
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

Small-LRU: A Hardware Efficient Hybrid
Replacement Policy

Purnendu Das1, Bishwa Ranjan Roy2∗
Department of Computer Science

Assam University Silchar
INDIA

Abstract—Replacement policy plays a major role in improving
the performance of the modern highly associative cache memo-
ries. As the demand of data intensive application is increasing it
is highly required that the size of the Last Level Cache (LLC)
must be increased. Increasing the size of the LLC also increases
the associativity of the cache. Modern LLCs are divided into
multiple banks where each bank is a set-associative cache. The
replacement policy implemented on such highly associative banks
consume significant hardware (storage and area) overhead. Also
the Least Recently Used (LRU) based replacement policy has
an issue of dead blocks. A block in the cache is called dead, if
the block is not used in the future before its eviction from the
cache. In LRU policy, a dead block can not be remove early
until it become LRU-block. So, we have proposed a replacement
technique which is capable of removing dead block early with
reduced hardware cost between 77% to 91% in comparison to
baseline techniques. In this policy random replacement is used
for 70% ways and LRU is applied for rest of the ways. The
early eviction of dead blocks also improves the performance of
the system by 5%.

Keywords—Replacement policies; cache memories; last level
cache; hardware overheads; dead block

I. INTRODUCTION

Replacement policy plays the most significant role in the
performance of highly set-associative cache architecture. In
multi-level cache, the first level cache (L1) is allotted as private
cache to individual core whereas the large last level cache
(LLC) is shared by all the cores. To reduce the access latency
the LLC is also divided into multiple banks where each bank is
a set-associative cache. The data distribution among the banks
is based on different data mapping policies [1]. In this work we
consider Static Non Uniform Cache Access (SNUCA) where
each block has a fixed bank to be mapped and the bank is
called the home-bank of the block [1]. Fig. 1 shows a multicore
processor having 4 cores. Each core has a private L1 cache and
a part of shared L2 cache. To make the design simple we have
not divided the L2 into more than 4 banks. The rest of the
paper follows the same multicore processor as shown in Fig.
1. Each bank is a set-associative cache as shown in Fig. 2.

Today’s data intensive applications demand larger and
higher associative cache (specially LLC). These highly asso-
ciative cache reduces the conflict misses and hence improves
the performance of the system. But these highly associative
cache has some overheads in terms of hardware. One such

*corresponding author

overhead is because of maintaining replacement policy for such
highly associative banks. In set-associative cache (or bank),
each set maintains its own replacement policy. This policy is
required to replace an existing block from the cache.

As mentioned above, each set in the set-associative cache
has its separate replacement hardware. For an N -way set
associative cache, each set maintains separate hardware for its
replacement policy. To insert a newly incoming block in the
set, one of the existing block need to be evicted first known as
the victim block. The purpose of replacement policy is to select
a victim block to replace it with the recently requested block.
One of the most popular and well known replacement policy is
called Least Recently Used (LRU) policy. The concept of this
technique is well known and not necessary to discuss here. To
maintain LRU policy in each set having N ways, each way
must uniquely represent its age relative to the other ways. For
example, if there are only 2 ways in a cache then each set
needs only 1 bit to maintain the relative age. Bit-0 means old
and bit-1 means new. Similarly 2 bits are required to uniquely
maintain the relative age in case of a 4-way set associative
cache. Hence for a N -way set associative cache, log2N bits
are required to maintain the relative age of each ways in the set.
The details about the hardware overheads required to maintain
replacement policy is discussed in Section II.

The three important operations of any replacement policy
are:

Fig. 1. An Example of Multicore Processor having 4 cores and 4 LLC banks.

www.ijacsa.thesai.org 682 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

• Eviction: During the replacement process which block
should be evicted from the cache. In case of LRU
replacement policy, the eviction mechanism always
selects the least recently used block as a victim block.

• Insertion: The newly incoming block replaces the
victim block in the cache. But its position w.r.t.
the replacement policy is determined by its insertion
mechanism. In case of LRU replacement policy the
newly incoming block is always placed in the MRU
position.

• Promotion: This operation handles about what to do
when a block is bing accessed from the cache. In case
of LRU replacement policy, the promotion mechanism
makes such blocks as MRU. It means that if a block
B present in the bank and a request has been made
to access the block. In this case the block will be
accessed from the bank and hence it considered as
hit. But after the access, the block will be moved to
the MRU position.

The main reason to use such highly associative caches
even in presence of hardware overheads is the performance.
A highly associative cache reduces the conflict misses in the
system and hence improves the system performance. These
motivates researchers to reduces the hardware overhead of such
highly associative caches. In this work we are mainly targeting
the hardware overhead of the replacement policy of such cache.

The LRU based replacement policy are simple but faces a
problem of dead blocks [2], [3], [4], [5], [6]. Since the insertion
mechanism of LRU inserts a block at the MRU position and the
eviction mechanism selects the victim from the LRU position,
it takes long time in a highly associative cache to make a
block LRU from MRU. It has been found that there are some
blocks which are accessed only once in the cache. Such blocks
though never used again but not possible to remove until they
become LRU. Such block are called dead-blocks. Alternatively,
a block is called dead-block at a particular instance, if the
block will never used in the future before evicting it from the
cache. The LRU based policy faces the issue of dead block
and many technology has already been proposed to reduces

Fig. 2. An Example of 8-way Set Associative L2 Bank as shown in Fig. 1.

the presence of such blocks [7]. Most of these dead block
prediction policies are costly in terms of storage capacity as
they require to maintain additional bits for prediction. Our
proposed work is capable of early eviction of dead block with
minimized hardware cost. Though the proposed policy is not
as smart as [7] in terms of dead block prediction but managed
to reduce hardware cost significantly. The proposed policy
attempts to reduce hardware cost of LRU based techniques
with high dead block prediction ability so that hit rate of the
memory can be improved

The organization of the paper is as follows. The next
section discuss about the background and related works. The
proposed Small-LRU is discussed in Section III. Section IV
gives the experimental analysis and finally Section V concludes
the paper.

II. BACKGROUND

The simplest replacement policy is known as FIFO (Fisrt
In First Out) which uses a straight forward strategy to replace
victim block while the most widely used traditional replace-
ment policy is LRU (Least Recently Used) which selects a
victim block based on reference history. Some similar policies
are MRU (Most Recently Used) and Random. In case of N -
ways set-associative cache, LRU policy require N × log2N
bits to represent a set. For example, a 4-ways set-associative
cache require log24 = 2bits to represent a single way and
4 × 2 = 8 bits require to represent a complete set. most of
these traditional policies require the same hardware cost to
implement. Random policy does not require any additional bit
to select victim block but not suitable for general purpose.

Replacement policy is major area of research from the last
two decades. The work in replacement policy can be divided
into the following two categories: (a) Performance oriented
like [7], [8], [9], [10] (b) Overhead reduction oriented like
[11], [12]. The most efficient replacement policy was proposed
in 1965 [13], which states that the evicted block must the
block which will reuse in the furthest future. The policy is
considered as the optimal replacement policy. Unfortunately it
is not possible to implement this optimal policy in any physical
computer as it needs the knowledge of future. Hence all the
practical replacement policy proposed are trying to come closer
to this policy in terms of performance. Note that, in case of
replacement policy, the performance means reduction in the
number of cache misses. There is a huge gap still exist between
all the implementable replacement policies and the Optimal
replacement policy [7], [11].

Many recent replacement policies have attempted to mimic
the functionality of the optimal replacement policy using
the modern techniques like Machine Learning and Artificial
Intelligence [7], [10]. Even after all such attempts the gap is
still exists. In [10] the authors have introduced a replacement
policy which can predict future based on its past experiences.
Another similar technique has been proposed in [14].

Removing dead blocks from the cache is also a major
responsibility of the replacement policies. The LRU based
replacement policies fail to remove dead blocks early [7]. Since
detecting dead block also needs the knowledge of future it can
only be predicted with some efficient prediction mechanism.
Some well known dead block prediction based replacement

www.ijacsa.thesai.org 683 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

policies are [7], [8], [15], [16]. Most of these techniques has
high hardware overhead as they need to maintain some pre-
diction tables. Some low-overhead based dead block predictors
are [11], [12]. The technique proposed in this paper is also a
low-overhead based replacement policy.

III. SMALL-LRU

In this work a highly associative set is divided into two
parts: LRU-Part and Random-Part. The LRU-Part maintains
LRU replacement policy while the Random-Part maintains
random replacement policy. LRU-Part is relatively small and
have only 30% of the total ways. Thus the technique is called
Small-LRU. During the eviction of a block, the Random-Part
selects a victim block randomly and place it to the LRU-part.
To accommodate the block coming from Random-Part, LRU-
Part removes its least recently used block. An example of
Small-LRU is shown in Fig. 3.

The main advantage of Small-LRU can be divided into two
parts: (a) Reducing hardware overhead and (b) Reducing the
presence of dead blocks in the cache. The hardware overhead is
largely reduced as the random replacement policy needs almost
zero overhead. The dead blocks are present in any large sized
cache memories. Since 70% of the cache is random the dead
blocks will be evicted early from the set. On the other hand,
if there is a highly used block being randomly picked by the
random-part then block will be given chances by placing it in
the MRU position of the LRU-Part. Another hit to the block
will again move the block into the Random-Part.

The highly associative sets are used to remove the conflict
misses in the cache. The proposed design is still equally
capable of removing the conflict misses but with significantly
reduced hardware overheads. Experimental analysis as dis-
cussed in Section IV shows that the proposed mechanism is
good for most of the benchmarks.

A. Replacement Operations

Insertion Policy: Every time a newly inserted block will
be placed in the Random-Part. The insertion policy needs to
move a block from Random-Part to the LRU-Part for making
room for the incoming block. To place the migrated block from
Random-Part to the LRU-Part, the LRU-Part removes its LRU
block.

Promotion Policy: If block from LRU-Part is need to be
promoted then it will be placed on the random-part. Promoting
a block from LRU-Part to Random-Part also needs some
adjustments. Before doing such promotion a random block

Fig. 3. An Example of Small-LRU, Implemented in a 8-way Set-Associative
Cache.

from the random-part will be moved to the LRU position of
the LRU-Part.

Eviction Policy: Every time the evicted block is the LRU
block of the LRU-Part.

B. Advantage of Small-LRU

1) Hardware Cost: As mentined in Section II, LRU policy
requires to maintain N×log2N bits to represent each set of an
N -ways set-associative cache. Since Small-LRU use random
replacement policy on 70% ways and LRU only on 30% ways,
the hardware overhead is reduces by more than 70%. In Small-
LRU the number of additional bits required is M × log2M ,
where M = 0.3 × N . Table I represents the improvement
achived in terms of hardware cost. It is observed that Small-
LRU policy have reduced storage cost of LRU policy by 77%
to 91% depending on the degree of associativity.

2) Dead Block Prediction: Early prediction of dead block
is always a challenging task as discussed in Section I. Remov-
ing a dead block early from the cache is always a better choice.
In Small-LRU, R-Part randomly moves a block to the MRU
position of LRU-Part. The LRU-Part has only 30% ways from
the total ways available in the cache. Hence even the original
cache is highly associative a dead block can be removed early
from the cache. A smarter replacement policy like DIP [9] or
RRIP [15] in the LRU-Part may help to remove dead blocks
even better.

TABLE I. COMPARISON OF THE BITS REQUIRED TO IMPLEMENT ORIGINAL LRU POLICY AND THE PROPOSED SMALL-LRU.

Associativity Bits Required in Original LRU Bits Required in Small LRU Reduction in Small-LRU

8 24 2 91%

16 64 8 87%

32 160 29 82%

64 384 81 78%

128 896 199 77%

www.ijacsa.thesai.org 684 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

TABLE II. SPECIFICATIONS USED FOR DESIGNING SMALL-LRU.

Specification Values

Cores used 4
Levels used in cache 2
Private cache L1
Shared cache L2 (total 4 banks)
L2 cache 512KB (per bank), 8-way set associative
L1 cache 64KB, 2-way set associative
Size of cache-block 64B

IV. EXPERIMENTAL ANALYSIS

System Architecture is implemented in gem5, a full-system
simulator [17]. We have simulated a multicore processor (4
cores) with two level of cache memory. The upper level cache
L1 is used as private cache to each core and last level cache
LLC is shared among the cores. The baseline replacement
policy as well as the proposed policies are implemented
using Ruby module. PARSEC benchmark [18] applications are
simulated in ALPHA system architecture.

To analyze the performance, all the benchmark applications
are executed on the target machine designed using proposed
replacement policy as well as the baseline replacement policies
200 million cycles. the specification of target machine used to
implement Small-LRU is shown in Table II.

A. Result Analysis with Baseline-1

We considered LRU policy as baseline-1 to compare the
result of our proposed policy. Statistical comparison in terms
of MPKI (Miss Per Kilo Instructions) is shown in Fig. 4. It
is observed from the figure that that Small-LRU have reduced
MPKI by removing dead block early from cache. Fig. 5 shows

Fig. 4. Normalized Comparison of Small-LRU with Baseline-1 over MPKI.

Fig. 5. Normalized Comparison of Small-LRU with Baseline-1 over CPI.

Fig. 6. The Percentage of Bits Reduction to Implement Small-LRU over
Baseline-1.

the improvement in CPI (Cycle Per Instructions) due to the
reduction in the number of cache miss. The proposed policy
reduces MPKI by 10% and CPI by 5% on average. Though
the improvement in the performance of the system is not
significant with Small-LRU policy but the major advantage of
this policy is the reduction of hardware cost without suffering
the performance of the system. Fig. 6 depicts the percentage of
bits reduction to implement Small-LRU compared to baseline-
1 which is between 77% to 91%.

B. Result Analysis with Baseline-2

We have also compared Small-LRU with a multicore
processor having 16-way associative banks. We call this design
as Baseline-2. Fig. 7 shows that Small-LRU reduces the
MPKI by 10% in comparison to the MPKI of baseline-2.
By comparing the CPI of both the techniques it is observed
that Small-LRU improves the performance of the system by
5.5% in comparison to baseline-2. Fig. 8 shows the statistical

Fig. 7. Normalized Comparison of Small-LRU with Baseline-2 over MPKI.

Fig. 8. Normalized Comparison of Small-LRU with Baseline-2 over CPI.

www.ijacsa.thesai.org 685 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

comparison of CPI between the Small-LRU and Baseline-2.
Same as Baseline-1, the CPI improvement of Small-LRU over
Baseline-2 is not significantly higher but enough to prove that
Small-LRU reduces hardware overhead without degrading the
performance.

V. CONCLUSION

Replacement policy plays a major role in improving the
performance of the modern highly associative cache memories.
As the demand of data intensive application is increasing
it is highly required that the size of the Last Level Cache
(LLC) must be increased. Increasing the size of the LLC
also increases the associativity of the cache. Modern LLCs
are divided into multiple banks where each bank is a set-
associative cache. The replacement policy implemented on
such highly associative banks consume significant hardware
(storage and area) overhead. Also the Least Recently Used
(LRU) based replacement policy has an issue of dead blocks.
A block in the cache is called dead, if the block is not used in
the future before its eviction from the cache. Removing such
dead block early from the cache is not possible in LRU policy.

In this paper we have proposed Small-LRU policy to reduce
the hardware cost by more than 70% and also improves the
performance by removing early dead blocks. In this policy
random replacement is used for 70% ways and LRU is applied
for rest of the ways. A block is always inserted in the Random-
Part and evicted from the LRU-Part. Early eviction of dead
blocks improves the MPKI and CPI of system using Small-
LRU by 10% and 5.5%, respectively.

REFERENCES

[1] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in Proceedings of the
10th International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS X. New York, NY,
USA: Association for Computing Machinery, 2002, p. 211–222.

[2] F. Juan and L. Chengyan, “An improved multi-core shared cache replace-
ment algorithm,” in 2012 11th International Symposium on Distributed
Computing and Applications to Business, Engineering Science, Oct 2012,
pp. 13–17.

[3] K. Morales and B. K. Lee, “Fixed segmented lru cache replacement
scheme with selective caching,” in 2012 IEEE 31st International Perfor-
mance Computing and Communications Conference (IPCCC), Dec 2012,
pp. 199–200.

[4] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, “Cache
replacement policies revisited: the case of p2p traffic,” in IEEE Inter-
national Symposium on Cluster Computing and the Grid, 2004. CCGrid
2004., April 2004, pp. 182–189.

[5] W. A. Wong and J. . Baer, “Modified lru policies for improving second-
level cache behavior,” in Proceedings Sixth International Symposium on
High-Performance Computer Architecture. HPCA-6 (Cat. No.PR00550),
Jan 2000, pp. 49–60.

[6] Smith and Goodman, “Instruction cache replacement policies and or-
ganizations,” IEEE Transactions on Computers, vol. C-34, no. 3, pp.
234–241, March 1985.

[7] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Transactions on Computers, vol. 57, no. 4,
pp. 433–447, April 2008.

[8] Y. Xie and G. H. Loh, “Pipp: promotion/insertion pseudo-partitioning of
multi-core shared caches,” in ISCA, 2009.

[9] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. S. Emer,
“Adaptive insertion policies for high performance caching,” in ISCA,
2007.

[10] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), June 2016,
pp. 78–89.

[11] P. Das and B. R. Roy, “Splitways: An Efficient Replacement Policy for
Larger Sized Cache Memory,” International Journal of Engineering and
Advanced Technology (IJEAT), vol. 9, no. 1, 2019.

[12] S. Das, N. Polavarapu, P. D. Halwe, and H. K. Kapoor, “Random-lru:
A replacement policy for chip multiprocessors,” in LSI Design and Test,
2013, pp. 204–2013.

[13] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[14] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), June 2018, pp. 110–123.

[15] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (rrip),”
in Proceedings of the 37th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’10. New York, NY, USA: Associ-
ation for Computing Machinery, 2010, p. 60–71. [Online]. Available:
https://doi.org/10.1145/1815961.1815971

[16] K. J. Deris and A. Baniasadi, “Analysis of non-optimal lru decisions
in high-performance processors,” in 2008 International Conference on
Microelectronics, Dec 2008, pp. 458–461.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[18] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dis-
sertation, Princeton University, January 2011. [Online]. Available:
http://parsec.cs.princeton.edu/

www.ijacsa.thesai.org 686 | P a g e


