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Abstract—Modern data centers can process a massive amount
of data in a short time with minimal errors. Data center networks
(DCNs) use equal-cost, multi-path topologies to deliver split flows
across alternative paths between the core layer and hosted servers,
which could lead to significant overload if path scheduling is
inefficient. Thus, distributing incoming requests among these
paths is crucial for providing higher throughput and protection
against link or switch failures. Several approaches have been
proposed for path selection, mainly relying on round-robin and
least-congested methods. In this paper, we propose a load-
balancing method based on betweenness centrality to improve
the overall performance of a data center in terms of throughput,
delay, and energy consumption. For evaluation, we compare our
method with baseline methods of different DCN topologies: fat-
tree, DCell, and BCube. On average, the evaluation results show
that our method outperforms the others. It increases throughput
by 202% and 33% while reducing delay by 20% and 22%, and
energy consumption by 40% and 41% compared to the round-
robin and least-congested methods, respectively.
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I. INTRODUCTION

Nowadays, studies in computer networking focus on data
center networks (DCNs) and challenges involved in scheduling
the paths of these networks. A DCN is a construction that links
a large number of servers, switches, and routers to connected
devices. Data center switches are designed to forward data
between endpoints, while servers process the data [1], [2],
[3]. The importance of these data centers is increasing, as a
considerable number of networks are now linked. Moreover,
the main functions of data centers are the analysis, processing,
and storage of large data.

DCNs have two types of architecture: two- and three-tier
architectures. The most commonly used architecture in current
DCNs is the three-tier architecture, comprising a core layer, an
aggregate layer, and an access layer, from top to bottom, as
shown in Fig. 1 [3], [2], [4]. When DCNs process applications’
requests, the requests first arrive at the core layer. Then,
the core layer forwards the requests to the destination server
across multiple paths through the aggregate and access layers.
Computations by servers complete applications’ requests; thus,
massive requests require high-performance computing servers
[5], [6].

Data center traffic can be classified into two main types:
mice and elephant. Mice traffic makes up a data flow of small
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Fig. 1. Three-Tier Data Center Architecture

sizes, which is sensitive to delays (time-sensitive). An example
of a mice flow is web-searching. Elephant traffic is defined
as a flow that consumes more channel bandwidth. Thus, it is
data-sensitive; for example, when downloading or uploading
files [3], [1], [7]. Dealing with data center traffic causes a
major issue known as congestion. Congestion occurs when
a traffic imbalance ensues between network paths, leading
to significant overload if path scheduling is inefficient—for
instance, using a static approach to scheduling requests, e.g.,
equal-cost multipath (ECMP) or round-robin, in which requests
are sequentially assigned to paths, regardless of the paths’
status. Thus, some paths are overloaded, while multiple other
paths are available, affecting overall DCN performance [8], [9].
Therefore, an efficient load balance of requests across multiple
links (paths) must be considered to achieve the best possible
data center performance. A link-based load balancing method,
in general, aims to distribute requests across multiple links to
avoid congestion in a single path and guide traffic to the best
available destination (path). However, this task is currently one
of the major challenges facing data centers [10], [11], [12],
[2].

In this paper, we propose a load balancing method that
utilizes a graph-theoretic betweenness centrality (CB) metric,
which attempts to forward new traffic to the least congested
paths within DCN topologies. For evaluation, we compare
our proposed method with baseline methods: round-robin and
least-congested. We then present a comparative performance
analysis between the above load-balancing algorithms and the
proposed method in commonly used DCN topologies, fat-
tree, BCube, and DCell, using NetworkX, a Python library
for graphics and networking.

The remainder of this paper is organized as follows. In
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Section II, the necessary background for the proposed method
is covered, including DCN topologies, graph theory, and load
balancing algorithms. Section II-B introduces the proposed
load-balancing method. Section IV discusses the dataset and
performance metrics. Section V presents the implementation
and modeling results. Finally, Section VI presents conclusions
and suggestions for future work.

II. BACKGROUND AND RELATED WORK

In this section, we present a graph-theoretic background
based on centrality. Furthermore, we show the most popular
DCN topologies. All topologies presented were implemented
and evaluated in our study. Moreover, related studies are
presented in this context.

A. Graph-Theoretic Centrality Metrics

Several metrics have been introduced to measure the cen-
trality of a node or link in a graph: to measure the importance
of a vertex or an edge [13], [14]. Degree centrality (CD), the
degree of a node in a graph refers to the number of links
attached to that node [15], [14]. A node with a high degree of
centrality has a critical position in a network, since most of
the links pass through it. Closeness centrality (CC), is defined
as the sum of the shortest paths from one node to all other
nodes in a graph. Betweenness centrality (CB) is a metric that
is used for nodes and edges. The CB of a node is defined as
the number of shortest paths passing through that node in a
graph, while the CB of a link refers to the number of shortest
paths passing through that link in a graph [16], [14]. CB is a
vital metric since the CB value of a link or node is changed
based on graph structures. The function used to calculate the
CB of a link l in networks is defined as follows:

CB(l) =
∑

u,z∈V,l∈L

|Fu, l, z|
|Fu, z|

(1)

where the V refers to the number of vertices, such as source
or destination vertices in a graph, and L is a set of links in a
graph.

set of shortest paths from a vertex u to a vertex z, passing
through an edge l.

|Fu, l, z| ⇒ set of shortest paths from a vertex u to a vertex
z, passing through an edge l.

|Fu, z| ⇒ set of all shortest paths between vertices u and
z.

B. Data Center Network Architectures

DCN topologies can be classified into three categories:
switch-centric, server-centric, and hybrid structure. In this
section, we present examples of switch-centric and hybrid
architectures.

1) Fat-tree topology: Fat-tree topology is an example of
switch-centric architecture that has only switches for com-
munication and computing tasks. It is the most widely used
topology in DCNs due to a full mesh connection. Fat-tree, as
illustrated in Fig. 2b, comprises three layers: a core layer, an
aggregate layer, and an edge layer [17]. Servers at the bottom
of a graph are directly attached to switches in the edge layer.
Each edge switch comprises an n-port, which connects an
n/2 server. The rest of the ports are linked to the aggregate
switches. Fat-tree topology offers multipath routing between
any peer hosts, which reduces the likelihood of link or switch
failures. The total number of links in the fat-tree topology is
3×n3

n link, where n is the number of switches [11].

2) BCube and DCell topologies: These are hybrid structure
topologies that use both switches and servers for data forward-
ing and computing functions. They have different architectures,
but both have recursively defined structures [11], [17].

BCube0 comprises n count servers, where each server
has a direct link to a switch at each level (BCube0 and
BCube1 levels) through a port. Thus, servers cannot directly
communicate with each other because no direct link exists
between them. Moreover, as shown in Fig. 2a, switches at the
BCube1 level can communicate with switches at the BCube0
level through an attached server, where BCube topology can
construct up to three levels (k = 3). Furthermore, the number
of complete links in the BCube topology is 2 ∗n2 link, where
n is the number of switches [18], [11].

Moreover, the DCell architecture, as illustrated in Fig. 2c,
comprises servers, mini-switches, and links. Each mini-switch
comprises n servers, which are connected through a link. In
addition, servers from different DCells are directly connected
through connection links, and mini-switches from different
DCells can communicate through an attached server. The total
number of links in the DCell topology is 3n×(n+1)

2 links, where
n is the number of switches [11].

C. Path Selection Methods

In this section, we discuss the difference between the two
kinds of path scheduling algorithms: static and dynamic.

In static scheduling, traffic scheduling decisions are applied
at the configuration stage, and decisions taken at this stage
are independent of subsequent network statuses. A round-robin
algorithm is an example of a static scheduling algorithm, which
distributes requests to specific servers through sequential paths.
Thus, the capacity of the server or link is not considered [11],
[19]. In contrast, dynamic scheduling algorithms dynamically
distribute flows through optimum links by considering the
current state of a network. The ‘least congested’ algorithm
is an example of a dynamic scheduling algorithm, which
forwards a new request to the least loaded or congested
link [11], [20], [21], [22].

D. Related Work

Several studies have proposed approaches to improve DCN
performance. In this section, we investigate related approaches.

Author in [23] used Luopan, a congestion-aware load-
balancing method, to distribute flowcells (sub-flows after
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Fig. 2. Popular Topologies of Data Center Architectures

breaking an inserted flow) into a few available paths based
on sampling. The idea is to take a few paths and distribute
flowcells, relying on the least congested paths. Results show
that this method outperforms the Presto algorithm, which
improves the flow completion time for mice and elephant
flows by 35% and 30%, respectively. However, their proposed
method does not use a CB as a metric for flow scheduling.

Zakia et al. [24] proposed a dynamic SDN-based path
selection method to improve DCN load balancing. They used
the Dijkstra algorithm for calculating all the shortest paths
between two nodes. Then, a new flow will be assigned to the
path with the least congestion and minimum cost. However,
if the path has been overloaded, the path’s flow will be
forwarded to an alternative least-congested and lowest-cost
path. However, CB is not used in their path selection method.

Alenezi et al. [25] proposed a comprehensive comparison
technique to study DCN robustness in the event of a single
point of failure. They addressed this issue by increasing the
number of links to balance the edge-based BC yields. Thus,
they found that utilizing the BC metric and increasing the
number of links improves the robustness of a network upon
attacks. However, their approach lacks path scheduling, since

they used CB to increase network robustness.

Author in [26] proposed a load-balancing method that
balances the workload in SDN-based DCNs. Their method
monitors bandwidth utilization and the rate of packet loss
before congestion occurs. When the bandwidth utilization and
packet loss rate exceed a specified threshold, flows are rerouted
from congested paths to alternative, less congested paths.
However, if some metrics, such as latency and throughput,
reach a specified threshold, a controller will set new flow
rules to distribute flows among multiple paths. However, their
method uses a least-congested metric to dynamically schedule
the flow and they do not use the CB metric to schedule the
flow.

Shafiee et al. [27] applied a congestion-aware load-
balancing method to distribute flows to paths with minimum
cost, which are paths that accumulate low cost; the estimated
cost is the sum of convex functions of link utilization. More-
over, assigning a flow to paths does not rely on splitting the
flow into small flowlets. Thus, they reduced the difficulties
associated with TCP packet reordering. Simulation results
show that their method reduced the overall cost in fat-tree
and JellyFish DCNs. Still, CB is not used in their dynamic
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approach for flow scheduling.

Challa et al. [28] introduced a routing method based on
software-defined networking (SDN), called CentFlow. Their
method utilizes the degree centrality metric to detect the node
or link with the highest utilization value and avoids using that
node (link) to minimize cost, since the degree of utilization
affects a node’s cost in a network. Thus, CentFlow selects
the node or link with the lowest cost based on the Dijkstra
algorithm. However, CB does not exist in its routing method.

To briefly summarize the above-mentioned related works,
we noticed that the procedure described in [24], selects the
least congested path based on the shortest-path algorithm,
while that in [26], considers the least-congested path and
packet loss rate metric to select an optimum path. More-
over, [27], selected a path based on the least-congested metric,
while [23] followed the same approach but with partial flow
into multiple flowcells, which were then distributed to the
least congested paths. Furthermore, [25], uses the CB metric
as an indicator to increase the number of links and network
robustness against attacks, while [28], utilizes the CB and
the degree of centrality to select the optimum paths from the
available shortest paths.

The approaches discussed above use only static or dynamic
approaches in scheduling flows among paths. In our method,
we utilize both CB and least-congested metrics to select the
optimum path for a flow from diverse paths. We evaluate
and compare the performance of our method with other load-
balancing methods in widely adopted DCNs.

III. A LOAD-BALANCING METHOD

In this section, we present our proposed load-balancing
method, which utilizes CB and least-congested metrics to
select paths between the core and edge layers.

We propose a CB-based dynamic load balancing method
that performs load balancing in a DCN topology by measuring
the minimum CB of all links as well as the least congested
path at a particular time. The method obtains all simple paths
between a single source and a single destination node through
which flows can be sent. Traffic flows are of the same priority
and size. Among the selected paths, the path with the least
CB and congestion is selected, and traffic flow is forwarded
along that path. The performance of the proposed method is
evaluated in a state-of-the-art DCN topology by collecting data
from links and switches. Fig. 3 illustrates a flow diagram of
our load-balancing method.

To demonstrate our proposed method, we apply it to a
simple topology, as shown in Fig. 4. The graph has two, three,
and four nodes from top to bottom and has a link of 1 Gbps
capacity connecting the nodes. For instance, host1 sends data
to host2 through multiple paths. We evaluate, compute, and
assign a CB value to each edge using NetworkX, as shown in
Fig. 4.

Suppose we have three paths from node 0 to node 6, where
each path has a number of files; for example, path 1 ([0, 1, 3, 2,
6]) has one file, path2 ([0, 1, 4, 2, 6]) has three files, and path3
([0, 2, 6]) has one file. The question arises as to which paths
the new files are to be assigned. Our proposed method is based
on a four-step process. First, the CB values of all edges in the
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Fig. 3. The Proposed Load-Balancing Method.
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paths are summed. Second, the CB values of each path are
normalized by dividing each value by the maximum CB value.
Then, the congestion at each path is normalized: the number of
files in each path is divided by the maximum number of files.
Table I illustrates the CB and normalized values. Finally, each
path is assigned a value equal to the sum of the normalized
CB and congestion values, and the path with the lowest value
is selected. In the example shown in Fig. 4, we see that path
3 ([0, 2, 6]) has the lowest value. Therefore, the new file will
be forwarded to this path.

IV. EVALUATION

This section discusses our evaluation and presents the
dataset of the DCN topologies and performance metrics used.
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TABLE I. BETWEENNESS AND NORMALIZATION VALUES BASED ON THE
EXAMPLE IN FIG.4

Paths Betweenness Values Normalization
[0,1,3,2,6] 16.99 1
[0,1,4,2,6] 16.99 1

[0,2,6] 11 0.65

TABLE II. DATASET USED IN THE EVALUATION OF THE PROPOSED WORK.

Fat-tree DCN Number of Pods 4
Number of nodes 20

BCube DCN k-level 1
DCell DCN level 1
Link bandwidth 1 Gbps

Requests number 200
Packet size 1500 KB

Thereafter, the evaluation results are presented and discussed.

A. Dataset

The DCN topologies mentioned in Section II are im-
plemented and evaluated. The dataset used to evaluate the
proposed method against the other load balancing methods is
shown in Table II. To evaluate the fat-tree topology, we use
a network of four core switches, eight aggregation switches,
and edge switches. Each core switch is connected to an edge
switch through aggregation switches via 1 Gbps links.

The BCube topology is implemented for level one (k =
1) with four BCube1 and BCube0 switches. Each BCube0
switch connects to four servers, making up a total of 16 servers.
Each link used to connect the layers has a capacity of 1 Gbps.

The DCell topology is implemented for level 1 and com-
prises five switches, each connecting to four servers through a
direct link of 1 Gbps. Each server is connected to other servers
in different DCell0 through a 1 Gbps link.

B. Performance Metrics

In this section, we present three metrics for measuring the
impact of the three load-balancing methods on the performance
of DCN topologies.

1) End-to-end throughput: To calculate the throughput of
a DCN topology from a single-core source to a server desti-
nation, we calculate the total time for all files to be delivered,
while considering bottleneck links. Completion time is the time
taken to complete a specific task [29]. Then, the total size
of all the files is divided by the total completion time. The
approximate completion time for each path is calculated as
follows:

(F − 1)× (Td + Pd) (2)

where F is the total number of files, Td is the transmission
delay, and Pd is the propagation delay. To simplify the calcu-
lations for when congestion occurs, we assume that the files
of the relevant paths are sent last. This is because we are only
interested in the maximum completion time.

2) End-to-end delay: The following equation is used to
calculate the end-to-end delay:

TotalDelay = Td + Pd + Ud +Qd (3)

where Td is transmission delay, which is the required time to
transmit a packet in a channel; Pd is propagation delay, which
is the time taken to forward packets across the channel; Ud is
a processing delay, which refers to the time taken to process a
task; and Qd is a queuing delay, which is the packet’s waiting
time in a buffer [30]. In our measurements, Ud is equal to
zero, and Td can be calculated using Request Size

Link Capacity , where 1.5
GB is the request size and 1 Gbps is the link capacity. Pd can
be calculated using Channel Length

Propagation Speed , where the propagation
speed is the speed of light (2×108 m/s), and the link length is
10km. To calculate the queuing delay, we focus on calculating
the average queuing delay for all links. Thus, we first find the
total number of sent files (F ) and subtract them one by one,
starting with the first file, which has no waiting time. Then, we
multiply the total number of files minus one by (Td). Finally,
we divide the calculated value by two, which affords us the
average Qd.

3) Energy consumption: Energy consumption is one of the
biggest challenges faced by DCNs. Significant effort has been
made to reduce the power consumed by data center compo-
nents, while ensuring high network performance [11]. Thus,
the use of the proposed load-balancing method for selecting
an optimum path for sending packets is an appropriate way
to reduce energy consumption [6]. Thus, a large workload
in links increases energy consumption in a DCN [31], [32].
In our evaluation, we aimed to estimate energy consumption
by considering the number of switches in paths, regardless of
any other components in the DCN. This is because switches
consume more energy than servers [11].

V. RESULTS AND DISCUSSIONS

In this section, we present and discuss the results of the
three load-balancing methods applied to the three data center
topologies, based on the experimental setup presented in Sec-
tion IV. Our evaluation is based on three performance metrics:
throughput, end-to-end delay, and energy consumption.

A. Throughput Results

The throughput results of the application of the three load-
balancing methods to the three DCN topologies are shown in
Fig. 5.

The throughput results in the fat-tree topology, as dis-
played in Fig. 5a show that our method has the best results
compared to the other load-balancing methods. We notice
that, for request number 25, the round-robin decreased the
throughput by approximately 69% and 76% compared to
the least-congested and our method, respectively. In contrast,
we see that our scheme increased the total throughput by
3% and 65%, compared to the least-congested and round-
robin algorithms, respectively. Furthermore, we observed that
the round-robin has the worst results, achieving the lowest
throughput compared to the other methods because it assigns
flows to paths regardless of the paths’ load status, reducing the
throughput of the DCN.
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Fig. 5. Throughput Analysis for Data Center Topologies

Moreover, the throughput results in the BCube topology, as
demonstrated in Fig. 5b, validated that our method increases
throughput by approximately 92% and 296% compared to the
least congested and round-robin algorithms, respectively. It is
followed by the least-congested algorithm, with a throughput
106% higher than the round-robin, which achieves the worst
throughput results due to its static approach.

The throughput results in the DCell topology are shown
in Fig. 5c. Fig. 5c shows that our method has the highest
throughput compared to the other methods. We notice that,
at request number 25, the round-robin achieves a through-
put of approximately 60% and 68% lower compared to the
least-congested method and our own, respectively. Conversely,
our method increases the total throughput by 3% and 247%
compared to the least-congested and round-robin, respectively.
On the other hand, we observe that the round-robin algorithm
has the worst throughput results because it does not consider
the load status of paths in each case, affecting the overall
throughput results.

By studying all the throughput results in different DCN
topologies, we can see that our proposed method outperforms
the other load-balancing algorithms. This is mainly because
our method selects a high-bandwidth path, while avoiding the
highly congested paths and bottleneck links. On the other hand,
the round-robin algorithm achieves the poorest throughput re-
sults due to its static scheduling approach which assigns flows
regardless of paths’ load status. The round-robin algorithm
reduces the throughput results by 40%, 75%, and 71% in the
fat-tree, BCube, and DCell topologies, respectively, compared
to our method. Moreover, it reduces the throughput results
by 38%, 52%, and 70%, respectively, compared to the least-
congested algorithm.

B. End-To-End Delay Results

End-to-end delay results of the three load balancing meth-
ods in the three DCN topologies are shown in Fig. 6.

The delay results in the fat-tree topology are shown in
Fig. 6a. We observe that our scheme reduces the delay by
11% compared to the least-congested and round-robin algo-
rithms. Thus, it concisely achieves the best results, because
our load-balancing method avoids congested bottleneck links.
We observe that the least-congested and round-robin methods
produce the same results at the end of requests. However, the
round-robin algorithm incurs the highest delay at the start of
requests until request number 175, which is a negative sign of
load balance.

Next, Fig. 6b shows the delay results in the BCube topol-
ogy. We can distinguish that our method outperforms the other
load-balancing methods in terms of delay time in the BCube
topology. It reduces the delay by approximately 51% and 30%
compared to the least-congested and round-robin methods,
respectively. Moreover, we observe that the least-congested
method has the highest delay because it uses bottleneck links
despite the presence of congestion.

The delay results in the DCell topology are demonstrated
in Fig. 6c, which shows that our load-balancing method results
in has the lowest delay compared to the other methods. Our
method reduces overall delay by approximately 5% and 18%
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Fig. 6. End-To-End Delay Analysis for Data Center Topologies

compared to the least-congested and round-robin methods,
respectively, from smaller to larger requests. Furthermore, the
round-robin algorithm incurs the worst delay results, while
increasing the number of requests because it distributes flows
regardless of paths’ load status.

We can conclude that our method has better delay results
than the other load-balancing methods studied in several DCN
topologies. This is primarily because our method bypasses
highly congested links with the help of the BC value of each
path, which, as mentioned earlier, directly affects network
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Fig. 7. Energy Consumption Analysis for Data Center Topologies

latency. Moreover, we note that the round-robin method pro-
vides the worst results in both fat-tree and DCell topologies
because it forwards requests regardless of paths’ availability.
As a result, the round-robin algorithm increased the network
delay by 13%, 44%, and 21% in the fat-tree, BCube, and DCell
DCNs, respectively, compared to our method. It increased the
delay by approximately 16% in the DCell topology, while
it has the same delay result in the fat-tree topology, and in
the BCube topology, about 41% higher delay than the least-
congested method.
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C. Energy Consumption Results

Energy consumption results from the three load balancing
methods in the evaluated DCN topologies are displayed in
Fig. 7.

Fig. 7a shows the energy consumption results in the fat-tree
topology. We observe that, in the fat-tree topology, our method
affords the optimum results, while the round-robin and least-
congested methods achieve the same results. Moreover, both
the round-robin and least-congested methods consume up to
1000 watts, while our method consumes only 600 watts. As a
result, our method reduces energy consumption by 40% in the
fat-tree topology compared to the other algorithms.

Furthermore, the energy consumption results in the BCube
topology are shown in Fig. 7b. We notice that the round-
robin algorithm energy consumption results are approximately
12% lower than those of the least-congested algorithm and
76% higher than those of our method. Thus, we notice that
the least-congested method consumes more energy than the
other methods because it uses specific links with the maximum
number of hops. On the other hand, the round-robin algorithm
assigns flows in sequential order, regardless of the number
of switches in links, while our method uses links with fewer
hops because these links have the lowest CB values. Thus, our
method achieves the lowest energy consumption compared to
other methods.

The energy consumption results in the DCell DCN, as
illustrated in Fig. 7c, show that our load-balancing method
has the best results, consuming approximately 1100 watts. It
is followed by the least-congested method and then the round-
robin method, which consume approximately 1650 watts and
1755 watts, respectively. As a result, we see that our method
reduces energy consumption by approximately 33% and 38%
compared to the least-congested and round-robin algorithms,
respectively.

Our proposed method consistently improves energy con-
sumption in DCNs, because it uses paths with the lowest CB

values, which are the paths with a low number of hops since
using paths that have a large number of hops will increase
energy consumption. On the other hand, the least-congested
method achieves the worst energy consumption results in the
BCube DCN, because it forwards flows to the least congested
paths, regardless of the number of hops in those paths. In
addition, the round-robin consumes more energy in the DCell
topology, increasing the energy consumption by 46% and
6% compared to our method and the least-congested method,
respectively, in the DCell topology. Moreover, we notice that
the least-congested method and round-robin have the same
results in the fat-tree topology, both consuming more energy
than our method.

To summarize these results, we studied and analyzed all
the performance results in the different DCN topologies inves-
tigated. We found that our load-balancing method outperforms
the other methods. On average, the throughput results show
that our method achieves a total throughput that is 202% and
33% higher compared to the round-robin and least-congested
algorithms, respectively. Moreover, it reduces network delay
by 20% and 22%, and energy consumption by 40% and 41%
compared to the round-robin and least-congested methods,
respectively. This is because our method bypasses bottleneck

links, while considering the lowest edge CB values. On the
other hand, we notice that the round-robin algorithm has the
worst throughput results, because it assigns flows sequentially,
regardless of the paths’ load status. We also observed that the
least-congested algorithm has the worst results in delay and
energy consumption, since it assigns a flow to a path despite
the bottleneck links and the number of hops in that path.

VI. CONCLUSION

Improving the performance of data center systems would
allow DCNs to be scalable and more customizable, helping to
connect more devices around the world. This paper presented
a comparative performance analysis of some load-balancing
methods in three DCN topologies: fat-tree, BCube, and DCell.
We proposed a load-balancing method based on BC. Our
method was compared to other load-balancing algorithms in
different DCN topologies using a one-to-one traffic scenario.

We conclude that our method outperforms the existing
load-balancing methods in all the three DCN topologies in-
vestigated. It improves throughput by 202% and 33%, while
decreasing delay by 20% and 22%, and energy consumption
by 40% and 41% compared to the round-robin and least-
congested methods, respectively. The evaluation and DCN
topology graphs were implemented using NetworkX. In our
future studies, we will evaluate the performance metrics in dif-
ferent traffic scenarios. Moreover, this study will be evaluated
in a simulation program, i.e., ns3.
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