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Abstract—Deep learning architectures used for automatic 

multi-organ segmentation in the medical field have gained 

increased attention in the last years as the results and 

achievements outweighed the older techniques. Due to 

improvements in the computer hardware and the development of 

specialized network designs, deep learning segmentation presents 

exciting developments and opportunities also for future research. 

Therefore, we have compiled a review of the most interesting 

deep learning architectures applicable to medical multi-organ 

segmentation. We have summarized over 50 contributions, most 

of which are more recent than 3 years. The papers were grouped 

into three categories based on the architecture: “Convolutional 

Neural Networks” (CNNs), “Fully Convolutional Neural 

Networks” (FCNs) and hybrid architectures that combine more 

designs - including “Generative Adversarial Networks” (GANs) 

or “Recurrent Neural Networks” (RNNs). Afterwards we present 

the most used multi-organ datasets, and we finalize by making a 

general discussion of current shortcomings and future potential 

research paths. 
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I. INTRODUCTION 

Medical imaging using Computed Tomography (CT), 
Magnetic Resonance (MR), ultrasound, X-ray, and so on, has 
become an essential part in detection, diagnosis, and treatment 
of diseases [1]. 

A new medicine branch, imaging and radiology was 
developed to train human experts that can interpret medical 
images and provide an accurate diagnosis. The training is 
challenging due to the complexity involved, but more 
importantly, the diagnosis process itself is a tedious and 
exhausting work that is further impacted by the large variations 
in pathology between different individuals. Therefore, the need 
for automated help grew larger as the medical imagining sector 
expanded, with use-cases like segmentation of medical images, 
delineating human organs or automated diagnosis being 
intensively studied using Deep Learning (DL) architectures. 

Deep learning absorbs the feature engineering designed by 
human experts into a learning step [2]. Furthermore, deep 
learning needs only a set of training/testing data with minor 
pre-processing (if necessary), and then can extract the human 
body representations in an autonomous manner. Throughout 
different architectures, DL has demonstrated enormous 
potential in computer vision [3]. 

Multi-organ deep learning architectures could lend a 
helping hand in the field of radiation therapy, by the making 
the segmentation process faster and more robust [4]. Multi-
organ segmentation also paves the way for automation 
processes that are generalized to the full body or to a large 
spectrum of diseases facilitating online adaptive radiotherapy 
and fulfilling medical image segmentation’s goal to become 
autonomous in reaching an accurate diagnosis in any medical 
imaging environment. 

A. Segmentation Applications in the Medical Field 

 Radiotherapy in cancer treatment. In radiotherapy, the 
need exists to control the radiation exposure of the 
target and healthy organs, so segmentation of organs at 
risk (OARs) could provide an important help to 
physicians [5]. 

 Automation. OARs and other clinical structures in the 
human body are manually segmented by physicians 
from medical images, which is difficult, tedious and 
time consuming [4]. Automating the segmentation 
process could help tremendously even if it will be only 
as a pre-step in the diagnosis (used for initial selection 
of cases or pathologies). 

 Finding ROIs. Automatically finding regions could help 
while preparing for medical procedures or in applying 
specific procedures on highlighted regions. 

 Computer Aided Diagnosis (CADx). To achieve this, a 
correct delineation of body structures is needed in the 
pipeline of any CADx systems. Accurate automatic 
segmentation could be used in non-invasive diagnosis 
scenarios and could be even deployed online. 

 Mass detection. Detecting the mass of organs has as 
prerequisites a correct segmentation of the organ and 
the neighbouring surfaces 

 Assistance in endoscopic procedures. Automatic 
segmentation provides help for physicians when 
executing endoscopic procedures and could be used 
also in the training phase of the human experts [6]. 

B. Summary of other Reviews in the same Knowledge Field 

The deep learning knowledge base was described in papers 
written by Schmidhuber [2], LeCun et al. [3], Benuwa et al. [7] 
and Voulodimos et al. [8]. More recently, great articles were 
written by Serre et al. [9] and Alom et al. [10]. 
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For a description of deep learning architectures specifically 
applied in the medical field, we would like to highlight works 
written by Litjens et al.  [11], Shen et al. [1], Hesamian et al. 
[12], Zhou et al. [13], Ker et al. [14], Taghanaki et al. [15] and 
Lu et al. [16]. For details regarding GAN in medical image 
processing we have an article by Yi et al. [17] and for a review 
of unsupervised deep learning techniques we have a paper 
written by Raza et al. [18]. More recently, a comprehensive 
overview targeted towards multi-organ architectures was 
written by Lei et al. [4]. 

C. The Aim of this Study 

This article discusses the most interesting deep learning 
architectures and techniques applicable to medical multi-organ 
segmentation. Targeted to DL-based medical image multi-
organ segmentation, there are several objectives that we aimed 
to fulfil with this article: 

 Categorize and summarize the latest research 

 Present the most important contributions and identify 
the current challenges 

 Provide an overview of existing medical benchmarks 

 Indicate future trends and solutions for the identified 
challenges 

D. Contents of the Survey 

The paper summarizes over 50 contributions, most of 
which are more recent than 3 years. 

In our process of data searching and gathering, we used 
several different sources which include arXiv, Google Scholar, 
PubMed, ISBI, MICCAI or SPIE Medical Imaging. Search 
keywords included medical segmentation, multi-organ, fully 
convolutional neural network, and other architectures related to 
deep learning. The final end-result contains at least 30 articles 
that describe architectures for single organ segmentation and 
over 60 articles that detail deep learning techniques for multi-
organ delineation. 

To make this survey as recent as possible, we have selected 
works that were mostly published after 2017, while still 
including older papers that had a big impact in the research 
field. The most recent date of publication was set to June 1st, 
2020, which excluded papers newer than that date. 

The bulk of the reviewed works are in Sections II, III and 
IV and are grouped into three categories – CNNs, FCNs, and 

hybrid – according to the architecture and which network 
design is most prominent. The hybrid category has also 3 sub-
sections: GANs, RNNs and fully hybrid approaches. For each 
architecture classification we presented a small description of 
the methods and highlighted the most relevant works that were 
related to multi-organ segmentation. For each included paper 
we listed the reference, the human structures that were used in 
training and a summary of their important features and 
achievements. In Section V we present the most used multi-
organ datasets correlated to the human structures that they 
target. We finalize with a conclusion regarding the future of the 
research in this subject. 

II. ARCHITECTURES APPLICABLE TO MEDICAL MULTI-

ORGAN SEGMENTATION BASED ON CNNS 

A CNN is a sub-genre of deep neural networks [12] that are 
based on fully connected layers. A layer is made up by more 
neurons, and each one of these is linked to every neuron from 
the subsequent layer. A CNN architecture applies a 
convolution in at least one of its layers. Except for the initial 
layer, which is linked to the medical image, the input of each 
layer represents the output of the subsequent layer. Each one of 
these can perform specific tasks like convolution, pooling, loss 
calculation while different architectures make use of these 
layers in differing techniques. 

Considering the input image’s proportions and the 
dimension of the convolutional kernels, CNNs can be grouped 
into three categories. In 2D architectures the medical image is 
sliced into several 2D images which are fed to the CNN. 2.5D 
architectures still use 2D kernels, but the network is fed with 
several patches that are cut from a 3D medical image along the 
three orthogonal axes. The final category boasts 3D kernels 
which can extract the full information from a 3D medical 
image. The major downside of 3D architectures is the 
computational and memory requirements which are considered 
large even using the most up-to-date hardware. 

In Table I we present a list of papers that employ CNNs for 
segmentation in a multi-organ setup. Even though they do not 
result in a segmentation, papers that present object detection 
methods in multi-organ scenarios were included in this list. 
The reason is that they could be used as a pre-step to the actual 
segmentation by generating regions of interest used to improve 
the accuracy of the end-result. 
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TABLE I. CNN MULTI-ORGAN SEGMENTATION PAPERS 

Ref. Site Important features 

[19] 
Brain, Breast and 

Cardiac 

The authors demonstrate that a 2.5D CNN can be trained in a multi-modality (MRI and CT) scenario to segment tissues 

three different human structures. The results were comparable as in using three different architectures for each 

segmentation task. 

[20] Abdomen 

The authors proposed an architecture that segments several abdominal organs using a two-step approach. 

Organ localization obtained via a multi-atlas technique followed by training a 3D CNN that classifies the voxels to the 

corresponding organ [20]. They also use thresholding as a pre-processing step. 

[21] 
Chest, cardiac, 

abdomen 

The authors trained a 2.5D CNN that identifies if target human structures are present in input images (CT) [21]. 

Bounding boxes can also be placed around the found targeted structures. 

[22] Brain, abdomen 
The authors propose several methods that can improve the segmentation accuracy: supervised or unsupervised image 

enhancement and a novel loss function [22]. 

[23] Thorax-abdomen This work presents a 2.5 CNN trained for localization of several human structures in CT images [23]. 

[24] Pelvic organs  
The authors propose a novel hierarchical dilated CNN. The novelty is that they propose a multi-scale architecture 

comprised of several modules working with different resolutions [24]. 

[25] Torso – 17 organs The authors propose an architecture for organ localization and 3D bounding boxes generation [25]. 

[26] Head and neck The article proposes a multi-organ segmentation architecture that cascades three CNNs followed by majority voting [26]. 

[27] Head and body 
The authors propose an architecture for organ localization based on a 3D CNN that also improves the localization 

performance on small organs [27]. 

III. ARCHITECTURES APPLICABLE TO MEDICAL MULTI-

ORGAN SEGMENTATION BASED ON FCNS 

CNNs can classify each individual voxel from a medical 
image, but this approach has a huge drawback. Because the 
neighbouring patches on which convolutions are calculated 
have overlapping voxels, the same calculations are done 
multiple times with performance penalties. To counter this 
major issue, Long et al. [28] proposed the “Fully convolutional 
network” where the size of the predicted image is increased to 
match the size of the input image by using a transposed 

convolution layer. Ronneberger et al. [29] proposed the U-Net 
network that has a contracting path with layers that include 
convolutions, max pooling and Rectified Linear Unit (RELU) 
[30] and an expanding path that involves up-convolutions and 
concatenations with high-resolution features from the 
contracting path [29]. Çiçek et al. [31] implemented the first 
3D U-Net design while Milletari et al. [32] improved the U-Net 
architecture by adding residual blocks and a dice loss layer. 

In Table II we present a list of papers that employ FCNs for 
segmentation in a multi-organ setup. 

TABLE II. FCN MULTI-ORGAN SEGMENTATION PAPERS 

Ref. Site Important features 

[33] Liver and heart 
The authors propose a 3D FCN enhanced by a deep supervision technique [33]. The architecture is validated against heart 

and liver datasets (not a full-blown multi-organ implementation). 

[6] Abdomen 
The article proposed an approach on segmenting 4 abdominal organs using an FCN that employs “dilated convolution units 

with dense skip connections” [6]. 

[34] Abdomen 

In this article the authors prove that a “multi-class 3D FCN trained for seven abdominal structures can achieve competitive 

segmentation results, while avoiding the need training organ-specific models” [34].  

They proposed an architecture comprised of two FCNs, with the first delineating a candidate region, while the later uses 

that as input for the final segmentation. 

[35] 
Esophagus, Trachea, 

Heart, Aorta 

The authors propose “two collaborative architectures to jointly segment multiple organs” [35]. The first network will learn 

anatomical constraints employing also conditional random fields, while its output will be used by the second network for 

guiding and refining the segmentation. 

[36] Liver, spleen, kidneys 
The authors propose a deep 3D FCN for organ segmentation that is enhanced using a “time-implicit multi-phase evolution 

method” [36]. 

[37] 

Torso and special 

regions: lumen and 

stomach content 

The authors propose a 2.5D FCN architecture trained on CTs. The algorithm uses a fusion method for the final 3D 

segmentation. They summarize the algorithm as “multiple 2D proposals followed by 3D integration” [37]. 

[38] Liver, Left kidney 
In this paper, the authors propose an improvement of their previous segmentation architectures by adding an organ 

localization module [38]. 

[39] Gastro-intestinal tract 
The authors present an implementation of a Dense V-Net architecture in a multi-organ setup while showing that their 

proposed “dense connections and the multi-scale structure” [39] produce better segmentation results. 

[40] Abdomen 
The paper describes an implementation of a 3D U-Net for multi-organ CT segmentation [40]. The authors obtained a 

combined dice of 89.3% in testing 7 organs. 
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Ref. Site Important features 

[41] Abdomen 

The authors present an architecture that is based on a “multi-scale pyramid of stacked 3D FCNs” [41]. The results are 

obtained by taking the predictions of a lower-resolution 3D FCN up-sampling, cropping them and afterwards concatenating 

them with the inputs of a 3D FCN that utilizes a higher resolution which will generate a final segmentation. 

[42] Abdomen 

The authors argue that the results of multi-organ segmentation using FCNs depend on the architecture, but also are heavily 

influenced by the chosen loss function [42]. They also evaluate the loss function’s influence in multi-organ segmentation 

scenarios. 

[43] Abdomen 

The authors propose a cascaded approach that uses two 3D FCNs. The first architecture defines a candidate region, while 

the second focuses on the details and provides the final segmentation. The authors argue that their “approach reduces the 

number of voxels the second FCN must classify to ∼10%” [43]. 

[44] Torso 
The paper presents three 3D FCN architectures and surveys their results of multi-organ segmentation in the human torso. 

The dice scores average between 0.91 and 0.98 for 6 covered organs. 

[45] Head and neck 
The authors present an architecture based on a 3D U-Net that is tested against a head and neck dataset. The results were 

mixed, with fair segmentation scores for 7 organs out of 11, but with low results for the other organs. 

[46] Brain, Abdomen 
The authors propose an FCN architecture [46] that outperforms the initial U-Net implementation in several segmentation 

tasks for brain or abdomen. The results have a dice percentage between 83.42% and 96.57% for several abdomen organs. 

[47] Chest The authors propose an architecture based on two cascaded networks. 

[48] Abdomen 

The authors present a novel architecture that improves the segmentation using a transfer learning scheme. 3D U-Nets are 

used in a general approach or single organ approach with transfer learning between them. Furthermore, probabilistic atlases 

are used to estimate the location of the organs. 

[49] Abdomen 

The authors present an architecture for segmentation in a multi-organ scenario consisting of a “2D U-Net localization 

network and a 3D U-Net segmentation network” [49]. Compared to other architectures, the authors results are better for 

several organs like prostate and bladder. 

[50] Abdomen 

The authors propose a two-step architecture. The first step contains 2D networks with reverse connections that detect 

features. These features are afterwards merged with the original image to “enhance the discriminative information for the 

target organs” [50] and are used as input for the final segmentation network. 

[51] Gland The paper describes two Dense U-Nets used for segmentation of several gland types. 

[52] Abdomen 
The authors propose a multi-organ segmentation architecture based on 3D convolution [52]. Their design obtained an 

average Dice score of 83.7% for 6 abdominal organs in their targeted dataset. 

[53] Thorax 

The authors propose an architecture where a 3D U-Net localizes each target organ. Afterwards, cropped images with one 

organ serve as input to several individual 3D U-Net segmentation networks and as a final step the individual results are 

merged for a global segmentation result. 

[54] Thorax and abdomen 
The paper describes in detail the SegTHOR [54] multi-organ dataset and present a segmentation framework based on U-

Net. 

[55] Thorax and abdomen 

The paper proposes an architecture for segmentation of the SegTHOR [54] multi-organ dataset that consists of two 3D V-

Net working on different resolutions (one for organ localization and one for segmentation refinement). Their approach 

ranked first in the initial phase of the SEGTHOR challenge. 

[56] Thorax and abdomen 
The authors propose an improvement to the U-Net and obtain a “uniform U-like encoder-decoder segmentation 

architecture” [56]. The architecture ranked second on the initial phase of the SEGTHOIR challenge. 

[57] Thorax and abdomen 
The authors propose a simplified version of the Dense V-net model with postprocessing that improve the organ 

segmentation results.  

[58] Thorax 
The paper proposes a multi-organ segmentation architecture that contains “dilated convolutions and aggregated residual 

connections in a U-Net styled network” [58]. 

[59] Abdomen, torso The paper proposes a 3D U-Net like architecture [59] that is validated on 5 different organs. 

[60] Abdomen 
The authors propose a multi-class segmentation architecture based on U-Net [60]. Their design has similar results to other 

approaches on 4 organs but with superior dice scores for the intestine. 

[61] Abdomen The authors propose a 3D U-Net architecture tested in a multi-organ segmentation scenario. 

[62] Abdomen 
The authors propose an architecture consisting of a 3D U-Net that is enhanced by graph-cut post-processing [62] tested in a 

multi-organ segmentation scenario. 

[63] Abdomen 

The authors present a “pyramid-input pyramid-output” [63] architecture that can be trained in a multi-scale and partially 

labeled scenario. In order to discriminate the features in differing scales, they designed an “adaptive weighting layer to fuse 

the outputs in an automatic fashion” [63] 
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IV. ARCHITECTURES APPLICABLE TO MEDICAL MULTI-

ORGAN SEGMENTATION BASED ON HYBRID METHODS 

As the DL field is expanding, new and exciting network 
architectures are developed. At the same time, the possibilities 
of improving the existing segmentation networks are shrinking. 
Therefore, to overcome these challenges, hybrid approaches 
are used more extensively. These hybrid methods involve using 
several network designs in the same architecture serving 
different functional purposes. We have divided the hybrid 
approaches into segmentation architectures enriched with 
GANs, enriched with RNNs and fully hybrid approaches. 

A. Hybrid Methods Employing GANs 

A GAN is a type of machine learning network designed by 
Goodfellow et al. [64]. These networks are taught to be able to 
generate new data that shares the same characteristics as a 
provided initial training set. In Table III we present a list of 
papers that propose GAN based hybrid multi-organ 
architectures. 

B. Hybrid Methods Employing RNNs 

A Recurrent Neural Network (RNN) is a type of machine 
learning network that generalizes the feedforward neural 
network architecture and has hidden states that act as an 
internal memory. Empowered with these connections the 
RNNs can memorize the patterns from previous inputs. These 
architectures are applied mostly to time series predictions or 
speech recognition. But because medical images are usually 
comprised of multiple adjacent slices with correlating 
information between them, RNNs can be employed in hybrid 
scenarios to improve the segmentation results. In Table IV we 
present a list of papers that propose RNN based hybrid multi-
organ architectures. 

TABLE III. GAN MULTI-ORGAN SEGMENTATION PAPERS 

Ref. Site Important features 

[65] 

Brain, 

liver, 

cells 

The authors propose an architecture made by “a 

generative, a discriminative, and a refinement network” 

[65] based on U-Net. The final semantic segmentation 

masks are composed by the output of the three 

networks. 

[66] Thorax 

The paper describes an architecture that trains a set of 

generator networks (based on U-Net) and a set of 

discriminators (based on FCNs). “The generator and 

discriminator compete against each other in an 

adversarial learning process to produce the optimal 

segmentation map of multiple organs” [66]. 

[67]  Thorax 

The authors propose a hybrid architecture that first 

generates a “global localization map by minimizing a 

reconstruction error within an adversarial framework 

[67]. Afterwards, the localization map guides an FNC 

for multi-organ segmentation. 

[68] Abdomen 

The authors present a hybrid architecture that combines 

GAN based image synthesis methods with a deep 

attention strategy that learns discriminative features for 

organ segmentation. 

[69] Abdomen 

The paper describes a hybrid architecture that combines 

cascaded convolutional networks with adversarial 

networks to alleviate data scarcity limitations. 

TABLE IV. RNN MULTI-ORGAN SEGMENTATION PAPERS 

Ref. Site Important features 

[70] 

Optic disc, 

cell nuclei, 

left atrium 

The authors present a hybrid architecture that 

combines a CNN with an RNN. 

[71] 
Abdomen – 

small organs 

This paper presents an architecture in which a 

recurrent module “repeatedly converts the 

segmentation probability map from the previous 

iteration as spatial weights and applies these 

weights to the current iteration” [71]. 

[72] 

Blood vessel, 

skin cancer, 

lungs 

The article presents a hybrid architecture based on 

U-Net and RNN where the “feature accumulation 

with recurrent residual convolutional layers” [72] 

provides better segmentation end results. 

[73] Abdomen 

The paper proposes an attention gate model that 

can be integrated into neural networks.” Models 

trained with AGs implicitly learn to suppress 

irrelevant regions in an input image” [73]. 

[74] 
Vertebrae, 

liver 

The authors present a hybrid architecture that 

consists of a U-Net-like network enhanced with 

bidirectional C-LSTM [74]. 

C. Fully Hybrid and Generic Segmentation Improvement 

Methods 

In Table V we present hybrid methods that do not fit in any 
previous category and generic segmentation improvement 
methods in multi-organ scenarios. 

TABLE V. HYBRID  MULTI-ORGAN SEGMENTATION PAPERS 

Ref. Site Important features 

[75] 
Torso and 

abdomen 

The authors present a sample selection method 

[75] that improves the training of neural networks. 

The method is tested in a multi-organ 

segmentation scenario. 

[76] Abdomen 

The authors investigate the “effectiveness of 

learning from multiple modalities to improve the 

segmentation accuracy” [76]. 

[77] Abdomen 

The authors propose an architecture in which an 

initial model is trained on annotated data to 

generate pseudo labels that enrich the training data 

for a second model that will do a final 

segmentation. 

[78] Abdomen 

The authors propose an architecture that 

incorporates anatomical domain knowledge on 

abdominal organ sizes to guide and improve the 

training process. 

[79] Retina, lungs 

The paper describes an architecture that “embeds 

edge-attention representations to guide the process 

of segmentation” [79]. 

[80] 
Heart, gland, 

lymph node 

The authors propose an architecture that firstly 

decomposes the segmentation problem into several 

sub-problems, then applies DL modules onto each 

sub-problem and lastly integrates the results to 

obtain the final segmentation. 

[81] 
Abdomen, 

heart, brain 

The authors present an architecture that tries “to 

integrate local features with their corresponding 

global dependencies” [81] by using a guided self-

attention mechanism. 
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V. ARCHITECTURES APPLICABLE TO MEDICAL MULTI-

ORGAN SEGMENTATION BASED ON HYBRID METHODS 

There are multiple collaborative initiatives with medical 
organizations to obtain better and larger datasets usable for 
organ segmentation. But despite all these efforts, the amount of 
annotated data that is at the disposal of DL scientists is still 
low. There are solutions in combining several datasets of parts 
of the human body, but different modalities or scales reduce 
considerably their usage in multi-organ segmentation 
scenarios. In Table VI we present several datasets that try to 
overcome these challenges and are usable in multi-organ 
validation of segmentation architectures. 

TABLE VI. MULTI-ORGAN DATASETS 

Year Dataset Modality Organ 

2015 
“MICCAI Multi-Atlas Labeling 

Beyond the Cranial Vault” [82] 
CT Abdomen 

2015 

“MICCAI Challenge - Head and 

Neck Auto Segmentation 

Challenge” [83] 

CT 
Head and 

Neck 

2017 
“AAPM Thoracic Auto-

segmentation Challenge” [84] 
CT Thorax 

2018 
“Medical Segmentation Decathlon” 

[85] 
CT & MRI 

Head, 

Thorax and 

Abdomen 

2019 

“CHAOS - Combined (CT-MR) 

Healthy Abdominal Organ 

Segmentation” [86] 

CT & MRI Abdomen 

2019 

“SegTHOR Challenge: 

Segmentation of Thoracic Organs 

at Risk in CT Images” [54] 

CT Thorax 

2019 

“Annotations for Body Organ 

Localization based on MICCAI 

LITS Dataset” [87] 

CT Abdomen 

VI. FINAL CONCLUSIONS 

This paper is an overview of deep learning methods in 
medical multi-organ segmentation. Based on most of the 
surveyed works, FCNs are the most used architectures used to 
perform multi-organ automatic delineating. As the amount of 
research related to FCNs is huge, the possibilities to improve 
them is dwindling. So, more recently, hybrid methods, be it 
with the use of GANs, RNNs or completely new architectures 
are gaining much more attention. We speculate that in the 
future the number of available datasets will grow, so the usage 
of FCNs or hybrid networks will become more straight-
forward. Another un-charted territory is the usage of more 
intelligent semi-supervised methods, the usage of fully 
unsupervised methods or reinforcement learning. 
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