
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

417 | P a g e
www.ijacsa.thesai.org

Lake Data Warehouse Architecture for Big Data

Solutions

Emad Saddad
1

Climate Change Information Center and Renewable Energy

and Expert System

 Agricultural Research Center (ARC)

Giza, Egypt

Ali El-Bastawissy
2

Faculty of Computer Science

MSA University

Giza, Egypt

Hoda M. O. Mokhtar
3

Faculty of Computers and Artificial Intelligence

Cairo University

Giza, Egypt

Maryam Hazman
4

Climate Change Information Center and Renewable Energy

and Expert System

Agricultural Research Center (ARC), Giza, Egypt

Abstract—Traditional Data Warehouse is a multidimensional

repository. It is nonvolatile, subject-oriented, integrated, time-

variant, and non-operational data. It is gathered from

multiple heterogeneous data sources. We need to adapt

traditional Data Warehouse architecture to deal with the

new challenges imposed by the abundance of data and the

current big data characteristics, containing volume, value,

variety, validity, volatility, visualization, variability, and venue.

The new architecture also needs to handle existing drawbacks,

including availability, scalability, and consequently query

performance. This paper introduces a novel Data Warehouse

architecture, named Lake Data Warehouse Architecture, to

provide the traditional Data Warehouse with the capabilities

to overcome the challenges. Lake Data Warehouse Architecture

depends on merging the traditional Data Warehouse

architecture with big data technologies, like the Hadoop

framework and Apache Spark. It provides a hybrid solution in a

complementary way. The main advantage of the proposed

architecture is that it integrates the current features

in traditional Data Warehouses and big data features

acquired through integrating the traditional Data Warehouse

with Hadoop and Spark ecosystems. Furthermore, it is tailored

to handle a tremendous volume of data while maintaining
availability, reliability, and scalability.

Keywords—Traditional data warehouse; big data; semi-

structured data; unstructured data; novel data warehouses

architecture; Hadoop; spark

I. INTRODUCTION

Data warehouse (DW) has many benefits; it enhances
Business Intelligence, data quality, and consistency, saves
time, and supports historical data analysis and querying [1]. In
the last two decades, data warehouses have played a prominent
role in helping decision-makers. However, in the age of big
data with the massive increase in the data volume and types,
there is a great need to apply more adequate architectures and
technologies to deal with it.

Therefore, it became crucial to enhance traditional DW to
deal with big data in various fields to accommodate this
evolution in volume, variety, velocity, and veracity of big data

[2], [3]. To achieve this, we propose a new DW architecture
called Lake Data Warehouse Architecture. Lake Data
Warehouse Architecture is a hybrid system that preserves the
traditional DW features. It adds additional features and
capabilities that facilitate working with big data technologies
and tools (Hadoop, Data Lake, Delta Lake, and Apache Spark)
in a complementary way to support and enhance existing
architecture.

Our proposed contribution solve several issues that face
integrating data from big data repositories such as:

 Integrating traditional DW technique, Hadoop
Framework, and Apache Spark.

 Handling different data types from various sources like
structured data (DBs, spreadsheet), semi-structured data
(XML files, JSON files), and unstructured data (video,
audio, images, emails, word, PowerPoint, pdf files).

 Capturing, storing, managing, and analyzing data
volume that cannot be handled by traditional DW.

 Using recent technologies like the Hadoop framework,
Data Lake, Delta Lake, and Apache Spark to decrease
time spent analyzing data and to decrease storage costs
are inexpensive.

 Support all users, especially data scientists, because
they need to perform depth data analysis.

The rest of the paper is organized as follows: Section II
explains background and preliminaries for traditional Data
Warehouses and its limitations, importance of DWs, and big
data characteristics and types. Section III overviews the related
works to the DW architectures. Section IV presents the
proposed DW architecture named Lake Data Warehouse
Architecture. Section V describes the case study by applying
our contributions called Lake DW Architecture. Finally, the
conclusion is presented in Section VI.

http://www.fci.cu.edu.eg/
http://www.fci.cu.edu.eg/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

418 | P a g e
www.ijacsa.thesai.org

II. BACKGROUND AND PRELIMINARIES

In this section, we will review the background of related
topics, such as traditional DWs, its limitations, and why we
need to redevelop it. Moreover, we will discuss various
related technologies.

A. Traditional Data Warehouses(DWs)

Traditional DWs are integrated, a subject-oriented,
nonvolatile, and time-variant data to support decision-makers
[4], as presented in Fig. 1. Those four properties differentiate
DWs from other data repository systems, such as relational
database systems [5].

Fig. 1. Traditional Data Warehouses (DWs) architecture

Usually, in primary DW, there are data marts (DMs). Data
marts (DMs) are a small DW that contains only a subset of data
obtained from a central DW. The content of DMs represents
information from a specific domain of interest. Many DWs
servers are used to manage data. These servers present
multidimensional views of data to a variety of front-end tools.

B. The limitations of Traditional DW Architecture

In [6], [7], and [8], the authors reviewed some limitations
of DW, such as supporting only structured data, on the
contrary, do not support semi-structured data, or unstructured
data. In addition to the above, the restriction of handling data
volume in terabytes, which does not scale to petabyte size, is
widely available. Besides, it is costly as it depends on
proprietary hardware and software.

Moreover, traditional DW performs analytic queries, which
consequently affects the whole query performance, accessing,
and processing of data. The decision-making process also may
be affected if: 1) the correct data are not available at a suitable
time, and 2) the growth of the business requires new methods
for data management other than adapting traditional DW
architecture.

C. The Objectives of the redeveloped traditional DW

One of our main objectives is to overcome the limitations
of traditional DW architecture built on outdated technologies
[4]. We initiate an overall architecture that supports the
functionalities of the traditional DW with abilities to include
[6], [9] :

 Meeting new business requirements.

 Depending on lower-cost infrastructure.

 Handling heterogeneous data and new data structures
and formats.

 Managing customer expectations.

 Meeting growth of the business.

 Using advances in new technology and its
improvements.

 Handling product existence and status.

 Improving business efficiencies and competitive
advantage.

 Decreasing operational and financial risks.

 Evaluating and forecasting trends and behaviors.

D. The Age of Big data

Big Data is a data volume that is available in different
levels of complication. It is generated at various velocities and
levels of uncertainty; hence it is not handled using traditional
approaches, traditional technologies, or traditional algorithms
[6]. Today, big data is characterized by ten main
characteristics namely volume, variety, velocity, veracity,
value, validity, variability, visualization, volatility, and venue
[3], [10], [2], [11], [12], [13] as follows:

 Volume: the huge amount of data generated
continuously on an hourly or a daily basis from
different sources. Such as terabytes generated per hour
for applications like YouTube, Instagram, and Google.

 Variety: the types of big data that are ingested from
different data sources.

 Velocity: the speed at which data is produced. The
aspects of data may be batch data or streaming data.

 Veracity: the quality of data that is being handled to
obtain valuable insights. Such as ambiguous,
inconsistent, incomplete, anomaly, uncertain, and
biased data.

 Value: represents the business value to be derived from
big data.

 Validity: refers to the correctness of data used to extract
outputs in the form of information.

 Variability: refers to the inconsistent data flow.

 Visualization: refers to the ability to analyze and visual
insights as an output of big data analysis.

 Volatility: the stored data on how long it is valuable to
the consumer.

 Venue: refers to a various platform where numerous
kinds of data from different sources by
several platforms.

In general, data are a set of qualitative values or
quantitative variables; Big Data can be categorized into three
types [2], [9]:

 Structured data. The data has a defined structure or a
schema organized either in the form of a relational
database or in some other way that is easy to operate.
For example, data stored in a relational database (in the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

419 | P a g e
www.ijacsa.thesai.org

form rows and columns), in spreadsheets (such as CSV
files), and cleansed data (that have been processed with
a lot of cleansing and filtering).

 Semi-Structured Data: The data is hard to retrieve,
analyze, and store as structured data. It requires a big
data software framework (such as Apache Hadoop) to
achieve these operations. For example, XML files,
JSON files, and BibTex files.

 Unstructured Data: The fully unorganized data is
difficult to handle, and it requires advanced software
and tools to access it. Examples include video, audio,
images, emails, word, PowerPoint, pdf files, webpages,
location coordinates, and streaming data.

E. Hadoop Framework and Data Lake

Hadoop is an open-source software framework. It allows
the execution of the MapReduce processes for data processing.
It provides massive storage for all data types, massively
parallel processing, and storing data and running applications
on clusters to accomplish better computation resources [14].
Hadoop has main components as follows [15], [16], [17]:

 The Hadoop Distributed File System (HDFS) is a file
system, which manages storage and access to data
spread across the different nodes of a Hadoop cluster.

 YARN is a Hadoop cluster resource manager used to
assign system resources for applications and schedule
of the jobs.

 Map-Reduce is a processing engine and a programming
framework used to manage large-scale batch data in the
Hadoop system.

 Hadoop Common is a set of services and institutions
that provide underlying capabilities needed by the other
parts of Hadoop.

Data Lake is a data store that can collect any type of data:
structured, semi-structured, or unstructured data, which are
stored with one another regardless of structure, format, or types
[18], [19]. It is a conceptual idea that is usually implemented
with one or more technologies such as Hadoop and NoSQL
databases. When querying the Data Lake, only need data will
transform that are relevant to business needs [20].

Creating Data Lake depends on Hadoop's technology,
which is a component (as the platform) for the data lake. It is
the complementary relationship between Data Lake and
Hadoop [21], [22], [23]

Data Lake is similar to traditional DW in that they are both
repositories for data. However, there are apparent differences
in features between them [7]—the schema on reading in Data
Lake, but schema on write in DW. The scale of data in Data
Lake is enormous, while it is large data volumes in DW. The
data sources may be semi-structured data or/and unstructured
data, but it is mainly structured data in DW [24], [25], [26],
[27].

F. Apache Spark and Delta Lake

Apache Spark is an open-source applied for big data
analytics and distributed systems. It provides streaming
libraries, SQL, graph analysis, and machine learning. It has two
main components Spark streaming, which is used for managing
real-time data, and the Spark engine , which directly processes
each data chunks by Spark streaming [28], [29], [30].

 Delta Lake is an open-source Spark storage layer. It is an
extra storage layer that makes reliability to our data lakes built
on The Hadoop Distributed File System (HDFS) and cloud
storage [31]. Delta Lake provides a series of other features
including:

 Joining streaming and batch data processing.

 Giving a scalable metadata approach.

 Providing ACID transactions that guaranteed
consistency of the data stored inside the data lake
through ensuring that only complete writes are
committed.

 Time travel that is allowing one to access and return
previous versions of the data.

 Schema evolution as data evolves, Delta allows
Spark table to change in the schema and many more
while we use Delta.

 Enabling a Data Lake to update data without going
through the entire Data Lake repository.

III. RELATED WORKS

Several efforts have been conducted to adapt traditional
DWs for handling new user requirements and changes in the
underlying data sources. Many approaches focus on DWs that
deal with a relational database. However, they cannot be
appropriated to deal with big data. In [32], some
methodologies try to solve the problem by developing
the ETL (Extracting, Transforming, and Loading) process. In
[33], the authors attempt to update DW Schema to reflect
modifications that already took place. As mentioned in [33],
[33], [34], [5], [35], [36], the authors use temporal DW
and schema versions to update the DWs Structure by keeping
more than one DWs version. These works do not depict how
the user's needs impact the evolution changes.

Limited approaches have taken care of handling the aspect
of big data development. The approach mentioned in [37]
describes data schema specification and evolution processing,
but it does not depend on DW. The work presented in [38]
explained the method for treating the growth of the
data sources in the integration area using big data integration
ontology. It can handle some changes in data sources, but it
does not determine how to answer all requirements.

Several types of research have concentrated on the use of
DWs in big data analysis. The authors in [39] display an
OLAP method for big data executed with Hadoop. They focus
on multidimensional analysis for big data analysis. However,
they do not address big data evolution, which applies to the
research work proposed in [40] and [26].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

420 | P a g e
www.ijacsa.thesai.org

Other researchers studied the problem of big data evolution.
In [41], the authors discuss a methodology for constructing a
system for big data analysis. However, it cannot be applicable
in the state of the previously used data is not provided.

The authors in [42] presented the DW approach for Big
Data analysis that was implemented using Map-Reduce. This
approach handles two types of changes: (1) schema versions in
metadata control variations of the fact table and (2) slowly
changing dimensions. The approach does not process changes
in big data sources that may affect the analysis process
and results.

IV. THE PROPOSED LAKE DATA WAREHOUSE

ARCHITECTURE

Our contribution aims to adapt traditional DW to solve the
new challenges by handling semi-structured and unstructured
data. In addition to managing the growth of business
requirements and treating the two main drawbacks, namely,
availability and system performance. Furthermore, it enhances
query performance by providing the required data from users at
any time.

In this section, we present a novel DW architecture that
improves the traditional DW performance to deal with these
challenges. Our contribution integrates the traditional DW
architecture with big data technologies like Hadoop and
Apache Spark.

In the age of big data, We need to improve DW architecture
to handle the new challenges imposed by big data. The Hadoop
Framework and Apache Spark are a complement to handling
the challenges of traditional DW; each has its advantages in
different circumstances. In some cases, we need the Hadoop
Framework and Apache Spark to process unstructured or semi-
structured data (raw data) and large volume datasets (big data).
In other words, we still depend on traditional DW for
consistent and high-quality data (structured data), and low
latency and interactive reports.

In Fig. 2, we explain the proposed Lake DW Architecture.
Where Hadoop and Spark do not replace traditional DW and
Big Data is going to change traditional DW architecture but not
replacing it. Our contribution depends on integrating traditional
DW techniques, Hadoop Framework, and Apache Spark into a
hybrid solution.

The large amount of big data generated every minute and
every hour needs a data lake that can scale to handle this
volume. Therefore, we use Hadoop as a data platform for data
lakes to provide extensive scalability at an acceptable cost.
Besides, Data Lakes can be complemented DW besides the
Hadoop framework. Also, Data Lakes can be complemented
DW besides the Hadoop framework. Our proposed architecture
differentiates itself from all previous work. It is a
hybrid environment that upgrades traditional DW with Hadoop
environment depending on the Hadoop-based Data Lake
because it can extend the use and capabilities of traditional
DW, as follows:

 Collecting or capturing data from structured data
sources using ETL Architecture. DW depends on the
traditional ETL process; where extract (E) data from

operational databases and then, the data process, clean
and transform (T) before loading (L) them into the DW
or data marts or virtual data marts. DW is designed to
handle and analyze read-heavy workloads. DW needs to
define the data model before loading the data. Then,
they call a Schema-On-Write approach, as presented in
Fig. 2.

 Collecting or capturing data from Semi-Structured or
Unstructured data sources using ELT Architecture. Big
Data requires a different process to collect data where
traditional ETL does not work well on semi-Structure or
unstructured data. Big Data calls for ELT. The raw data
will be stored in its original format. The preprocessing
step will not be used until the query or other application
acknowledge/ ask for these data. Where Data Lake is
different from DW through the processing of data in the
ELT order and utilizing the Schema-on-Read approach,
as shown in Fig. 2.

Fig. 2 presents a set of essential components of our
contribution model as follows:

A. Hadoop-Based Data Lake architecture in Cloud

Environment

It is using Hadoop as a staging area for DW by adding
Hadoop-based Data Lake that is a storage repository that is
used for complementing traditional DW. It is using as a data
source that passes only required data to Data Lake and
ingesting unlimited amounts of raw data that related to
business objectives. As shown in Fig. 2, we explore the
Hadoop-based Data Lake architecture has many layers as
follows:

1) Ingesting data layer: ingests raw data in native format,

where the ingested data can be micro-batch, macro-batch,

batch, real-time, or hybrid.

2) Landing data layer: Different data types (ingested in

the previous layer) are stored in native format (without

processing). In this layer, users can find the original data

versions of their analysis to aid the subsequent handling.

Fig. 2. The proposed Lake Data Warehouse (DW) Architecture

3) Metadata Layer: is responsible for making data easy to

access and extract values from Data Lake. It helps to make

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

421 | P a g e
www.ijacsa.thesai.org

identifications, data versioning, entity and attributes,

distributions, quality.

4) Governance Data Layer: applies to the other layers. It

is responsible for authentications, data access, data security,

data quality, and data life cycle. It determines the

responsibilities of governing the right to access and handling

the data.

B. Delta Lake architecture with Apache Spark Cloud

Environment

Delta Lake technology is used with Apache Spark to
implement our proposed model by creating a cloud data
platform for solving Data Lake challenges, such)1) the data
quality is low,)2) reading and writing are not guaranteed,)3)
insufficient performance with growing volumes of data, and)4)
updating records is hard [43]. As presented in Fig. 2, Delta
Lake Architecture has two layers:

1) The atomic layer would be a Silver Delta table built

using Object Storage, and
2) The Departmental layer would be any number of Gold

Delta tables also built on Object Storage. We employ Spark

and store all data in Apache Parquet format allowing Delta

Lake to leverage the well-organized compression native to

Parquet.
Apache Spark is used to read and process huge files and

datasets. Spark provides a query engine capable of processing
data in huge data files. Some of the most significant Spark jobs
in the world run on Petabytes of data. Apache Parquet has the
format as a columnar file responsible for optimizations to go
faster queries [44]. It is a more efficient file format than JSON
files. It is suitable for data processing in the Hadoop. It
provides an efficient method to handle complex datasets.

The main difference between our contributions Lake DW
Architecture over traditional DW as follows:

 Handling different data types (structured, semi-
structured, and unstructured data) from various sources.

 Extracting, storing, managing, and analyzing data
volume that cannot handle by traditional DW.

 Integrating between traditional DW technique, Hadoop
Framework, and Apache Spark as a hybrid solution. It
uses ETL or ELT processes depending on types of data
sources.

 Supporting different data types in various sources.

 Determining and analyzing data from Data Lake and
Delta Lake, they scale to extreme data volumes.

 Supporting all users, especially Data scientists, because
they can do in-depth analysis.

V. CASE STUDY

Our goal of this section is to experiment with our
contribution to prove its effectiveness in dealing with big data
and analyze it for decision-makers. This case study shows how
our proposed model can extract, integrate, and analyze big data
that cannot be handled by traditional DW. We use Data Lake to

collect and process the Internet of Things (IoT) data.
We provide a demo IoT sensor dataset for demonstration
purposes. The data simulates heart rate data measured
by health tracker devices. Each file consists of five users whose
heart rate is measured each hour, 24 hours a day, every
day. We store datasets in the data lake as JSON files. We use
two data files in JSON format, the first file for readings
recorded by the devices in January 2020
(health_tracker_data_2020_01.json), and the second file for
the readings recorded by the devices for February 2020
(health_tracker_data_2020_02.json).

We implemented on Data Lake, Delta Lake, and Apache
Spark in Databricks, which provides an integrated platform for
working with Apache Spark. When working with Delta Lake,
Parquet files can be converted in-place to Delta files. Next, we
will convert the Parquet-based data lake table we created
previously into a Delta table.

A. Configure Apache Spark

1) Creating the ClustreHelthTracher cluster is

computation resources used to run data science and data

analytics such as the ETL process, ad-hoc analytics, and

streaming analytics.

2) Configuration the Apache Spark, we will need to

perform a few configuration operations on the Apache Spark

session to get optimal performance. These will include

creating a database to store data, as shown in the following

Spark SQL script:

3) In additional to configure the number of shuffle

partitions as shown in the following Spark SQL script:

B. Importing data from a Data Lake into a Delta Lake by

ETL of Apache Spark

We import data from our Data Lake and save it into a Delta
Lake as Parquet files. We appended the first month of records
and kept in the health_tracker_data_2020_02.json file by
using the ETL process of Apache Spark. In additional to
configure the number of shuffle partitions as presented in the
following Python language scripts:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

422 | P a g e
www.ijacsa.thesai.org

In Fig. 3, we visualize the sensor data over time, as
displayed in the following Spark SQL script:

Fig. 3. The sensor data over time.

C. Create a Parquet-based Data Lake Table

 We convert the existing Parquet file to The Parquet-based
data lake table that will be used to Delta tables. We will be
writing files to the root location of the Databricks File System
(DBFS) in our cloud object storage. We create the table using
the Create Table As Select (CTAS) Spark SQL pattern as
shown in the following script:

Count the records in the health_tracker_silver table. We

expect to have 3720 records: five device measurements, 24
hours a day for 31 days, as shown in the following Spark SQL
script:

D. Convert an Existing Parquet-based Data Lake Table to a
Delta table: The Atomic layer of Delta Lake

 A Delta table consists of three things: (1) The Delta files
containing the data and kept in object storage. (2) A Delta table
registered in a central Hive meta-store accessible by all clusters
to persist table metadata. (3) The Delta Transaction Log (an
ordered record of every transaction) saved with the Delta files
in object storage. To Convert an Existing Parquet-based Data
Lake Table to a Delta table by using the following steps:

1) Convert the Files to Delta Files: We convert the files

in place to Parquet files. The conversion creates a Delta Lake

transaction log that tracks the files. Now, the directory is a

directory of Delta files, as shown in the following Spark SQL

script:

2) Register the Delta Table: we will register the table in

the Metastore. The Spark SQL command will automatically

infer the data schema by reading the Delta files' footers, as

shown in the following Spark SQL script:

With Delta Lake, the Delta table is ready to use the

transaction log stored with the Delta files containing all
metadata needed for an immediate query. We count the records
in the health_tracker_silver table with a Spark SQL query as
follows:

E. Creating an aggregate Delta Table: The Departmental
layer of Delta Lake

 We create a new Delta table (an aggregate table) from the
data in the health_track_silver Delta table. We create a
health_tracker_user_analytics Delta table of summary
statistics for each device. We use the Create Table As Select
(CTAS) Spark SQL as shown in the following script:

F. Exploring analysis results

 The health_tracker_user_analytics table could be used
to define a dashboard for analyzing of the results according to
business requirements as provided in Fig. 4 which describes
the aggregation results such as maximum, minimum, and
average data, as presented in the following Spark SQL script:

Fig. 4. The analysis of the results according to business requirements.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

423 | P a g e
www.ijacsa.thesai.org

G. Appending Files to an Existing Delta Table (Batch data

write to Delta Tables)

 We convert the existing Parquet file to The Parquet-based
data lake table that will be used to Delta tables. We will be
writing files to the root location of the Databricks File System
(DBFS) in our cloud object storage. We create the table using
the Create Table As Select (CTAS) Spark SQL pattern as
shown in the following script:

H. Exploring analysis results

 We can modify existing Delta tables through appending
files to an existing directory of Delta files. We append the next
month of records, kept in the health_tracker_data_2020_02
table by using the INSERT INTO Spark SQL command as
shown in the following script:

I. Assessing the Missing Records

 After a batch update of the health_tracker_silver table, we
counted the number of records in the table. We discovered that
some records were missing by Count the Number of Records
per Device.

J. Assessing the Missing Records

 After a batch update of the health_tracker_silver table, we
counted the number of records in the table. We discovered that
some records were missing by Count the Number of Records
per Device.

TABLE I. THE NUMBER OF RECORDS PER DEVICE

Device ID Number of Records

0 1440

1 1440

2 1440

3 1440

4 1345

In Table I, device number 4 looks are missing 95 records.
We run a query to discover the missing records' timing by
displaying the number of records per day. We have no records
for device 4 for the last few days of the month, as shown in the
following Spark SQL query:

SELECT dte as Date, p_device_id as Device_Id,

heartrate as Heart_Rate_Reading

FROM health_tracker_silver

WHERE p_device_id IN (1, 4) and dte > "20-2-2020"

In Fig. 5, the absence of records from the last few days of
the month shows a phenomenon that may often occur in a
production data pipeline: late-arriving data. Delta Lake allows
us to process data as it arrives and is prepared to handle the
occurrence of late-arriving data.

Fig. 5. The absence of records.

K. Identify Broken Readings in the Table

 In the initial load of data into the health_tracker_silver
table, we noted that there are broken records in the data. In
specific, we made a note of the fact that several negative
readings were present even though it is impossible to record a
negative heart rate. Let us assess the extent of these broken
readings in our table. First, we create a temporary view for the
broken readings in the health_tracker_silver table, as shown in
the following Spark SQL script:

Next, we sum the records in the view, as shown in the

following Spark SQL query:

SELECT SUM(broken_readings_count)

FROM broken_readings

Result: 67

VI. CONCLUSION

 Many companies use DWs in different areas to help in the
decision-making process. Besides, DWs enhance business
intelligence, data quality, and consistency, saving time,
and storing historical data. In the age of Big Data, the amount
of data needed for ingesting and storing is an unprecedented
rate. However, the architecture of the traditional DWs
cannot manage such large amounts of data. Its new types from
the current data sources are autonomous, heterogeneous,
scalable, and distributed, which requires modern technology
and modern DW architecture to deal with it.

In this paper, we proposed a novel DW architecture called
Lake Data Warehouse Architecture. Lake Data Warehouse
Architecture is a new DW structure that depends on integrating
between traditional DW technique, Hadoop Framework, and
Apache Spark as a hybrid solution. It familiarizes a traditional
DW. It employs big data technologies and tools (Hadoop,
Apache Spark, Data Lake, and Delta Lake) in a complementary
way to support and enhance existing architecture. Furthermore,
it can improve scalability and reduce the costs of development
of traditional DW architecture.

Lake Data Warehouse Architecture has many competencies
over traditional DWs Architecture, such as solving several
issues that face integrating data from big data repositories,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

424 | P a g e
www.ijacsa.thesai.org

handling different data types from various sources. Like
Structured data (DBs, spreadsheet), Semi-structured data
(XML files, JSON files), and Unstructured data (video, audio,
images, emails, word, PowerPoint, pdf files). Moreover, it
captures, stores, manages, and analyzes data volume that
cannot be handled by traditional DW. Furthermore, it uses the
recent technology such as the Hadoop Platform, Data Lake,
Delta Lake, and Apache Spark is inexpensive to minimize the
time spent analyzing data and to reduce storage costs.

REFERENCES

[1] F. Silvers, Building and maintaining a data warehouse. CRC Press,

2008.

[2] T. John, Data Lake for Enterprises. Packt Publishing Ltd, 2017.

[3] M. Z. Zgurovsky and Y. P. Zaychenko, Big Data: Conceptual Analysis
and Applications. Springer Nature Switzerland AG, 2020.

[4] W. H. Inmon, Building the Data Warehouse, Fourth Edition, vol. 13, no.

401. 2005.

[5] E. Saddad, A. El-Bastawissy, O. Hegazy, and M. Hazman, ―Towards an
alternative Data Warehouses Architecture,‖ in 14th International

Conference on Hybrid Intelligent Systems (HIS 2014), Kuwait,
December 14-16, 2014 (IEEE, Poster), 2014, vol. 6, pp. 48–53.

[6] K. Krishnan, Data Warehousing in the Age of Big Data. Elsevier Inc.,

2013.

[7] R. G. Goss and K. Veeramuthu, ―Heading towards big data building a

better data warehouse for more data, more speed, and more users,‖ in
ASMC 2013 SEMI Advanced Semiconductor Manufacturing

Conference, 2013, pp. 220–225.

[8] A. Sebaa, F. Chikh, A. Nouicer, and A. Tari, ―Research in Big Data
Warehousing using Hadoop,‖ J. Inf. Syst. Eng. Manag., vol. 2, no. 2, pp.

1–5, 2017.

[9] W. H. Inmon and D. Linstedt, Data Architecture: A Primer for the Data
Scientist: Big Data, Data Warehouse and Data Vault. 2014.

[10] C. L. Philip Chen and C. Y. Zhang, Data-intensive applications,

challenges, techniques and technologies: A survey on Big Data, vol.
275. Elsevier Inc., 2014.

[11] V. K. A. Arockia Panimalar. S, Varnekha Shree. S, ―The 17 V‘s of Big

Data,‖ Int. Res. J. Eng. Technol., vol. 4, no. 9, pp. 3–6, 2017.

[12] N. Khan, M. Alsaqer, H. Shah, G. Badsha, A. A. Abbasi, and S.
Salehian, ―The 10 Vs, issues and challenges of big data,‖ ACM Int.

Conf. Proceeding Ser., no. March, pp. 52–56, 2018.

[13] R. Rialti and G. Marzi, Ambidextrous Organizations in the Big Data

Era. Cham: Springer International Publishing, 2019.

[14] A. Khaleel and H. Al-Raweshidy, ―Optimization of Computing and
Networking Resources of a Hadoop Cluster Based on Software Defined

Network,‖ IEEE Access, vol. 6, no. c, pp. 61351–61365, 2018.

[15] I. B. Lars George, Jan Kunigk, Paul Wilkinson, Architecting Modern
Data Platforms: A Guide to Enterprise Hadoop at Scale. O‘Reilly Media,

2019.

[16] Z. Yang and X. Guo, ―Teaching Hadoop Using Role Play Games,‖
Decis. Sci. J. Innov. Educ., vol. 18, no. 1, pp. 6–21, 2020.

[17] J. Liu, S. Tang, G. Xu, C. Ma, and M. Lin, ―A Novel Configuration

Tuning Method Based on Feature Selection for Hadoop MapReduce,‖
IEEE Access, vol. 8, pp. 63862–63871, 2020.

[18] C. Walker and H. Alrehamy, ―Personal Data Lake with Data Gravity

Pull,‖ Proc. - 2015 IEEE 5th Int. Conf. Big Data Cloud Comput.
BDCloud 2015, pp. 160–167, 2015.

[19] P. P. Khine and Z. S. Wang, ―Data lake: a new ideology in big data era,‖
ITM Web Conf., vol. 17, no. December, p. 03025, 2018.

[20] A. Panwar and V. Bhatnagar, ―Data Lake Architecture: A New

Repository for Data Engineer,‖ Int. J. Organ. Collect. Intell., vol. 10, no.
1, pp. 63–75, 2020.

[21] P. Russom, ―Data lakes: purposes, practices, patterns and platforms,‖ pp.

1–42, 2017.

[22] H. D. Challenges, S. Gupta, and V. Giri, Practical Enterprise Data Lake

Insights. Apress, 2018.

[23] A. Gorelik, The enterprise big data lake: Delivering the promise of big
data and data science. O‘Reilly Media, 2019.

[24] C. Madera and A. Laurent, ―The next information architecture evolution:

The data lake wave,‖ 8th Int. Conf. Manag. Digit. Ecosyst. MEDES
2016, pp. 174–180, 2016.

[25] Lei Zhang, ―What are the differences between a database, data mart,

data warehouse, a data lake and a cube?,‖ quora, 2016. [Online].
Available: https://www.quora.com/. [Accessed: 15-Feb-2019].

[26] M. Y. Santos, B. Martinho, and C. Costa, ―Modelling and implementing

big data warehouses for decision support,‖ J. Manag. Anal., vol. 4, no. 2,
pp. 111–129, 2017.

[27] F. Ravat and Y. Zhao, ―Data Lakes: Trends and Perspectives,‖ in
Springer Nature Switzerland AG 2019, 2019, vol. 2, no. Umr 5505, pp.

304–313.

[28] A. T. Spark, ―Apache Spark,‖ no. 1, pp. 39–53, 2018.

[29] M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, ―Real-Time
Big Data Stream Processing Using GPU with Spark Over Hadoop

Ecosystem,‖ Int. J. Parallel Program., vol. 46, no. 3, pp. 630–646, 2018.

[30] T. Mahapatra and C. Prehofer, Graphical Flow-based Spark
Programming, vol. 7, no. 1. Springer International Publishing, 2020.

[31] Microsoft Team, ―Introduction to Delta Lake - Azure Databricks |

Microsoft Docs,‖ 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/databricks/delta/delta-intro.

[Accessed: 26-May-2020].

[32] A. Wojciechowski, ―ETL workflow reparation by means of case-based
reasoning,‖ Inf. Syst. Front., vol. 20, no. 1, pp. 21–43, 2018.

[33] F. Bentayeb, C. Favre, and O. Boussaid, ―A user-driven data warehouse
evolution approach for concurrent personalized analysis needs,‖ Integr.

Comput. Aided. Eng., vol. 15, no. 1, pp. 21–36, 2008.

[34] G. Thakur and A. Gosain, ―DWEVOLVE: a requirement based
framework for data warehouse evolution,‖ ACM SIGSOFT Softw. Eng.

Notes, vol. 36, no. 6, pp. 1–8, 2011.

[35] W. Ahmed, E. Zimányi, and R. Wrembel, ―A logical model for
multiversion data warehouses,‖ in International Conference on Data

Warehousing and Knowledge Discovery, 2014, pp. 23–34.

[36] M. Thenmozhi and K. Vivekanandan, ―An ontological approach to
handle multidimensional schema evolution for data warehouse,‖ Int. J.

Database Manag. Syst., vol. 6, no. 3, p. 33, 2014.

[37] C. Olston et al., ―Nova: continuous pig/hadoop workflows,‖ in
Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data, 2011, pp. 1081–1090.

[38] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, and S. Vansummeren,
―An integration-oriented ontology to govern evolution in big data

ecosystems,‖ Inf. Syst., vol. 79, pp. 3–19, 2017.

[39] J. Song, C. Guo, Z. Wang, Y. Zhang, G. Yu, and J.-M. Pierson,

―HaoLap: A Hadoop based OLAP system for big data,‖ J. Syst. Softw.,
vol. 102, pp. 167–181, 2015.

[40] W. Chen, H. Wang, X. Zhang, and Q. Lin, ―An optimized distributed

OLAP system for big data,‖ in 2017 2nd IEEE International Conference
on Computational Intelligence and Applications (ICCIA), 2017, pp. 36–

40.

[41] R. Tardio, A. Mate, and J. Trujillo, ―An iterative methodology for big
data management, analysis and visualization,‖ in 2015 IEEE

International Conference on Big Data (Big Data), 2015, pp. 545–550.

[42] S. Chen, ―Cheetah: a high performance, custom data warehouse on top
of MapReduce,‖ Proc. VLDB Endow., vol. 3, no. 1–2, pp. 1459–1468,

2010.

[43] K. Akepanidtaworn, ―Is ‗Delta Lake‘ Replacing ‗Data Lakes‘? - Dev
Dream Team - Medium,‖ 2020. [Online]. Available:

https://medium.com/dev-dream-team/is-delta-lake-replacing-data-lakes-
49f1caddc646. [Accessed: 26-May-2020].

[44] Databricks Team, ―Parquet files — Databricks Documentation,‖ 04/03,

2020. [Online]. Available: https://docs.databricks.com/data/data-
sources/read-parquet.html#parquet-files. [Accessed: 25-May-2020]

