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Abstract—Given a large number of online video viewers, 
video streaming, over various networks, is important 
communication technology. The multitude of viewers makes it 
challenging for service providers to provide a good viewing 
experience for subscribers. Video streaming capabilities are 
designed based on concepts including quality, viewing flexibility, 
changing network conditions, and specifications for different 
customer devices. Adjusting the quality levels, and controlling 
various relevant parameters to stream the video content with 
good quality and without interruption is vital. This paper 
proposes an adaptive framework to balance the average video 
bitrates with respect to appropriate quality switches, making the 
transition to higher switches more seamless. The quality 
adaptation scheme increases the bitrates to the maximum value 
at their current quality switch before shifting to a higher level. 
This reduced switching times between levels and guarantees the 
stability of viewing and avoids interruptions. The use of a 
dynamic system ensures optimal performance, by controlling 
system parameters and making the algorithm more tunable. We 
built the system using an open-source DASH library (Libdash) 
with QuickTime player, studied the video load changes on two 
performance parameters, Central Processing Unit and Memory 
usages that have a high impact on multimedia quality. 
Consequently, the values of parameters that affected the 
performance of video streaming could be decreased, permitting 
users to regulate the parameters according to their preferences. 
Further, reducing the switching levels will reduce the overloads 
that occur while transferring from one level to another. 

Keywords—Adaptive video streaming; average bit rate; mobile 
devices; modeling; quality of experience; quality switches; wireless 
networks 

I. INTRODUCTION 
With the rapid growth of technology and wireless devices, 

the necessity for supporting various applications in the future 
has increased with the quality of service (QoS) requirements. A 
vital aspect of communication over various networks is video 
streaming, given the increase in the number of viewers of 
videos over the internet. There are several challenges that must 
be addressed to achieve seamless video streaming, such as 
avoiding interruption of playback, increasing video quality, 
reducing the initialization time, and reducing the number of 
video level switches. These can be addressed by adaptive video 
streaming, with control algorithms to deliver video with 
appropriate quality and with changes in network parameters. 
Applications of video streaming include live streaming, video 
on demand (VoD) services, and mobile applications. VoD 

delivers video over the internet by dividing the video into parts 
called fragments, transmitting these parts, and enabling the 
receiver to decode and playback the video. This service allows 
for smooth streaming without having to wait for the entire 
video to be delivered, and allows the user to view the video at 
any time. Live streaming (real-time) transmits the contents to 
all users simultaneously, so that the fragments are transmitted 
at the same time as they are viewed by the users. With mobile 
applications, users operate mobile devices to download videos 
from online sources, such as YouTube, Vimeo, LiveTV, and 
PPStream. Several mobile applications have been available to 
enable users to stream videos online. There are three 
techniques for streaming video data. Using the first technique, 
referred to as progressive download, the server sends the video 
through the hypertext transfer protocol (HTTP) and at the 
receiver, the device downloads the file and can run the file after 
the buffering. This method of the basic version uses HTTP 
over the Transmission Control Protocol (TCP) so that the file is 
downloaded sequentially, where the user can watch after 
downloading part of the whole file. The second technique uses 
specialized protocols for streaming, real-time messaging 
protocol (RTMP) and real-time streaming protocol (RTSP), by 
sending chunks of data continuously to the media, which is 
displayed without a buffering or local caching. This technique 
is known as RTMP/RTSP streaming. The most popular 
technique, adaptive video streaming, collects the segments, 
encodes then indexes them, and subsequently determines their 
location (references) by using a profile file from the HTTP 
server. Table I provides a comparison of these three streaming 
technologies. 

The adaptive streaming technique allows for the optimal 
video streaming experience for a range of dissimilar devices 
over a wide range of connection speeds. Generally, in an 
adaptive video streaming system (Fig. 1), a client plays a video 
that is received from a server. The client uses control 
algorithms to dynamically select the optimal video switch level 
for each downloaded segment and the period of idle times 
introduced to shape the received rate. In addition, the client 
uses a buffer to perform the synchronization inside the contents 
of the video, because the bit rate and the bandwidth available to 
the network cannot be predicted. Adaptive video streaming 
technologies face a variety of issues that affect performance 
including bandwidth, error rate, delay and jitter, 
synchronization, heterogeneity, and the user interface [2]. 
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TABLE I. COMPARISON OF STREAMING TECHNOLOGIES [1] 

 Progressive 
Download Streaming Adaptive Streaming 

Basic Principle 

Client 
requests for 
file using 
HTTP GET 
method and 
server sends 
the entire file 
over HTTP. 

Server sends 
fragments of 
data based on 
client request. 
Just in time 
transfer of data. 

Content is encoded at 
multiple bit rates. A 
manifest file maintains 
the details of the 
fragments and their 
location. Client requests 
best suited fragments 
from the list. 

Transport 
Protocol 

HTTP over 
TCP 

RTMP/RTSP 
over TCP/UDP 

Simple HTTP server 
over TCP 

Bandwidth 
usage 

Less efficient 
and wastage 
of bandwidth 
as the entire 
file may not 
be played. 

More efficient 
as only part of 
the file is 
downloaded 
being played. 

Fragments can be 
cached and reused, thus 
saving bandwidth. 

Content 
Security 

Stored 
locally. Less 
secure. 

No temporary 
storage. More 
secure. 

Digital rights 
management (DRM) 
integration possible for 
specific adaptive 
streaming technology. 

Advantages 

Easy to setup. 
No special 
licenses 
required. 

Can access any 
part of the 
video without 
waiting for an 
entire 
download. 

High flexibility to 
change video quality. 

Disadvantages 

Bandwidth is 
wasted on 
data which is 
downloaded 
but not 
watched. 

Adds 
significant cost 
and complexity 
to the setup and 
operations 
require special  
network 
configuration 
for port 
enabling. 

Requirement to have 
multiple encoded 
version requiring 
additional content 
processing and storage. 

Example of 
online video 
platforms 

YouTube, 
Vimeo Hulu Network Television 

BBC, Netflix 

 
Fig. 1. Adaptive Video Streaming System [2]. 

Dynamic adaptive streaming over HTTP (DASH), also 
known as MPEG-DASH, provides high quality video 
streaming over the internet from an HTTP server. Fig. 2 
illustrates a model of the MPEG-DASH setup. First, the 
multimedia content is captured and stored on an HTTP server 
and sent by HTTP. There are two types of content on the 
server. The Media Presentation Description (MPD) describes a 
manifest of the available content, its various alternatives, URL 
addresses, and other characteristics. Segments contain the real 
multimedia bitstreams in the form of fragments, in single or 

multiple files. The DASH client plays the content by parsing 
the MPD; therefore, the DASH client has information about the 
program timing, media content availability, media types, 
resolutions, minimum and maximum bandwidths, and the 
existence of various encoded alternatives of multimedia 
components, accessibility features and required digital rights 
management (DRM), media-component locations on the 
network, and other content characteristics. The DASH client 
uses this information to select the appropriate encoded 
alternative and to start streaming the content by fetching 
segments, using HTTP GET requests. After appropriate 
buffering to allow for network throughput variations, the client 
continues fetching the subsequent segments and monitors the 
network bandwidth fluctuations. Subsequently, the client 
decides how to adapt to the available bandwidth by fetching 
segments of different alternatives (with lower or higher 
bitrates) to maintain an adequate buffer, depending on its 
measurements. The MPEG-DASH specification only defines 
the MPD and segment formats [3]. 

Media content has several components (audio, video, and 
text), with each component having multiple characteristics. In 
MPEG-DASH, these characteristics are described in the MPD, 
in an XML format. Fig. 3 illustrates the MPD hierarchical data 
model. The MPD consists of one or multiple periods; each 
period has a starting time and duration, and consists of one or 
multiple adaptation sets. An adaptation set provides 
information about one or multiple media components and its 
various encoded alternatives. Each adaptation set usually 
includes multiple representations. A representation is an 
encoded alternative of the same media component, varying 
from other representations by bitrate, resolution, number of 
channels, or other characteristics. Each representation consists 
of one or multiple segments; media stream fragments in 
temporal sequence. Each segment has a URL that is an 
addressable location on a server that can be downloaded using 
HTTP GET or HTTP GET with byte ranges. DASH client first 
parses the MPD XML document. The client selects the set of 
representations it will use based on descriptive elements in the 
MPD, the client’s capabilities, and the user’s choices. The 
client then builds a timeline and starts playing the multimedia 
content by requesting appropriate media segments. Each 
representation’s description includes information on its 
segments, which enables requests for each segment to be 
formulated in terms of the HTTP URL and byte-range [3]. 

The main contributions of this paper are as follows: 

• Demonstrating some of the challenges that video 
streaming faces and how it affects video quality and 
investigating video streaming with a control algorithm 
to deliver video inappropriate quality with respect to 
network parameters changes. 

• Designing an adaptive framework to balance the 
average video bitrate with respect to the appropriate 
quality switches and making the transition to higher 
switches more seamless. 

• Proposing a method to decrease the impact of the 
parameter values on the performance of video 
streaming. 
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Fig. 2. MPEG-DASH System Model [3]. 

 
Fig. 3. MPD Hierarchical Data Model [3]. 

Our research can avoid missing live moments and adjust 
the video quality switch to the optimal bitrate level. In our 
proposal, we used two performance parameters: central 
processing unit (CPU) usage and memory usage. CPU usage 
limitation is about 25%, whereas memory usage limitation 
depends on the memory size and the registration of memory 
space during the streaming video, or when it exceeds the limit, 
which appears in red line. Imposing these conditions reduces 
switching between quality levels, and causes bitrates to balance 
with quality switching. 

The remainder of this paper is organized as follows. 
Section II describes Literature Review. In Section III, the 
proposed quality adaptation framework is introduced and its 
functionality is explained. Section IV describes the datasets 
used and details of the results and discussion. Section V 
concludes the paper with a final review and presents future 
work. 

II. LITERATURE REVIEW 
The major challenge associated with video streaming is 

delivering seamless video with maximum quality of experience 
(QoE). To this end, changes are made adaptively by the design 
control algorithm. Stream switching is a common control 
algorithm. The server encodes video content in different 
bitrates, while the control algorithm at the client side selects 
the appropriate video level. This approach is used by two main 
standards: MPEG-DASH and HTTP live streaming (HLS). 
Riad et al. [4] proposed a quality scheme to obtain a balance 
between the number of quality switches and the average 
bitrates at certain cutoff points. They achieved this by 
measuring the variation of bandwidth values, calculating the 
throughput change between pairs of consecutive results, and 
then making quality selection decisions by matching the 
channel alteration to the threshold. They evaluated their 
proposal by testing on actual datasets, comparing them with 
Liu’s and Adobe algorithms [4]. These results showed their 

scheme was successful in minimizing the number of qualities 
switching decisions, whilst keeping high average bitrates. In 
general, the proposed algorithm attains a good trade-off point 
between the number of quality switches and the average 
bitrates. Fig. 4 illustrates the influence of the cutoff on the 
average bitrate and over switches quality on a certain stream. 

 
Fig. 4. Effect of a Cutoff on Average Bitrate and Quality Switches for 

Specific Stream [5]. 

In [5], Xiang et al. designed a rate adaptation algorithm to 
find an ideal streaming strategy in a user- aware QoS, playback 
breaks, average playback quality, and playback smoothness. 
They formulated the rate adaptation problem as a finite Markov 
Decision Process (MDP) using dynamic programming. The 
optimal strategy requires the offered bandwidth statistics and a 
large number of states; therefore, it is hard to obtain the 
optimal solution in real-time, making it difficult to create an 
optimum streaming policy. To counter this, they produced an 
online algorithm that accumulates bandwidth statistics. The 
online algorithm also makes streaming decisions in real-time, 
using a reward parameter to ensure a good balance between 
average playback quality and playback smoothness. The 
experimental results presented showed the proposed algorithm 
is possible; however, several issues were encountered, which 
required further investigation. Improving quality control and 
adaptation algorithms has a noticeable effect on video 
streaming, there are recent studies that improve these 
algorithms based on the video quality scale. In [6], authors 
depend their studies on the P.1203 series of standards proposed 
by ITU-T is one such example for bit stream-based models. 
This series consists of three main parts: Pv: short term video 
quality prediction, 

Pa: audio short term quality, Pq: overall integration of 
quality. This paper focus on extending the existing mode 0 
model to support the aforementioned newer codecs and higher 
resolutions and frame rate. They propose correction mapping 
for new codecs, resolutions and frame rates and not retrain the 
existing model. As a result, we use the unmodified mode 0 
predictions from the existing model and then do a correction on 
this prediction for the newer use cases. This approach of just 
using a correction mapping and not re-training ensures that we 
can rely on the well-developed P.1203 models. To ensure that 
the proposed correction reflects quality ratings by humans, two 
subjective tests were conducted. They first test considered, 
H.264, H.265 and VP9 with resolutions up to 4K, 60 fps as 
frame rate and realistic bitrate settings , a second  test, included 
H.265 and AV1 as codec . These tests give a good example of 
using a simple correction chart. In thesis [7], Huang et al. 
designed a buffer-based algorithm to adaptation video rate by 
using the buffer to select a video bitrate, then request when 
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capacity estimation is required. This approach has two phases 
of the process. In the steady-state phase, when the buffer 
encodes appropriate information, the algorithm selects the 
video rate depending on the playback buffer. In the startup 
phase, when the buffer holds few information, we expand the 
buffer-based design with capacity estimation. Huang et al. 
revealed that this approach led to a reduction in the re-buffered 
rate by 10–20% compared to Netflix’s default available bit rate 
(ABR) algorithm, while refining the steady-state video bitrate. 
The main reason is that DASH is solely a client-side standard. 
A DASH client is the only agent that manage the video 
streaming process despite (i) its limited information about the 
network and (ii) being unaware of actions taken by the other 
clients. in [8] the authors propose to maximize fairness and 
efficiency of end-users’ QoE by achieving a level of 
cooperation between clients and servers without requiring any 
modification on the client-side, by using Dec-POMDP model 
and use RL to train two neural networks to find an optimal 
solution to the fairness problem. This optimal solution is then 
enforced, through client and server cooperation, to make their 
system fully compatible with the DASH standard. The 
experimental results proved that algorithm outperformed the 
state-of-the-art algorithm. In [9], they propose a novel 
algorithm for video rate adaptation in HTTP Adaptive 
Streaming (HAS), based on online learning,  named 
Learn2Adapt (L2A), is to provide a robust rate adaptation 
strategy which, unlike most of the state-of-the-art techniques, 
does not require parameter tuning, channel model assumptions 
or application-specific adjustments. Simulations show that L2A 
improves on the overall Quality of Experience (QoE) and in 
particular the average streaming rate. The robustness property 
of L2A allows it to be classified in the small set of rate 
adaptation algorithms for video streaming, that mitigate the 
main limitation of existing mobile HAS approaches. Learning-
based Adaptive Bit Rate (ABR) is approaches to learn 
outstanding strategies without any presumptions, has become 
one of the research hotspots for adaptive streaming. However, 
it typically suffers from several issues, i.e., low sample 
efficiency and lack of awareness of the video quality 
information. In [10], they propose Comyco, a learning-based 
ABR system which aim to thoroughly improve the 
performance of learning-based algorithm. To overcome the 
sample inefficiency problem, they leverage imitation learning 
method to guide the algorithm to explore and exploit the better 
policy rather than stochastic sampling, also including its NN 
architectures, datasets and QoE metrics. With trace-driven 
emulation and real-world deployment, the results of Comyco 
significantly improves the performance and effectively 
accelerates the training process. Joseph and De Veciana [11], 
established the online algorithm NOVA to optimize video 
delivery that supports DASH-based clients. NOVA is 
asynchronous, distributing the tasks of resource allocation to 
the network controller, and quality adaptation to respective 
video clients using minimal communication. In [12], Mao et al. 
proposed the Pensieve system. This system automatically 
learns algorithms without any predefined control guidelines or 
assumptions about the operating environment. This is achieved 
by using modern strengthening learning systems to learn the 
strategy of controlling adaptive bitrate through reinforcement. 
This enhancement is in the form of reflective traffics QoE for 

previous video resolutions. This system takes special 
information about the real performance of the previous 
decisions to improve the control policy in the form of a neural 
network, so that the observations are used to decide the bitrate 
of the next fragment. The authors proposed learning-based 
approaches to producing ABR algorithms that rely on an effort 
to learn ABR policy from observations, especially as this 
method depends on learning enhancement. The aim of 
reinforcement learning (RL) is to increase the predictable 
cumulative discounted reward.  Fig. 5 shows how RL is able to 
achieve bitrate adaptation. The ABR agent collects the metric 
information (bandwidth, bitrate of previous fragment, buffer 
occupancy) and applies it in a neural network model in the 
form of actions. The result is a bitrate decision; this QoE result 
is returned to the ABR agent as a reward. The ABR agent uses 
the reward for the training and development of the neural 
network model to improve performance. After applying the 
Pensieve system, experiments revealed that the proposed 
system deviated from ABR algorithms by 12% to 25%. 

Cofano and De Cicco [13] proposed rules to guide the 
controller design, by designing a model to control the level 
based on a hybrid dynamic system. Based on this model, they 
derived a relationship between minimum switching frequency 
and control system parameters. They also proposed a 
methodology to adjust the lowest playout buffer that must be 
guaranteed to prevent rebuffing events as shown in Fig. 6. The 
general goal of the proposed control algorithm ([13]) is 
maximizing QoE for users in available bandwidth. To achieve 
this goal, they designed an official model of the closed-loop 
system by using a level-based hysteresis controller. Fig. 7 
presents a comparison between the numerical simulations and 
the experimental results. The model in [13] fits the 
performance of the real system with good precision, and is able 
to expect system performance in terms of video level switching 
frequency and no rebuffing probability. 

 
Fig. 5. Applying Reinforcement Learning to Bitrate Adaptation [10]. 

 
Fig. 6. No Rebuffering Probability PNR Function of qL, the Lower Playout 

Buffering Threshold [13]. 
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Fig. 7. Comparison between the Video Level Switching Period Obtained 
with Simulation Model and Experimental Result [13], between Two Sets of 
Data; the Optimal Level Set (Blue) and the Equally Spaced Level Set (Red). 

Adaptive streaming is a technology that has to adapt video 
playback according to the network conditions. It is achieved by 
switching between representations of different bitrates and 
resolutions. These resolution changes affect the users’ 
perceived quality. In [14], Asan et al. proposed a method to 
analyze resolution changes and their impact on QoE, as well as 
investigate adaptive patterns with respect to their mean opinion 
score (MOS). The results of this study are still inconclusive 
concerning single impairment factors that are typical for HTTP 
adaptive streaming (HAS) services. Their method attempted to 
predict the effect of a specific switch in terms of MOS 
degradation. This experiment is just one of the series of tests 
that they will conduct. In [15], Rodríguez et al. determined that 
changes in video quality level (VQL) had an effect on the user 
QoE. They proposed a DASH algorithm, including a decision 
parameter named the switching degradation factor (SDF) that 
captured a correlation between the QoE and VQL switching 
types, the frequency of VQL switching events and their 
temporal locations. The DASH algorithm was improved by 
performing VQL switching depending on SDF values. 
Parameter testing was done on the SDF model, alongside 
testing to assess the performance of the quality prediction in 
the MOS model. After analyzing and verifying the results, it 
was revealed that the MOS provided by the monitors had 
improved, through the incorporation of the SDF with the 
DASH algorithm. 

In previous studies, researchers relied on various proposed 
methods and analyzed the results based on some of the 
parameters and algorithms, like measuring the variation of 
bandwidth pairs in consecutive results or using the MDP. Other 
studies depending on measuring buffer occupancy, throughput, 
average playback quality, and decision parameter to analyze 
their results. Another study testing their proposed algorithm 
with other algorithms by using H.264 codec. Our proposed 
method depends on some of the above previous studies by 
using H.264 codec, makes decision parameters based on 
preferences to improve the quality, and views stability and 
reduces switching levels, using average playback quality with 
evaluating network parameter values. 

III. PROPOSED  FRAMEWORK 
The proposed method is to design an adaptive framework 

to balance the average video bit rates with respect to 
appropriate quality switches and make the transition to higher 

switches seamless. The quality adaptation scheme increases the 
bitrates to their maximum value corresponding to the current 
quality switch, before shifting to the higher switch. This will 
help in reducing the number of switching levels and reducing 
switching times between levels to guarantee viewing stability 
and avoiding interruptions. A dynamic system is required to 
achieve optimal performance by controlling system parameters 
and making the algorithm more tunable, allowing each user to 
regulate the parameters with respect to their own preferences. 
Further, reducing the switching levels will reduce the overloads 
that occur because of transferring from one level to another. 
Our research can avoid missing live moments and reduce the 
video interruptions by adjusting the video quality switch to the 
optimal bitrate level. The system model is designed as 
proposed in Fig. 8. The green parts (server) are standardized 
and contain the MPD and segment formats. The delivery of the 
MPD, DASH streaming control, media player, and segment 
parser, are depicted in blue. These parts are not standardized, 
allowing developers to modify or add features to improve their 
performance. The open-source (Libdash) is depicted at the 
client, containing the MPD parsing and HTTP module that is 
responsible for HTTP download. Therefore, the library 
provides interfaces for these modules to access the MPD and 
the downloadable media segments. The DASH streaming 
control is responsible for downloading the order of media 
segments. The DASH server provides segments in several 
bitrates and resolutions (MPD files). The client initially 
receives the MPD through Libdash; the MPD contains the 
temporal relationships for the various qualities and segments. 
Based on that information, the client can download individual 
media segments through Libdash at any point in time. 
Therefore, varying bandwidth conditions can be handled by 
switching to the corresponding quality level at segment 
boundaries, in order to provide a smooth streaming experience. 
This adaptation is not part of the Libdash and MPEG-DASH 
standard and we will implement it in our system to obtain our 
goals. 

 
Fig. 8. System Model. 

A. MPEG-DASH 
Providing video content over the internet faces many 

challenges. Initially, the Real-Time Transport Protocol (RTP) 
was designed to define packet formats for audio and video 
content. However, the protocol performance is poor because it 
is used in internet protocol (IP) networks rather than content 
delivery networks (CDNs), and in the firewall most RTP 
packages are not supported. Therefore, the HTTP appeared to 
deliver the media content through it which is good with the 
firewall and uses streaming and smooth and dynamic 
streaming. But each of the streaming protocol has to deliver its 
own manifest and segment formats, so the content received 
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from the device must support the client protocol. MPEG-
DASH is a technology that can provide interoperability 
between various servers and clients’ devices. MPEG-DASH 
delivers a multimedia file to the client by using HTTP protocol 
and an MPEG coder. MPEG is the standard digital content 
format for transmission and storage of audio and video. The 
segment information called (MPD) Media Presentation 
Description. 

After describing the details of the MPEG-DASH system, a 
description of the building of a system including client-side 
and server-side is provided. The server-side obtains MPD files 
and the client-side uses the Libdash open-source tool and 
DASH control. We installed the Libdash Library and opened it 
in visual studio 2015, with MPEG coder and QuickTime (QT) 
5.11.2 tool to support the QT sample player. Libdash is the 
official reference software of the ISO/IEC MPEG-DASH 
standard, and is an open-source library that provides an object-
oriented (OO) interface to the MPEG-DASH standard, 
developed by Bitmovin [16]. 

B. Performance Parameters 
The dynamic systems have multiple parameters to measure 

the performance; in our system, we have used the common 
performance parameters, namely its CPU usage and memory 
usage. The CPU time is the amount of time for which the CPU 
was used for processing the instructions of a computer program 
or operating system. The CPU time is measured in clock ticks 
or seconds; it is useful to measure CPU time as a percentage of 
the CPU's capacity, called CPU usage. Now will explain how 
using Libdash Player and the details adaptation sets to balance 
between selecting the best level of quality and CPU usage. 
Starting performance profiling and selecting CPU usage, using 
first representation 320 x 240 (47 kbps), showed the CPU 
usage at less than 20%. By selecting another representation 
1280 x 720, better quality and an increase in CPU usage to 
39% were attained. Therefore, a high-resolution selection 
increases the amount of work for the processor. Referring back 
to the many studies of the maximum limitation of CPU usage 
in DASH streaming, it is expected than the upper limit of CPU 
usage on DASH streaming did not exceed 25% [17]. The 
diagnostic report is shown in Fig. 9, sorted by total CPU from 
highest to lowest in the selected time range. For the total CPU, 
the milliseconds and CPU percentage used by calls to the 
function in the selected time range include functions called by 
the function. This is different from the CPU utilization timeline 
graph, which compares the total CPU activity in a time range 
to the total available CPU [18]. 

100% ×=
tyAppaActivi

dActivityTotalMethoTotalCPU
           (1) 

Self CPU unit refers to the time (in milliseconds) and CPU 
percentage used by calls to the function in the selected time 
range exclude functions called by the function [18]. 

100% ×=
yAppActivit

ActivitySelfMethodSelfCPU
           (2) 

 
Fig. 9. CPU usage Report. 

Here, (1) and (2) demonstrate the calculations of the CPU 
usage during the video flow and the average results. 

Memory usage is the amount of memory currently in use by 
all applications. In the memory usage result, we obtained some 
snapshots from the memory by using a diagnostic tool to read 
the quantity of the data on the memory, including one or more 
snapshots of the managed and native memory heaps. A single 
snapshot can be analyzed to understand the relative impact of 
the object types on memory use, and to determine the code in 
the app that uses memory inefficiently. Two snapshots of an 
app can be compared to determine the areas in the code that 
cause the memory used to increase over time. A live graph of 
memory application is shown Fig. 10. The byte counter 
increases with time. The red dotted bar displayed over the 
graph is the memory threshold (Memory Limitation) [18]; the 
maximum limit does not exceed 1400 MB. To analyze memory 
usage, detailed report of memory usages can be obtained. The 
details of the difference between the current snapshot and the 
previous snapshot, such as the increase or decrease in memory 
usage, can also be obtained. The numbers in the snapshot panes 
indicate the bytes and objects in memory when each snapshot 
was taken, as well as the difference between the current 
snapshot and the previous one. We analyzed the numbers of 
Fig. 10 in depth as. 

1) The total number of bytes in memory when the snapshot 
was acquired; a snapshot details report sorted by the total size 
of the type instances is displayed. 

2) The total number of objects in memory when the 
snapshot was acquired; a snapshot details report sorted by the 
count of instances of the types is displayed. 

3) The difference between the total size of memory objects 
in this snapshot and the previous snapshot (a positive number 
means the memory size of this snapshot is larger than the 
previous one, a negative number means the size is smaller); a 
snapshot difference report sorted by the difference in the total 
size of instances of the types is displayed. 

4) The difference between the total number of memory 
objects in this snapshot and the previous snapshot; a snapshot 
difference report sorted by the difference in the total count of 
instances of the types is displayed. 
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Fig. 10. Memory usage. 

IV. RESULTS AND DISCUSSION 
After the text edit has been completed, the paper is ready 

for the template. Duplicate the template file by using the Save 
As command, and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word Formatting 
toolbar. 

A. Simulation and Test Scenarios 
Our objectives were to balance the average video bit rates 

with the appropriate quality switches and make the transition to 
higher switches more seamless, by reducing the number of 
switching levels to reduce the overloads on the network while 
transferring from one level to another. The goal were achieved 
by studying the video load changes on the parameters of 
performance, such as CPU and memory usages, that have a 
high impact on multimedia quality. Maximizing the average bit 
rates for the current quality switch before shifting the switching 
level to the higher one enabled control over system parameters, 
thereby making the algorithm more tunable. We have divided 
the adaptation set into three groups of levels; every level has a 
set of converged qualities and data rates of CPU and memory 
usages. The transmission among levels is based on high or low 
quality and its effect on CPU and memory usages. 

Table II shows the results of CPU and memory usage 
averages of all adaptation sets (according to the bitrates in the 
MPD file) excluding the parameters that have the biggest result 
from the limitation of CPU and memory usages. The average 
results were recorded because the results changed over time; 
memory usage value increases with time. The resolution value 
has multiple data rates; every data rate has value that effects 
CPU and memory usage. 320 x 240 resolution takes up 
approximately 9% of CPU usage and consumes between 100 to 
120 MB of memory; however, at a higher resolution of 480 x 
360, we observed that less than 10% of CPU usage and up to 
137 MB of memory were consumed. Therefore, a switch to 
higher resolution consumes a larger amount of CPU and 
memory use, thus affecting the performance of video 
streaming. Further, as shown in Table II, we can observe that 
an 854 x 480 resolution has a CPU limitation and memory 
limitation, which means that other higher resolutions such as 
1280 x 720 and 1920 x 1080 violate the conditions of CPU and 
memory limits. Therefore, we applied the reduction of 
switching quality levels only on resolutions from 320 x 240 to 
854 x 480. Fig. 11 to 17 illustrate the results with curves of 
CPU usage and memory usage associated with the streaming 

data, and the effect of multiple instances of switching quality 
on these performance parameters. 

TABLE II. ADAPTATION SET 

Resolutions Data rates CPU Usage Memory Usage 

320 x 240 
47 kbps 
92 kbps 
135 kbps 

8 % 
8 % 
9 % 

120 MB 
126 MB 
1126 MB 

480 x 360 

182 kbps 
226 kbps  
270 kbps 
353 kbps 
425 kbps 

12% 
12% 
13% 
13% 
13% 

117 MB 
117 MB 
125 MB 
127 MB 
127 MB 

854 x 480 538 kbps 
621 kbps 

19% 
20% 

132 MB 
143 MB 

1280 x 720 808 kbps  
101, 103, 17 Mbps 

39% 
up 42% 

161 MB 
Up 210 MB 

1920 x 1080 202, 206, 303, 308, 
402, 407 Mbps Up 60% Up 230 MB 

 
(a) CPU usage 320 x 240, 47kbps Bitrate. 

 
(b) CPU usage 320 x 240, 92kbps Bitrate. 

 
(c) CPU usage 320 x 240, 135kbps Bitrate. 

Fig. 11. CPU usage of 320 x 240 for Bitrates 47, 92, 135kbps. 

 
(a) Memory usage 320 x 240, 47kbps bitrate. 
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(b) Memory usage 320 x 240, 92kbps bitrate. 

 
(c) Memory usage 320 x 240, 135kbps bitrate. 

Fig. 12. Memory usage of 320 x 240 for bitrates 47, 92, 135kbps. 

 
(a) CPU usage 480 x 360, 182kbps bitrate. 

 
(b) CPU usage 480 x 360, 226kbps bitrate. 

 
(c) CPU usage 480 x 360, 270kbps bitrate. 

 
(d) CPU usage 480 x 360, 353kbps bitrate. 

 
(e) CPU usage 480 x 360, 425kbps bitrate. 

Fig. 13. CPU usage 480 x 360 for Bitrates 182, 226, 353, 425kbps. 

 
(a) Memory usage 480 x 360, 182kbps bitrate. 

 
(b) Memory usage 480 x 360, 226kbps bitrate. 

 
(c) Memory usage 480 x 360, 270kbps bitrate. 

 
(d) Memory usage 480 x 360, 353kbps bitrate. 

 
(e) Memory usage 480 x 360, 425kbps bitrate. 

Fig. 14. Memory usage of 480 x 360 for bitrates 182, 226, 270, 353, 425kbps. 
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(a) CPU usage 854 x 480, 538kbps bitrate. 

 
(b) CPU usage 854 x 480, 621kbps bitrate. 

Fig. 15. CPU usage of 854 x 480 for bitrates 538, 621 kbps. 

 
(a) Memory usage of 854 x 480, 538kbps bitrate 

 
(b) Memory usage 854 x 480, 621kbps bitrate. 

Fig. 16. Memory usage of 854 x 480 for bitrates 538, 621 kbps. 

 
(a) CPU usage 1280 x 720, 808kbps bitrate. 

 
(b): CPU usage 1280 x 720, 1.7Mbps bitrate. 

 
(c): Memory usage 1280 x 720, 808kbps bitrate. 

Fig. 17. CPU usages of 1280 x 720 for Bitrates 808kbps and 1.7Mbps and 
Memory usages for Bitrates 808kbps. 

B. Results and Discussion 
Our contribution herein is the design of an adaptive 

framework to balance the average video bit rates with respect 
to appropriate quality switches and make the transition to 
higher switches more seamless. The quality adaptation scheme 
increased the bitrates to the maximum value corresponding to 
the current quality switch, before shifting to the higher level. 
This helped reduce the number of switching levels, and hence 
reduce switching times between levels to guarantee stable 
viewing and avoid interruptions. A dynamic system was 
required to achieve optimal performance by controlling system 
parameters (CPU and memory). This dynamic system was also 
required to make the algorithm more tunable, permitting each 
user to regulate the parameters with respect to their own 
personal preferences. Further, reducing the switching levels 
reduced the overloads that occurred because of transferring 
from one level to another. In this study, we analyzed the results 
of highest and lowest value of each data rate in one level of 
resolution, and reduced these levels by combining the closest 
results to closest level. Trading off between data rates and 
quality to make the stream video more seamless, see Fig. 18. 
which illustrates the processes of adaptive framework 
flowchart. Table III illustrates the difference between bitrates 
before and after the study of minimizing levels of quality to 
reduce switching between levels. We divided the adaptation set 
onto three levels only; every group of quality and data rates has 
close results on parameters of performance such as (CPU and 
memory usages). After searching and studying the results of 
CPU usage and memory usage, Fig. 11 to 17, it is revealed we 
can have only three levels on the adaptation set, namely high 
level (HL), middle level (ML), and low level (LL), as 
organized in Table IV. 

TABLE III. ADAPTATION SET BEFORE PROPOSED METHOD 

Resolution Bit Rates (Before) Bit Rates (After) 

320 x 240 
47 kbps 

47 to 135 kbps 
480x360, 182 kbps 92 kbps 

135 kbps 

480 x 360 

182 kbps 

480x360, 226 to 425 
kbps 

226 kbps 
270 kbps 
353 kbps 
425 kbps 

854 x 480 
538 kbps 854x480, 538 to 621 

kbps 621 kbps 
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Fig. 18. Adaptive Framework Flowchart. 

TABLE IV. ADAPTATION SET AFTER PROPOSED METHOD 

Levels Adaptation Set 

High Level (HL) 320 x 240, 47 to 135 kbps 
480 x 360, 182 kbps 

Middle Level (ML) 480 x 360, 226 to 425 kbps 

Low Level (LL) 854 x 480, 538 to 621 kbps 

V. CONCLUSION 
In this study, we have investigated video streaming with a 

control algorithm to deliver video in appropriate quality with 
respect to network parameters changes. We designed an 
adaptive framework to balance the average video bitrate with 
respect to the appropriate quality switches and made the 
transition to higher switches more seamless. We used a 
dynamic system (Libdash) to achieve optimal performance by 
controlling system parameters (CPU usage and memory usage) 
to make the algorithm more tunable. After analyzing the 
results, we minimized the level of quality switches to have only 
three levels in the adaptation set. So, this study was able to 
decrease the values of parameters that affected the performance 
of video streaming. 

In future research, we will expand this study to include 
other influences that affect video streaming performance and 
quality. 
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