Sharma, et al., “FAREC — CNN based efficient face recognition
technique using Dlib,” Prof. of the Int. Conf. on Advanced
Communication Control and Computing Technologies (ICACCCT), pp.
192-195, 2016.

[20] S. Khan, et al., “Real-Time Automatic Attendance System for Face
Recognition using Face API and OpenCV,” Wireless Personal
Communication, Vol. 113, pp. 469-480, 2020.

293 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Methods
	A. Front End Design
	B. Back End Design
	C. Node Design

	III. Results and Discussion
	A. Single Person Test (Known vs Unknown)
	B. Two People Test
	C. Three People Test

	IV. Conclusion and Future Works

