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Abstract—Traditional Data Warehouse is a multidimensional 

repository. It is nonvolatile, subject-oriented, integrated, time-

variant, and non-operational data. It is gathered from 

multiple heterogeneous data sources. We need to adapt 

traditional Data Warehouse architecture to deal with the 

new challenges imposed by the abundance of data and the 

current big data characteristics, containing volume, value, 

variety, validity, volatility, visualization, variability, and venue. 

The new architecture also needs to handle existing drawbacks, 

including availability, scalability, and consequently query 

performance. This paper introduces a novel Data Warehouse 

architecture, named Lake Data Warehouse Architecture, to 

provide the traditional Data Warehouse with the capabilities 

to overcome the challenges. Lake Data Warehouse Architecture 

depends on merging the traditional Data Warehouse 

architecture with big data technologies, like the Hadoop 

framework and Apache Spark. It provides a hybrid solution in a 

complementary way. The main advantage of the proposed 

architecture is that it integrates the current features 

in traditional Data Warehouses and big data features 

acquired through integrating the traditional Data Warehouse 

with Hadoop and Spark ecosystems. Furthermore, it is tailored 

to handle a tremendous volume of data while maintaining 
availability, reliability, and scalability.  

Keywords—Traditional data warehouse; big data; semi-
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I. INTRODUCTION 

Data warehouse (DW) has many benefits; it enhances 
Business Intelligence, data quality, and consistency, saves 
time, and supports historical data analysis and querying [1]. In 
the last two decades, data warehouses have played a prominent 
role in helping decision-makers. However, in the age of big 
data with the massive increase in the data volume and types, 
there is a great need to apply more adequate architectures and 
technologies to deal with it. 

Therefore, it became crucial to enhance traditional DW to 
deal with big data in various fields to accommodate this 
evolution in volume, variety, velocity, and veracity of big data 

[2],  [3]. To achieve this, we propose a new DW architecture 
called Lake Data Warehouse Architecture. Lake Data 
Warehouse Architecture is a hybrid system that preserves the 
traditional DW features. It adds additional features and 
capabilities that facilitate working with big data technologies 
and tools (Hadoop, Data Lake, Delta Lake, and Apache Spark) 
in a complementary way to support and enhance existing 
architecture. 

Our proposed contribution solve several issues that face 
integrating data from big data repositories such as: 

 Integrating traditional DW technique, Hadoop 
Framework, and Apache Spark. 

 Handling different data types from various sources like 
structured data (DBs, spreadsheet), semi-structured data 
(XML files, JSON files), and unstructured data (video, 
audio, images, emails, word, PowerPoint, pdf files). 

 Capturing, storing, managing, and analyzing data 
volume that cannot be handled by traditional DW.  

 Using recent technologies like the Hadoop framework, 
Data Lake, Delta Lake, and Apache Spark to decrease 
time spent analyzing data and to decrease storage costs 
are inexpensive. 

 Support all users, especially data scientists, because 
they need to perform depth data analysis. 

The rest of the paper is organized as follows: Section II 
explains background and preliminaries for traditional Data 
Warehouses and its limitations, importance of DWs, and big 
data characteristics and types. Section III overviews the related 
works to the DW architectures. Section IV presents the 
proposed DW architecture named Lake Data Warehouse 
Architecture. Section V describes the case study by applying 
our contributions called Lake DW Architecture. Finally, the 
conclusion is presented in Section VI. 

http://www.fci.cu.edu.eg/
http://www.fci.cu.edu.eg/
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II. BACKGROUND AND PRELIMINARIES 

In this section, we will review the background of related 
topics, such as traditional DWs, its limitations, and why we 
need to redevelop it. Moreover, we will discuss various 
related technologies. 

A. Traditional Data Warehouses(DWs) 

Traditional DWs are integrated, a subject-oriented, 
nonvolatile, and time-variant data to support decision-makers 
[4], as presented in Fig. 1. Those four properties differentiate 
DWs from other data repository systems, such as relational 
database systems [5]. 

 

Fig. 1. Traditional Data Warehouses (DWs) architecture  

Usually, in primary DW, there are data marts (DMs). Data 
marts (DMs) are a small DW that contains only a subset of data 
obtained from a central DW. The content of DMs represents 
information from a specific domain of interest. Many DWs 
servers are used to manage data. These servers present 
multidimensional views of data to a variety of front-end tools. 

B. The limitations of Traditional DW Architecture 

In [6], [7], and [8], the authors reviewed some limitations 
of DW, such as supporting only structured data, on the 
contrary, do not support semi-structured data, or unstructured 
data. In addition to the above, the restriction of handling data 
volume in terabytes, which does not scale to petabyte size, is 
widely available. Besides, it is costly as it depends on 
proprietary hardware and software.  

Moreover, traditional DW performs analytic queries, which 
consequently affects the whole query performance, accessing, 
and processing of data. The decision-making process also may 
be affected if: 1) the correct data are not available at a suitable 
time, and 2) the growth of the business requires new methods 
for data management other than adapting traditional DW 
architecture. 

C. The Objectives of the redeveloped traditional DW 

One of our main objectives is to overcome the limitations 
of traditional DW architecture built on outdated technologies 
[4]. We initiate an overall architecture that supports the 
functionalities of the traditional DW with abilities to include 
[6], [9] : 

 Meeting new business requirements. 

 Depending on lower-cost infrastructure. 

 Handling heterogeneous data and new data structures 
and formats. 

 Managing customer expectations. 

 Meeting growth of the business. 

 Using advances in new technology and its 
improvements. 

 Handling product existence and status. 

 Improving business efficiencies and competitive 
advantage. 

 Decreasing operational and financial risks. 

 Evaluating and forecasting trends and behaviors. 

D. The Age of Big data 

Big Data is a data volume that is available in different 
levels of complication. It is generated at various velocities and 
levels of uncertainty; hence it is not handled using traditional 
approaches, traditional technologies, or traditional algorithms 
[6]. Today, big data is characterized by  ten main 
characteristics namely volume, variety, velocity, veracity, 
value, validity, variability, visualization, volatility, and venue 
[3], [10], [2], [11], [12], [13] as follows: 

 Volume: the huge amount of data generated 
continuously on an hourly or a daily basis from 
different sources. Such as terabytes generated per hour 
for applications like YouTube, Instagram, and Google. 

 Variety: the types of big data that are ingested from 
different data sources. 

 Velocity: the speed at which data is produced. The 
aspects of data may be batch data or streaming data. 

 Veracity: the quality of data that is being handled to 
obtain valuable insights. Such as ambiguous, 
inconsistent, incomplete, anomaly, uncertain, and 
biased data. 

 Value:  represents the business value to be derived from 
big data. 

 Validity: refers to the correctness of data used to extract 
outputs in the form of information. 

 Variability: refers to the inconsistent data flow. 

 Visualization: refers to the ability to analyze and visual 
insights as an output of big data analysis. 

 Volatility: the stored data on how long it is valuable to 
the consumer. 

 Venue: refers to a various platform where numerous 
kinds of data from different sources by 
several platforms.  

In general, data are a set of qualitative values or 
quantitative variables; Big Data can be categorized into three 
types [2], [9]: 

 Structured data. The data has a defined structure or a 
schema organized either in the form of a relational 
database or in some other way that is easy to operate. 
For example, data stored in a relational database (in the 
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form rows and columns), in spreadsheets (such as CSV 
files), and cleansed data (that have been processed with 
a lot of cleansing and filtering). 

 Semi-Structured Data: The data is hard to retrieve, 
analyze, and store as structured data. It requires a big 
data software framework (such as Apache Hadoop) to 
achieve these operations. For example, XML files, 
JSON files, and BibTex files. 

 Unstructured Data: The fully unorganized data is 
difficult to handle, and it requires advanced software 
and tools to access it. Examples include video, audio, 
images, emails, word, PowerPoint, pdf files, webpages, 
location coordinates, and streaming data. 

E. Hadoop Framework and Data Lake 

Hadoop is an open-source software framework. It allows 
the execution of the MapReduce processes for data processing. 
It provides massive storage for all data types, massively 
parallel processing, and storing data and running applications 
on clusters to accomplish  better computation resources [14]. 
Hadoop has main components as follows [15], [16], [17]: 

 The Hadoop Distributed File System (HDFS) is a file 
system, which manages storage and access to data 
spread across the different nodes of a Hadoop cluster. 

 YARN is a Hadoop cluster resource manager used to 
assign system resources for applications and schedule 
of the jobs. 

 Map-Reduce is a processing engine and a programming 
framework used to manage large-scale batch data in the 
Hadoop system.  

 Hadoop Common is a set of services and institutions 
that provide underlying capabilities needed by the other 
parts of Hadoop. 

Data Lake is a data store that can collect any type of data: 
structured, semi-structured, or unstructured data, which are 
stored with one another regardless of structure, format, or types 
[18], [19]. It is a conceptual idea that is usually implemented 
with one or more technologies such as Hadoop and NoSQL 
databases. When querying the Data Lake, only need data will 
transform that are relevant to business needs [20]. 

Creating Data Lake depends on Hadoop's technology, 
which is a component (as the platform) for the data lake. It is 
the complementary relationship between Data Lake and 
Hadoop  [21], [22], [23] 

Data Lake is similar to traditional DW in that they are both 
repositories for data. However, there are apparent differences 
in features between them [7]—the schema on reading in Data 
Lake, but schema on write in DW. The scale of data in Data 
Lake is enormous, while it is large data volumes in DW. The 
data sources may be semi-structured data or/and unstructured 
data, but it is mainly structured data in DW [24], [25], [26], 
[27]. 

F. Apache Spark and Delta Lake 

Apache Spark is an open-source applied for big data 
analytics and distributed systems. It provides streaming 
libraries, SQL, graph analysis, and machine learning. It has two 
main components Spark streaming, which is used for managing 
real-time data, and the Spark engine , which directly processes 
each data chunks by Spark streaming [28], [29], [30]. 

 Delta Lake is an open-source Spark storage layer. It is an 
extra storage layer that makes reliability to our data lakes built 
on The Hadoop Distributed File System (HDFS) and cloud 
storage [31]. Delta Lake provides a series of other features 
including:  

 Joining streaming and batch data processing. 

 Giving  a scalable metadata approach. 

 Providing ACID transactions that guaranteed 
consistency of the data stored inside the data lake 
through ensuring that only complete writes are 
committed. 

 Time travel that is allowing one to access and return 
previous versions of the data. 

 Schema evolution as data evolves, Delta allows 
Spark table to change in the schema and many more 
while we use Delta. 

 Enabling a Data Lake to update data without going 
through the entire Data Lake repository. 

III. RELATED WORKS 

Several efforts have been conducted to adapt traditional 
DWs for handling new user requirements and changes in the 
underlying data sources. Many approaches focus on DWs that 
deal with a relational database. However, they cannot be 
appropriated to deal with big data. In  [32], some 
methodologies try to solve the problem by developing 
the ETL (Extracting, Transforming, and Loading) process. In 
[33], the authors attempt to update DW Schema to reflect 
modifications that already took place. As mentioned in [33], 
[33], [34], [5], [35], [36], the authors use temporal DW 
and schema versions to update the DWs Structure by keeping 
more than one DWs version. These works do not depict how 
the user's needs impact the evolution changes.  

Limited approaches have taken care of handling the aspect 
of big data development. The approach mentioned in [37] 
describes data schema specification and evolution processing, 
but it does not depend on DW. The work presented in [38] 
explained the method for treating the growth of the 
data sources in the integration area using big data integration 
ontology. It can handle some changes in data sources, but it 
does not determine how to answer all requirements. 

Several types of research have concentrated on the use of 
DWs in big data analysis. The authors in  [39] display an 
OLAP method for big data executed with Hadoop. They focus 
on multidimensional analysis for big data analysis. However, 
they do not address big data evolution, which applies to the 
research work proposed in [40] and [26]. 
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Other researchers studied the problem of big data evolution. 
In [41], the authors discuss a methodology for constructing a 
system for big data analysis. However, it cannot be applicable 
in the state of the previously used data is not provided. 

The authors in [42] presented the DW approach for Big 
Data analysis that was implemented using Map-Reduce. This 
approach handles two types of changes: (1) schema versions in 
metadata control variations of the fact table and (2) slowly 
changing dimensions. The approach does not process changes 
in big data sources that may affect the analysis process 
and results. 

IV. THE PROPOSED LAKE DATA WAREHOUSE 

ARCHITECTURE   

Our contribution aims to adapt traditional DW to solve the 
new challenges by handling semi-structured and unstructured 
data. In addition to managing the growth of business 
requirements and treating the two main drawbacks, namely, 
availability and system performance. Furthermore, it enhances 
query performance by providing the required data from users at 
any time. 

In this section, we present a novel DW architecture that 
improves the traditional DW performance to deal with these 
challenges. Our contribution integrates the traditional DW 
architecture with big data technologies like Hadoop and 
Apache Spark. 

In the age of big data, We need to improve DW architecture 
to handle the new challenges imposed by big data. The Hadoop 
Framework and Apache Spark are a complement to handling 
the challenges of traditional DW; each has its advantages in 
different circumstances. In some cases, we need the Hadoop 
Framework and Apache Spark to process unstructured or semi-
structured data (raw data) and large volume datasets (big data). 
In other words, we still depend on traditional DW for 
consistent and high-quality data (structured data), and low 
latency and interactive reports. 

In Fig. 2, we explain the proposed Lake DW Architecture. 
Where Hadoop and Spark do not replace traditional DW and 
Big Data is going to change traditional DW architecture but not 
replacing it. Our contribution depends on integrating traditional 
DW techniques, Hadoop Framework, and Apache Spark into a 
hybrid solution. 

The large amount of big data generated every minute and 
every hour needs a data lake that can scale to handle this 
volume. Therefore, we use Hadoop as a data platform for data 
lakes to provide extensive scalability at an acceptable cost. 
Besides, Data Lakes can be complemented DW besides the 
Hadoop framework. Also, Data Lakes can be complemented 
DW besides the Hadoop framework. Our proposed architecture 
differentiates itself from all previous work. It is a 
hybrid environment that upgrades traditional DW with Hadoop 
environment depending on the Hadoop-based Data Lake 
because it can extend the use and capabilities of traditional 
DW, as follows:  

 Collecting or capturing data from structured data 
sources using ETL Architecture. DW depends on the 
traditional ETL process; where extract (E) data from 

operational databases and then, the data process, clean 
and transform (T) before loading (L) them into the DW 
or data marts or virtual data marts. DW is designed to 
handle and analyze read-heavy workloads. DW needs to 
define the data model before loading the data. Then, 
they call a Schema-On-Write approach, as presented in 
Fig. 2.  

 Collecting or capturing data from Semi-Structured or 
Unstructured data sources using ELT Architecture. Big 
Data requires a different process to collect data where 
traditional ETL does not work well on semi-Structure or 
unstructured data. Big Data calls for ELT. The raw data 
will be stored in its original format. The preprocessing 
step will not be used until the query or other application 
acknowledge/ ask for these data. Where Data Lake is 
different from DW through the processing of data in the 
ELT order and utilizing the Schema-on-Read approach, 
as shown in Fig. 2. 

Fig. 2 presents a set of essential components of our 
contribution model as follows: 

A. Hadoop-Based Data Lake architecture in Cloud 

Environment 

It is using Hadoop as a staging area for DW by adding 
Hadoop-based Data Lake that is a storage repository that is 
used for complementing traditional DW. It is using as a data 
source that passes only required data to Data Lake and 
ingesting unlimited amounts of raw data that related to 
business objectives. As shown in Fig. 2, we explore the 
Hadoop-based Data Lake architecture has many layers as 
follows: 

1) Ingesting data layer: ingests raw data in native format, 

where the ingested data can be micro-batch, macro-batch, 

batch, real-time, or hybrid.  

2) Landing data layer: Different data types (ingested in 

the previous layer) are stored in native format (without 

processing). In this layer, users can find the original data 

versions of their analysis to aid the subsequent handling. 

 
Fig. 2. The proposed Lake Data Warehouse (DW) Architecture 

3) Metadata Layer: is responsible for making data easy to 

access and extract values from Data Lake. It helps to make 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

421 | P a g e  
www.ijacsa.thesai.org 

identifications, data versioning, entity and attributes, 

distributions, quality. 

4) Governance Data Layer: applies to the other layers. It 

is responsible for authentications, data access, data security, 

data quality, and data life cycle. It determines the 

responsibilities of governing the right to access and handling 

the data. 

B. Delta Lake architecture with Apache Spark Cloud 

Environment 

Delta Lake technology is used with Apache Spark to 
implement our proposed model by creating a cloud data 
platform for solving Data Lake challenges, such )1) the data 
quality is low, )2) reading and writing are not guaranteed, )3) 
insufficient performance with growing volumes of data, and )4) 
updating records is hard [43]. As presented in Fig. 2, Delta 
Lake Architecture has two layers: 

1) The atomic layer would be a Silver Delta table built 

using Object Storage, and 
2) The Departmental layer would be any number of Gold 

Delta tables also built on Object Storage. We employ Spark 

and store all data in Apache Parquet format allowing Delta 

Lake to leverage the well-organized compression native to 

Parquet. 
Apache Spark is used to read and process huge files and 

datasets. Spark provides a query engine capable of processing 
data in huge data files. Some of the most significant Spark jobs 
in the world run on Petabytes of data. Apache Parquet has the 
format as a columnar file responsible for optimizations to go 
faster queries [44]. It is a more efficient file format than JSON 
files. It is suitable for data processing in the Hadoop. It 
provides an efficient method to handle complex datasets. 

The main difference between our contributions Lake DW 
Architecture over traditional DW as follows: 

 Handling different data types (structured, semi-
structured, and unstructured data) from various sources. 

 Extracting, storing, managing, and analyzing data 
volume that cannot handle by traditional DW. 

 Integrating between traditional DW technique, Hadoop 
Framework, and Apache Spark as a hybrid solution. It 
uses ETL or ELT processes depending on types of data 
sources.   

 Supporting different data types in various sources. 

 Determining and analyzing data from Data Lake and 
Delta Lake, they scale to extreme data volumes. 

 Supporting all users, especially Data scientists, because 
they can do in-depth analysis. 

V. CASE STUDY   

Our goal of this section is to experiment with our 
contribution to prove its effectiveness in dealing with big data 
and analyze it for decision-makers. This case study shows how 
our proposed model can extract, integrate, and analyze big data 
that cannot be handled by traditional DW. We use Data Lake to 

collect and process the Internet of Things (IoT) data. 
We provide a demo IoT sensor dataset for demonstration 
purposes. The data simulates heart rate data measured 
by health tracker devices. Each file consists of five users whose 
heart rate is measured each hour, 24 hours a day, every 
day. We store datasets in the data lake as JSON files. We use 
two data files in JSON format, the first file for readings 
recorded by the devices in January 2020 
(health_tracker_data_2020_01.json), and the second file for 
the readings recorded by the devices for February 2020 
(health_tracker_data_2020_02.json).  

We implemented on Data Lake, Delta Lake, and Apache 
Spark in Databricks, which provides an integrated platform for 
working with Apache Spark. When working with Delta Lake, 
Parquet files can be converted in-place to Delta files. Next, we 
will convert the Parquet-based data lake table we created 
previously into a Delta table. 

A. Configure Apache Spark 

1) Creating the ClustreHelthTracher cluster is 

computation resources used to run data science and data 

analytics such as the ETL process, ad-hoc analytics, and 

streaming analytics. 

2) Configuration the Apache Spark, we will need to 

perform a few configuration operations on the Apache Spark 

session to get optimal performance. These will include 

creating a database to store data, as shown in the following 

Spark SQL script: 

 
3) In additional to configure the number of shuffle 

partitions as shown in the following Spark SQL script: 

 

B. Importing data from a Data Lake into a Delta Lake by 

ETL of Apache Spark 

We import data from our Data Lake and save it into a Delta 
Lake as Parquet files. We appended the first month of records 
and kept in the health_tracker_data_2020_02.json file by 
using the ETL process of Apache Spark. In additional to 
configure the number of shuffle partitions as presented in the 
following Python language scripts: 
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In Fig. 3, we visualize the sensor data over time, as 
displayed in the following Spark SQL script: 

 

 
Fig. 3. The sensor data over time. 

C. Create a Parquet-based Data Lake Table 

 We convert the existing Parquet file to The Parquet-based 
data lake table that will be used to Delta tables. We will be 
writing files to the root location of the Databricks File System 
(DBFS) in our cloud object storage. We create the table using 
the Create Table As Select (CTAS) Spark SQL pattern as 
shown in the following script: 

 
Count the records in the health_tracker_silver table. We 

expect to have 3720 records: five device measurements, 24 
hours a day for 31 days, as shown in the following Spark SQL 
script: 

 

D. Convert an Existing Parquet-based Data Lake Table to a 
Delta table: The Atomic layer of Delta Lake 

 A Delta table consists of three things: (1) The Delta files 
containing the data and kept in object storage. (2) A Delta table 
registered in a central Hive meta-store accessible by all clusters 
to persist table metadata. (3) The Delta Transaction Log (an 
ordered record of every transaction) saved with the Delta files 
in object storage.  To Convert an Existing Parquet-based Data 
Lake Table to a Delta table by using the following steps: 

1) Convert the Files to Delta Files: We convert the files 

in place to Parquet files. The conversion creates a Delta Lake 

transaction log that tracks the files. Now, the directory is a 

directory of Delta files, as shown in the following Spark SQL 

script: 

 
2) Register the Delta Table: we will register the table in 

the Metastore. The Spark SQL command will automatically 

infer the data schema by reading the Delta files' footers, as 

shown in the following Spark SQL script: 

 
With Delta Lake, the Delta table is ready to use the 

transaction log stored with the Delta files containing all 
metadata needed for an immediate query. We count the records 
in the health_tracker_silver table with a Spark SQL query as 
follows: 

 

E. Creating an aggregate Delta Table: The Departmental 
layer of Delta Lake 

 We create a new Delta table (an aggregate table) from the 
data in the health_track_silver Delta table. We create a 
health_tracker_user_analytics Delta table of summary 
statistics for each device. We use the Create Table As Select 
(CTAS) Spark SQL as shown in the following script:  

 

F. Exploring analysis results 

 The health_tracker_user_analytics table could be used 
to define a dashboard    for analyzing of the results according to 
business requirements as provided in Fig. 4 which describes 
the aggregation results such as maximum, minimum, and 
average data, as presented in the following Spark SQL script:  

 

 
Fig. 4. The analysis of the results according to business requirements. 
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G. Appending Files to an Existing Delta Table (Batch data 

write to Delta Tables) 

 We convert the existing Parquet file to The Parquet-based 
data lake table that will be used to Delta tables. We will be 
writing files to the root location of the Databricks File System 
(DBFS) in our cloud object storage. We create the table using 
the Create Table As Select (CTAS) Spark SQL pattern as 
shown in the following script:  

H. Exploring analysis results 

 We can modify existing Delta tables through appending 
files to an existing directory of Delta files. We append the next 
month of records, kept in the health_tracker_data_2020_02 
table by using the INSERT INTO Spark SQL command as 
shown in the following script: 

 

I. Assessing the Missing Records 

 After a batch update of the health_tracker_silver table, we 
counted the number of records in the table. We discovered that 
some records were missing by Count the Number of Records 
per Device. 

 

J. Assessing the Missing Records 

 After a batch update of the health_tracker_silver table, we 
counted the number of records in the table. We discovered that 
some records were missing by Count the Number of Records 
per Device. 

TABLE I.  THE NUMBER OF RECORDS PER DEVICE 

Device ID Number of Records 

0 1440 

1 1440 

2 1440 

3 1440 

4 1345 

In Table I, device number 4 looks are missing 95 records. 
We run a query to discover the missing records' timing by 
displaying the number of records per day. We have no records 
for device 4 for the last few days of the month, as shown in the 
following Spark SQL query:  

SELECT dte as Date, p_device_id as Device_Id, 

heartrate as Heart_Rate_Reading   

FROM health_tracker_silver  

WHERE p_device_id IN (1, 4) and dte > "20-2-2020" 

In Fig. 5, the absence of records from the last few days of 
the month shows a phenomenon that may often occur in a 
production data pipeline: late-arriving data. Delta Lake allows 
us to process data as it arrives and is prepared to handle the 
occurrence of late-arriving data. 

 
Fig. 5. The absence of records. 

K. Identify Broken Readings in the Table 

 In the initial load of data into the health_tracker_silver 
table, we noted that there are broken records in the data. In 
specific, we made a note of the fact that several negative 
readings were present even though it is impossible to record a 
negative heart rate. Let us assess the extent of these broken 
readings in our table. First, we create a temporary view for the 
broken readings in the health_tracker_silver table, as shown in 
the following Spark SQL script:  

 
Next, we sum the records in the view, as shown in the 

following Spark SQL query: 

SELECT SUM(broken_readings_count)  

FROM broken_readings 

 

Result: 67 

VI. CONCLUSION 

 Many companies use DWs in different areas to help in the 
decision-making process. Besides, DWs enhance business 
intelligence, data quality, and consistency, saving time, 
and storing historical data. In the age of Big Data, the amount 
of data needed for ingesting and storing is an unprecedented 
rate. However, the architecture of the traditional DWs 
cannot manage such large amounts of data. Its new types from 
the current data sources are autonomous, heterogeneous, 
scalable, and distributed, which requires modern technology 
and modern DW architecture to deal with it. 

In this paper, we proposed a novel DW architecture called 
Lake Data Warehouse Architecture. Lake Data Warehouse 
Architecture is a new DW structure that depends on integrating 
between traditional DW technique, Hadoop Framework, and 
Apache Spark as a hybrid solution. It familiarizes a traditional 
DW. It employs big data technologies and tools (Hadoop, 
Apache Spark,   Data Lake, and Delta Lake) in a complementary 
way to support and enhance existing architecture. Furthermore, 
it can improve scalability and reduce the costs of development 
of traditional DW architecture.   

Lake Data Warehouse Architecture has many competencies 
over traditional DWs Architecture, such as solving several 
issues that face integrating data from big data repositories, 
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handling different data types from various sources. Like 
Structured data (DBs, spreadsheet), Semi-structured data 
(XML files, JSON files), and Unstructured data (video, audio, 
images, emails, word, PowerPoint, pdf files). Moreover, it 
captures, stores, manages, and analyzes data volume that 
cannot be handled by traditional DW.   Furthermore, it uses the 
recent technology such as the Hadoop Platform, Data Lake, 
Delta Lake, and Apache Spark is inexpensive to minimize the 
time spent analyzing data and to reduce storage costs. 
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