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Abstract—Reading is one of the essential practices of modern 

human learning. Comprehending prose text simply from the 

available text is particularly challenging as in general the 

comprehension of prose requires the use of external knowledge 

or references. Although the processes of reading comprehension 

have been widely studied in the field of psychology, no algorithm 

level models for comprehension have yet to be developed. This 

paper has proposed a comprehension engine consisting of 

knowledge induction which connects the knowledge space by 

augmenting associations within it. The connections are achieved 

through the automatic incremental reading of external references 

and the capturing of high familiarity knowledge associations 

between prose concepts. The Ontology Engine is used to find 

lexical knowledge associations amongst concept pairs, with the 

objective being to obtain a knowledge space graph with a single 

giant component to establish a base model for prose 

comprehension. The comprehension engine is evaluated through 

experiments with various selected prose texts. Akin to human 

readers, it could mine reference texts from modern knowledge 

corpuses such as Wikipedia and WordNet. The results 

demonstrate the potential efficiency of using the comprehension 

engine that enhances the quality of reading comprehension in 

addition to reducing reading time. This comprehension engine is 

considered the first algorithm level model for comprehension 

compared with existing works. 
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I. INTRODUCTION 

Text comprehension is a form of knowledge acquisition 
whereby readers interact with text and relate the ideas 
represented to their knowledge and experiences [1]. Generally, 
reading a single text does not qualify readers to achieve the 
required level of comprehension. This is because the 
comprehension process depends largely on reader knowledge 
or additional knowledge acquired from external sources. A 
well written text embeds a set of cues to build up a coherent 
representation of the text. Although the text normally presents 
a set of related concepts, this does not qualify readers to 
achieve complete comprehension. In this paper, the focus is on 
prose comprehension. Prose is a type of text which includes 
complex concepts manifesting particular meanings of a 
specific domain with associations among concepts. As prose 
comprehension is difficult to achieve from a simple reading of 
the text alone, external knowledge is required to understand 
the text. The external knowledge readers need is known as 

prior knowledge [2]. This prior knowledge is different from 
one to one comprehension. Sometimes, readers may not even 
have a minimum level of prior knowledge about a specific 
topic, making it necessary for them to obtain it by using 
external sources. Lexicons and external references are two 
common examples of acquiring additional knowledge. By 
drawing upon prior knowledge, readers fill the knowledge gap 
in the prose by connecting the prose contents with their prior 
knowledge. The process of prose comprehension is flexible to 
implement and incorporates external information sources into 
the prose text. An example of such a process is integrating an 
encyclopedia with linguistic information/ dictionaries. 

Although human readers tend to consult external 
knowledge mediums such as books, Wikipedia, or journal 
articles to bridge this knowledge gap, such a process is often 
time consuming and tedious. It requires reading a large 
amount of text and then finding the relevant portions of the 
reference to catalyze understanding. While the mental process 
behind such knowledge induction is intriguing, adopting 
computational algorithms can help more effective reading 
comprehension of prose by automatically capturing relevant 
text pieces from external references and relevant knowledge 
association of the prose concepts as a summary. This can 
leverage greater overall comprehension process of a prose 
text. 

The topic of the human reading rate has been widely 
studied. Carver‟s reading model identifies the relationship 
model between reading and comprehension [3]. He defines 
five reading processes: memorizing, learning, rauding, 
skimming, and scanning. The reading rate of an individual 
varies on the basis of material difficulty and reading objective 
[3, 4]. For example, skimming may be used when a reader 
requires an overview of the material, whereas learning may be 
used when a reader requires comprehension of the material. 
Carver‟s reading model provides a reading rate that measures 
how many words are read per minute (wpm) for each of the 
five processes. For memorization, the rate is 138 wpm, 
whereas for learning it is 200 wpm, and for rauding the rate is 
300 wpm. For skimming, the rate is 450 wpm, and finally for 
scanning it is 600 wpm. For example, if readers read a text of 
2000 words for the purpose of learning, it takes about 10 
minutes for them to read and comprehend it. 

The previous work focused on generating summarized 
texts and/or recruiting participants to analyze their level of 
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comprehension. To the best of knowledge, no existing work 
proposing an algorithm level model for comprehension. 
Accordingly, the contribution of this paper can be summarized 
as follows: 

 Develop an algorithm level model comprehension 
engine to enhance prose comprehension. 

 Evaluate the proposed model through set of graph 
metrics. 

The proposed comprehension engine contributes to the 
reading rate that readers may need to acquire specific 
knowledge from reference texts. This engine is based on the 
Knowledge Induction Process which targets increasing 
knowledge comprehension through two steps: 1) the 
incremental reading of external reference texts and giving an 
extractive summary of each by capturing of the highest 
familiarity knowledge associations amongst prose concepts. 
One of the distinct features of the proposed algorithm is that it 
captures the highest familiarity knowledge along with the 
fewest associations pertaining to prose concepts through a 
minimum number of external concepts; and 2) using Ontology 
Engine to find lexical knowledge associations amongst 
concepts. This can save readers time and increase their 
efficiency, which are two main advantages of the 
comprehension engine. 

The rest of the paper is structured as follows: Section II 
provides an overview of the related work. Section III 
introduces the development of the comprehension engine. 
Section IV presents an evaluation of the proposed engine. 
Section V presents the materials used in the experiment and 
the results, and the final section (Section VI) discusses the 
conclusion and the future work. 

II. RELATED WORK 

Considerable research has been done in text 
summarization and text comprehension in recent years. Some 
of the research introduced valuable techniques used to produce 
extractive and abstractive summarization. Extractive 
summarization summarizes the text by extracting sentences 
containing salient information from the text itself, while 
abstractive summarization summarizes the text by 
paraphrasing the text using words that might not in the text 
[5]. In recent years, various approaches have been developed 
for automatic summarization and have been applied widely in 
different domains. 

Van Lierde and Chow [6] combined fuzzy and statistics 
approaches to obtain extractive summarization. The fuzzy 
based technique contained manually generated rules where the 
rules were proceeded based on the length of the sentence. By 
using these rules, all the sentences were assigned with a 
weight value ranging from zero to one, where the weight for 
each sentence was used as a feature in the fuzzy inference 
system. The authors used such a system to perform the 
summarization through a number of fuzzy-logic-based 
analyzers. The work had an advantage of taking into 
consideration the linguistic variables and human perception. 

Hernández-Castañeda et al. [7] proposed a method for 
extractive automatic text summarization (EATS). The method 

based on the conversion of the text into numerical vectors by 
applying different generation methods. The vectors are 
grouped into clusters based on measuring proximity among 
the vectors. Latent Dirichlet allocation (LDA) was used to 
obtain the key sentences in each cluster that make up the 
summarized text. 

Furthermore, Azadani et al. [8] used graph-based 
summarization techniques to produce extractive 
summarization. The technique represented a document as a 
graph in which a node can correspond to various semantic 
units including words, phrases, concepts or sentences, whereas 
an edge demonstrated the relation in connectivity between the 
nodes. The authors used the frequent itemset mining algorithm 
to extract the summary. 

For summarizing multiple documents, Fuad et al. [9] used 
two techniques, sentence clustering and neural sentence to 
produce abstractive summarization. In sentence clustering 
techniques, they used a deep neural network architecture to 
represent text. In neural sentence, they applied seq2seq 
encoder-decoder technique. The proposed method took a 
related ordered set of sentences and produced a single 
sentence by merging the input sentence from multiple 
documents; the output was only one sentence as a summary. 

For the purpose of text summarization and comprehension, 
Ding et al. [10] proposed a text summarization generation 
model to enrich representing the information of the original 
text and improve the text comprehension. Their method was 
based on seq2seq through a dual-encoder, the Gain-Benefit 
gate for decoding, and the probability distributions of the 
keywords in the text. 

In [11], Caglieroet et al. proposed a method named 
TESTdriven SUMmarization (TestSumm) to recommend text 
summarization based on a learner‟s level of comprehension. 
The method provides multiple-choice tests to assess the 
learner‟s comprehension level of different topics. It performs a 
Multilingual Weighted Itemset-based Summarizer (MWISum) 
that relies on frequent itemset mining sentence selection and 
ranking to generate the material summary. It recommends a 
personalized summary to learners who did not pass the 
multiple-choice test. 

All the previous text summarization research focused on 
reducing the volume of the text by capturing or rephrasing the 
most important sentences that include main keywords and 
present it to the reader. On the other hand, the current text 
comprehension research based on recruiting participants and 
applying descriptive statistics to analyze their performance. 
Thus, this paper has introduced a text summarization method 
that may increase the number of concepts in the summary in 
some cases for the purpose of text comprehension. 

III. KNOWLEDGE INDUCTION PROCESS 

“Knowledge graph is an emerging technology for massive 
knowledge management and intelligent services in the big data 
era” [12]. It provides an ideal technical solution to realize the 
integration of knowledge sources by incorporating noisy 
information and connecting the fragmented pieces of 
knowledge from multiple sources in a consistent way. In this 
paper, a knowledge graph called the Illuminated Knowledge 
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Graph (IKG) is proposed to illuminate the relationships among 
prose concepts using multiple knowledge sources for the 
purpose of comprehension. These ideas and goals were the 
inspiration for the graph name. 

The IKG is a graph which captures the state of learning 
process. It shows prose concepts (CL) and associations 
amongst the concepts. The associations can be found by 
reading the prose (LTX) and reading some parts relevant to 
the concepts as a summary from external reference texts 
(RTX) as well as an Ontology Engine (OE). Beside the CL 
concepts, the graph could include external concepts belong to 
RTX or OE in the associations added from them to connect 
the prose CL concepts. A directed graph presents IKG = (C, 
E), where C is a concept set and E is an edge set. A concept ci 
includes set of senses (si,1, si,2, .., si,x), where i is the number of 
concept and x is the number of senses. An edge connects two 
concepts through a specific sense of each concept. The edge 
represents a sentential relation between the concepts. It can be 
a syntactical explicit and/or an Ontology Engine relation, 
where the latter is one of the six types of word relations: 
Hyponym, Hypernym, Holonym, Instance, Meronym, or 
Synonym. Fig. 1(a) illustrates an example of five concepts in 
IKG. c1={Country}, c2={State}, c3={freedom}, c4={Ohio} and 
c5={Liberty}, where c1, c4 and c5 are the CL belonging to 
LTX. c2 belongs to a RTX. c3 belongs to an OE. 

A Knowledge Path (K) represents the relationship path 
between two concepts. It is represented as a sequence of edges 
connecting concepts ci and cj in a preserved sense. The 
concepts ci and cj belong to CL. The concepts in the middle 
may be external to CL. The following are examples of 
geometric paths: 

1) {c1–s1,1: Synonym: s2,1–c2–s2,1: Instance: s4,1– c4}. 

2) {c1–s1,1: Synonym: s2,1–c2–s2,1: syntactic explicit: s4,1–

c4}. 

3) {c1–s1,1: Synonym: s2,1–c2–s2,2: Hyponym: s3,1–c3–s3,1: 

Hyponym: s5,4 –c5}. 

ci refers to the ith concept. si,j is the jth sense of the ith 
concept. For example, c1 is the first concept and s1,1 is the first 
sense of the first concept. Fig. 1(b, c, d, e) represents examples 
of geometric paths. The knowledge paths can be derived from 
geometric paths. For example: 

1) {c1–s1,1: Synonym: s2,1–c2–s2,1: Instance: s4,1–c4}. 

2) {c1–s1,1: Synonym: s2,1–c2–s2,1: syntactic explicit: s4,1–

c4}. 

3) {c2–s2,2: Hyponym: s3,1–c3–s3,1: Hyponym: s5,4–c5}. 

The three paths that mentioned above are considered 
knowledge paths, as the incoming and the outgoing senses of 
each concept are preserved. Fig. 1(b, c, e) represents examples 
of knowledge paths. 

A prose can be often rich with concepts using domain 
specific terms. While reading such prose, non-specialist 
readers find these terms difficult to comprehend. They may 
face these difficulties while reading prose in any domain such 
as science, medical, finance and technology. Therefore, 
external knowledge helps the comprehension of prose by the 
integration with the prose concepts [13, 14]. This is not always 

a straightforward process, as readers‟ prior knowledge may 
vary. Inexperienced readers may get overwhelmed by the 
amount of diverse external knowledge sources and types 
available since the latter can range from reference texts, 
dictionaries, and papers to conversations with experts. 
Identifying the right source of knowledge from a vast range of 
information can be a time consuming and exhausting task. 

Therefore, this work proposes the Knowledge Induction 
Process to enhance prose comprehension. The process is 
designed to capture knowledge missing in a prose. The 
external knowledge source is captured through augmenting 
knowledge associations of prose concepts using reference 
texts and an Ontology Engine. The proposed solution assumes 
that concepts are known prior to the process of finding the 
knowledge associations amongst the concepts. The process 
reads appropriate parts from relevant reference texts and then 
captures a summary of the highest familiarity knowledge 
associations connecting the prose concepts. The Ontology 
Engine captures lexical knowledge associations for every 
concept pair. This process is formally presented in the 
following way: Given a prose LTX for comprehension, a set 

of prose concepts CL, CL= {ci, ci+1…., cn}∈ LTX, a set of 

reference texts RTX, and an Ontology Engine OE. Find the 
IKG to represent knowledge associations amongst CL. The 
IKG is built through two fundamental techniques, namely a 
generation concepts representation and a reference 
consultation. 

A. Generation of Concept Representation 

To understand a prose text, a reader may break it up into a 
set of concepts and then find knowledge associations amongst 
these concepts. In order to find new or missing knowledge 
associations among the prose concepts, this process can be 
automated by applying a computational representation model. 
It is assumed that this enhances the prose comprehension. A 
graph is used to represent the concept and the associations, 
where each concept is represented by a node and each 
sentential relation between two concepts is represented by an 
edge. 

A Syntactical Explicit Graph generator function KG() is 
used to convert a prose text LTX to a knowledge graph G0, 
and a reference text RTX to a reference knowledge graph GR. 
For each sentence in LTX/RTX, the function searches for 
pairs of concepts ci and cj if a word or a sequence of words 
found eb, b=1,2,…,n between them in the same sentence, 
where in LTX, ci and cj belong to CL and in RTX, ci and cj 
belong to the reference text noun concepts. The distance 
between ci and cj is <= L, where L is the maximum number of 
words allowed between ci and cj. If it does, the function saves 
[ci, eb, cj] to be an edge in the graph representing a syntactical 
relation between ci and cj. 

To allocate the most familiar knowledge associations that 
connect the prose concepts, it is crucial to evaluate the 
familiarity of knowledge associations. These can be calculated 
through the edge weight in the knowledge graph. Calculating 
the weight/familiarity value is based on the type of the 
sentential relation between concepts. The sentential relation 
types reflect the structures between any pair of concepts. The 
weight wi,j is calculated by (1) where fi,j is the frequency of the 
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relation type between concept ci and cj attained from the 
“Gutenberg Project” [15]. The "Gutenberg Project '' is an 
online resource offering over 53,000 free e-books with expired 
US copyrights. This online archive is a very popular dataset 
frequently applied in text mining research [16, 17]. 

         
 

    (
    

   
) 
              (1) 

The familiarity value of a sequence of words between ci 
and cj is calculated based on the lowest weight of words 
sequence. The log of a word frequency is divided by 109, as 
word frequencies are in the millions. The result is multiplied 
by -1 to avoid negative values. High frequency refers to high 
familiarity of a relation type. An inverse relationship between 
f and w indicates that the higher the frequency, the less its 
weight or the less its cost. 

 

Fig. 1. Example of an Illuminated Knowledge Graph. (b, c, d, e) 

Exemplifying Geometric Path. (b, c, e) are Examples of Knowledge Paths. 

Table I explains five types of the sentential relations 
between concept pairs. (1) is where a single word eb appears 
between ci and cj, b=1. (i.e. Carbon-Carbon releases 
carbonization), here ci = Carbon-Carbon, cj = carbonization, 
and e1= releases. The weight of the edge is identified by 
considering the frequency within (1) as the frequency of the 
word e1. (2) is where multiple words eb appear between ci and 
cj, b > 1 (i.e. Ethane is structurally the simplest hydrocarbon), 
where ci = Ethane, cj = hydrocarbon, b=2, e1= structurally, 
and e2= simplest. The weight of the edge is computed by 
considering the weight of e1 and e2 separately and then 
allocating the minimum weight. (3) is a class/subclass, 
wherein the sentential relation is either a hypernym or 
hyponym (i.e. Ethane is a hyponym of hydrocarbon), ci = 
Ethane, cj = hydrocarbon and e= hyponym. The weight of the 
edge is determined by considering the frequency within (1) as 
the frequency of the word class. (4) is a part or subpart, 
wherein the sentential relation is either a holonym or 
meronym (Hydrogen is a holonym of water), ci = Hydrogen, 
cj, = water and e= holonym. The weight of the edge is 
determined by considering the frequency within (1) as the 
frequency of the word part. (5) is a synonym, if the sentential 
relation is synonym (Ethane is a synonym for C2H6). ci = 
Ethane, cj = C2H6 and e= synonym. The frequency of the 
synonym relation is supposed to be 1. Therefore, the weight of 
the edge is determined by considering 1 in the frequency given 
by (1). 

To generate an IKG, the Knowledge Induction Process 
performs six steps as presented in Fig. 2: 

1) Converting a prose LTX to a prose knowledge graph G0 

representing the syntactical relation between each pair in the 

prose concepts CL by performing a Graph generator function 

KG(). 

2) Converting a reference text RTXi to a reference 

knowledge graph GRi representing the syntactical relation 

between each pair of the RTXi concepts by performing the 

same Graph generator function KG() used in step 1. 

3) Extracting the highest familiarity knowledge path(s) of 

RTXi connecting CL from GRi by performing the Terminal to 

Terminal Traffic Steiner Tree function TTTST(). The extracted 

path(s) is called a Terminal to Terminal Traffic Steiner tree(s) 

TTTST and it is represented in a graph called GUi. 

4) Joining G0 and GUi in a graph called Gtemp 

representing the current state of the assimilated knowledge 

among CL by performing an assimilation function 

Gassmilation(). 

5) Finding OE-Knowledge-Path(s) connecting each pair of 

Gtemp concepts by performing the OE-Knowledge-Paths 

function KPOE(). The found paths are represented in a graph 

called GWi. 

6) Joining Gtemp and GWi in an Illuminated Knowledge 

Graph IKGi representing the current state of the assimilated 

knowledge amongst CL by performing the assimilation 

function Gassmilation(). 

Each time the process reads a new RTXi, it performs steps 
2 to 6 where, in step 4, G0 is replaced with IKGi. Fig. 3 shows 
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an example explaining the impact of using reference texts and 
an Ontology Engine for adding knowledge associations 
amongst a set of prose concepts about 'Ethane' chemical 

compound, where CL= {ethane, hydrocarbon, hydrogen, 
carbon, carbon-carbon and carbonization}. 

TABLE I. TYPES OF SENTENTIAL RELATIONS 

Sentential relation type Sentential relation structure wi,j value 

Syntactical Relation  

 

(1): Single word: 

ci – si,* : eb : sj,* – cj ; b=1 
wi,j = w(e1) 

 

(2): Multiple words: 

ci – si,* : e1 e2…en : sj,* – cj; b=1,2,…,n 
wi,j =min(w(eb)) 

OE Relation  

 

(3): Class/Subclass: 

ci – si,* : Hypernym : sj,* – cj or ci – si,* : Hyponym : sj,* – cj 
wi,j = w(eclass) 

 

(4): Part/Subpart: 

ci –si,* : Holonym : sj,* – cj or ci – si,* : Meronym : sj,* – cj 
wi,j = w(epart) 

 

(5): Synonym: 

ci – si,* : Synonym : sj,* – cj 
wi,j = w(esynonym) =1 

 

Fig. 2. Comprehension Engine. 
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Fig. 3. Connecting CL Process using Reference Texts and Ontology Engine. (a) a set of Prose Concepts at the Initial Prose. (b) Knowledge Path K from the 

Initial Prose LTX. (c, e, f) Additional Knowledge Path K Extracted from RTX1, RTX2, and RTX3. (d) Additional Knowledge Path K Extracted from Ontology 

Engine OE. 
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B. Reference Consultation 

1) Highest familarity knowledge extraction using a 

reference text: Knowledge within a prose is limited, as readers 

cannot capture the knowledge relevant to all concepts required 

to comprehend the prose within the prose text only. Therefore, 

external reference texts are required to capture knowledge 

association amongst prose concepts. The reference texts are 

used to fill the knowledge gap of prose. 

There are a number of Steiner tree versions that can be 
useful for identifying knowledge associations amongst the 
prose concepts [18, 19]. The main role of a Steiner tree in the 
proposed engine is to capture the highest familiarity 
knowledge paths amongst the prose concepts CL from each 
reference text GRi with a minimum cost and a minimum 
number of external concepts, where the sentences of the 
captured knowledge paths are considered the summary of the 
reference text. 

Given a connected, undirected reference knowledge graph 
GRi= (C, E), where C is a set of reference text concepts and E 
is a set of edges representing the relations amongst the graph 
concepts, the weight for each edge wi,j reflects its cost, where 
the cost here expresses the familiarity value of the sentential 
relation between the concepts of the edge ends ci and cj as 
shown in Fig. 4(a). Fig. 4(b) shows the set of prose concepts 
CL that need to find the highest familiarity knowledge paths 
amongst them in GRi. Minimum Steiner Tree (MST) is an 
approach based on finding knowledge with the minimum cost 
amongst prose concepts [18]. The cost of MST is calculated 

by ∑(wi,j), where i, j ∈ C, i≠j. Sometimes, connecting the 

CL in a MST requires the addition of external concepts to CL. 
This case can be found in Fig. 4(c), C= {A, B, C, D, E}, CL= 
{A, C, E, D}. The returned Steiner tree is {E, D, B, A, C} and 
it costs 10. 

 

Fig. 4. Example of a Reference Knowledge Graph and different Types of 

Steiner Trees. 

Suppose there is traffic (Tr) between ci and cj, where the 
traffic indicates the comprehension amount of the relation 
between the two concepts. In this case, the aim of the Steiner 
tree is to reduce the traffic amongst CL, whereby low traffic 
means high comprehension. Here, the Steiner tree is called 
Terminal to Terminal Traffic Steiner Tree (TTTST). Its cost is 

∑ (wi,j × Tri,j), where i, j ∈ C and i≠j. In Fig. 4(d), supposes 

that the traffic between each two concepts is Tri,j=1 and the 
traffic between concept E and concept A is TrE,A=100 and 
between concept E and concept D is TrE,D=100. In this case, 
the traffic weighted cost for the returned Steiner tree is ((4 × 
100) + (1 × 1) + (3 × 1) + (2 × 1)) = 406. 

Fig. 5 represents the TTTST algorithm in the following 
way. The algorithm input is GRi and CL. GRi is a reference 
knowledge graph representing the syntactical relation between 
each pair of RTXi concepts. The algorithm output is GUi, 
which is a tree extracted from GRi representing the highest 
familiarity knowledge path(s) connecting CL. 

Def TTTST ( ): 

Input: GRi, CL 

Output: TTTST: Terminal to Terminal Traffic Steiner Tree 

1. //initialization 

1. for each co in GRi:  

3. if CL!= null: 

4.  for each concept c in co  

5.  prev[c]= -1 

6.  cost[c]=INFINITY 

7.  Visited[c]=False 

8.  Q=null 

9.  s= pick any concept from CL 

10.  enqueue(Q,s)  

11.  While Q!= null: 

12.  c= dequeue(Q)  

13.   Visited[c]=True 

14.  if c in CL:  

15.  cost[c]= 0  

16.   add c to M 

17.   remove c from CL  

18.  for each neighbour ci of c: 

19.  if ci not in Q and Visited[ci]==False:  

20.   enqueue(Q, ci)  

21.   temp= cost[c] + wci,c  

22.   if temp == cost[ci] and c in CL: 

23.   prev[ci]=c //a knowledge path with minimum external concepts 

to ci is found 

24.   cost[ci]=temp  

25.   else if temp < cost[ci]  

26. prev[ci]=c // a less costly knowledge path to ci is found 

27.   cost[ci]=temp  

28. TTTST = getPaths(M[ ], prev[ ])  

29. return TTTST 

Fig. 5. Terminal to Terminal Traffic Steiner Tree Algorithm. 

For each component co in GRi, the algorithm uses a queue 
data structure Q to store each visited concept with its 
neighbors. It initializes Q by picking any concept from CL as 
the source s. Then, it initializes the cost between s and each 
concept c in the co to INFINITY and the previous concept 
prev of each c to -1. In the loop iteration, it dequeues the first 
concept c in Q, marks it as visited, and checks if c belongs to 
CL. If so, it updates its cost to 0, adds it to M where M stores 
the found CL concepts, and removes it from CL. Then, it 
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enqueues all the neighbors‟ ci’s of concept c if they are 
marked as non-visited, assigns prev and calculates the cost for 
each of them. If the current ci cost is equal to the previous one 
and c belongs to CL that means a knowledge path with 
minimum external concepts is found. Then, ci’s prev is 
updated to the new concept. However, if the current ci cost is 
less than its previous one that means a less costly knowledge 
path to ci is found wherein less cost means high familiarity. 
Then, ci’s prev and cost are updated to the new lesser values 
and the process is repeated until the queue is emptied. If all 
items in co are checked, getPaths() constructs the TTTST from 
M and prev. The returned TTTST is represented in GUi [20]. 
Suppose the graph shown in Fig. 6 is a reference knowledge 
graph GRi. If CL = {c1, c7, c8} and the traffic for each edge 
Tr=1, then the TTTST returned by algorithm will be 
{c1,c3,c6,c7,c8}. 

2) Knowledge extraction using ontology engine: A useful 

source of knowledge is the Ontology Engine. An Ontology 

Engine to provide lexical knowledge associations between any 

two concepts by using OE-Knowledge-Paths function KPOE() 

is utilized. This helps in adding a new type of knowledge 

which can contribute to increasing knowledge and improving 

comprehension. The OE-Knowledge-Path is a sequence of 

edges connecting any two concepts in a preserved sense. Each 

edge represents an ontological relation between its ends, where 

the ontological relation for each edge is one of the following 

relations: (1) synonym; (2) hypernym; (3) hyponym; 

(4) holonym; and (5) meronym. 

Fig. 7 represents the KPOE algorithm. It uses an Ontology 
Engine to search for OE-Knowledge-Path(s) connecting 
concept s and concept t, where s and t are the first and the last 
concepts in the path and the length of the path is less than or 
equal to α. The input of the algorithm is s, t, R, and 
relationalGraph. R is a dictionary that holds all the 
ontological engine relations in the Ontology Engine, and 
relationalGraph is a dictionary of all concepts that have any 
of the ontological relations in R with the last node of the 
current path. The algorithm does not return the shortest path 
between s and t because it could be a path of multiple sense 
concepts. Rather, it searches if the neighbors of s have the 
same sense of s and have any of the ontological relation in R 
with s. If so, it searches the neighbors of the neighbors until it 
reaches t. 

NodeQ and PathQ are two queue data structures used in 
the algorithm. NodeQ keeps the current path that has a concept 
need to explore its neighbor. PathQ holds the currently created 
paths. The algorithm starts with s as the current path. The 
while loop iterates through PathQ paths searching for an OE-
Knowledge-Path that connects s and t. In each iteration, it 
dequeues the first path in PathQ and signs it in NodeQ. Then, 
it checks whether the last concept in NodeQ matches t. If so, it 
saves the path in Kpaths as an OE-Knowledge-Path between s 
and t; otherwise, it checks if the NodeQ length is less than α. If 
the last concept in NodeQ matches t, for the sense of the 
NodeQ’s last concept, the function gets all of the concepts that 
have one of the ontological relations in R with the last concept 
in NodeQ, and adds them to relationalGraph. A number of 
paths are created between each relationalGraph concept and 

the current path. PathQ saves the newly created paths. If all 
the paths in PathQ are checked and Kpaths do not exist, the 
function returns „Not found‟ [20]. 

 

Fig. 6. Terminal to Terminal Traffic Steiner Tree Example. 

Def KPOE ( ): 

Input: s, t, R, α 

Output: OE-Knowledge-Paths between s and t 

PathQ = [ ] 

1. Kpaths = [ ] 

2. // push the first path into PathQ 

3. PathQ.append([s]) 

4. for sen in s.sense( ): 

5.  while PathQ: 

6.  // get the first path from the PathQ 

7.  NodeQ = PathQ.pop(0)  

8.  // get the last node from NodeQ 

9.  node= NodeQ[-1] 

10.  // path found 

11.  if node == t: 

12.  Kapths.append(NodeQ) 

13.  return Kpaths 

14.  else: 

15.  If len(NodeQ) <= α:  

16.  sl= list( ) 

17.  for key, value in R.iteritems( ): 

18.  re= value 

19.  // get all concepts have relations from R with node and have the same sense 

of node 

20.  x= re (node, sen, key) 

21.  sl=sl+x 

22.  relationalGraph[node] = sl 

23. // enumerate all adjacent nodes, construct a new path and push into the queue  

24.  for adjacent in relationalGraph.get(node,[ ]): 

25.  new_path=list(NodeQ) 

26.  new_path.append (adjacent) 

27.  if len(new_path) < α:  

28.  PathQ.append(adjacent) 

29.  else:  

30.  break 

31. if !(Kpaths): 

32.  return „Not found‟ 

Fig. 7. Discovering OE- Knowledge-Paths Algorithm. 
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Fig. 8. Example of an OE-Knowledge-Path. 

For example, consider s=“country”, t=“group”, and α= 
4. The returned OE-Knowledge-Path by the algorithm is 
country (hyponym) people (hyponym) group. The process of 
discovering the OE-Knowledge-Path between “country” and 
“group” is shown in Fig. 8. 

IV. COMPREHENSION MODEL EVALUATION 

An evaluation model is needed to assess the 
comprehension engine. The statistical characteristics of the 
knowledge obtained by the comprehension engine need to be 
measured. However, the process of measuring knowledge is 
still a difficult area that needs to be explored. “The fluid and 
intangible nature of knowledge makes its measurement an 
enormously complex and daunting task” [21]. 

The paper has proposed the use of graph theoretical 
metrics that provide a natural way to describe the structure and 
interplay of graph edges. A set of graph metrics presented in 
this section are divided into two types: quantitative assessment 
and organizational assessment. The mentioned types are 
important for the following reasons. (1) Quantitative 
assessment calculates rare knowledge growth, knowledge 
overload, and entropy to elaborate different aspects about the 
amount of knowledge that can be gained from the graph. 
(2) Organizational assessment calculates the size of the giant 
component, cluster coefficient and graph density to study the 
strength of the connections between concepts and their 
neighbors and the connectedness of the graph where high 
connectivity means high comprehension. The following 
section explains the real comprehension model based on all 
the mentioned graph metrics. 

A. Content of Information 

Comprehension enhancement is influenced by the size of 
obtained knowledge in the IKG. The obtained knowledge 
graph size can be computed by counting the entire number of 
concepts C and the entire number of relations E in IKG. Based 
on the Knowledge Induction Process, the graph starts with the 
prose knowledge graph G0. It is transformed into IKG1 after 
reading RTX1, and then into IKG2 after reading RTX2 until it 
reaches IKGfinal after reading all the RTXi. At each state, the 
size of IKG may be increased and knowledge may be 
augmented. The knowledge growth rate λ is computed by (2) 

where |IKGi| is the IKG size after reading RTXi and |G0| is the 
prose knowledge graph size. 

    
    i 

 G  
              (2) 

The knowledge overload rate γ may also be increased, and 
it can be determined by (3): 

   
    i  G  

 G  
              (3) 

The amount of information that can be obtained from the 
knowledge graph can also be calculated by measuring the 
Entropy δ of the knowledge graph, where high entropy 
indicates that the knowledge graph has a high amount of 
information and vice versa. Based on [22], δ can be computed 
by (4): 

   -∑ p
i
log(p

i
)

 n

i= 

             (4) 

Where pi is the degree distribution probability of concept ci 
in the knowledge graph that can be determined by (5): 

    
  

    
               (5) 

Where, di is the degree of concept ci and |E| is the entire 
number of the relations in the knowledge graph. δ is divided 
by log(n) to obtain a measure between 0 and 1, where n is the 
entire number of the knowledge graph concepts. 

B. Knowledge Organization 

It is obvious that the existence of relationships amongst 
concepts in the prose influences comprehension. The greater 
the increase in the relations among the concepts, the higher the 
understanding of the relations between them. This falls under 
a graph organization notion that can be calculated by the size 
of the giant component [23] that can be calculated using (6): 

    
    

 C  
              (6) 

Where |C`| is the number of connected concepts forming a 
giant component and |C | is the total number of concepts in the 
knowledge graph. The relation amongst the concepts and their 
neighbors in the knowledge graph can be calculated by the 
cluster coefficient β [24]. Based on [25], β is obtained by 
using (7): 

 =∑
2NICi

di(di-1)

n

i= 

               (7) 

Where NICi is the neighbors‟ interconnection coefficient 
of concept ci, which denotes to the number of the sentential 
relations between the first neighbors of concept ci, and di is the 
sentential relations of concept ci which counts the first 
neighbors of concept ci. The graph is considered highly 
clustered when the value is towards 1. The knowledge graph 
density ρ is another way to study the Knowledge graph 
organization to explore the completion and the integrations 
amongst concepts [26]. A complete knowledge graph contains 
all possible sentential relations E and density equals 1. The 
graph density ρ is calculated by (8) [27]. 

  
   

          
              (8) 
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Calculating the knowledge growth rate λ, the knowledge 
overload γ rate, and the cluster coefficient β require a reading 
of the external consultation to perform their calculations. 
Thus, their values are zero before reading the external 
references. The following example explains the influence of 
reading three reference texts with an Ontology Engine for 
adding knowledge associations amongst the prose concepts. 
The comprehension model evaluation for the proposed metrics 
before using external consultations in Fig. 3(b), and after 
using them in Fig. 3(f), respectively, is shown in Table II. 

TABLE II. EXAMPLE OF THE COMPREHENSION ENGINE EVALUATION BEFORE 

AND AFTER USING REFERENCE EXTERNAL CONSULTATION 

 
Before using 

external 

consultations 

after using 

external 

consultations 

Growth λ 0 2.5 

Overlap γ 0 1.5 

Entropy   1.5 0.96 

Giant Component Size GC 0.5 1 

Cluster Coefficient   0 0.92 

Density ρ 0.07 0.21 

V. EXPERIMENT 

A. Content Material 

An experiment was conducted on three prose texts LTX, 
and eight concepts were selected arbitrarily as the list of the 
prose concepts CL from each LTX. Wordnet [28] is a reliable 
Ontology Engine that has been used by many researchers in 
this area. It is a vast lexical database introduced by George 
Miller at the Cognitive Science Laboratory at Princeton 
University that is used as a dictionary of word senses and 
semantic relations between words [29-31]. This experiment 
was based on Wordnet Version 1.7 as a general reference text. 

The used benchmark reference text articles for this paper 
were derived from https://en.wikipedia.org. Wikipedia articles 
were employed as RTX. For each LTX, a number of articles 
are taken from Wikipedia to represent each concept in CL. For 
the article allocation, the method presented in [32] to 
automatically select Wikipedia articles was chosen. Table III 
displays the selected LTXi, as well as the CL for each prose. 

For each LTXi, the sentential relation among the concepts 
in its CL is represented in the prose knowledge graph G0. 
Through the Knowledge Induction Process, the system builds 
a set of Illuminated Knowledge Graphs IKGi by scanning all 
of the RTX, where IKGi is the sentential relation amongst the 
concepts in CL after reading a new RTXi. The complete list of 
the used reference text articles can be found in Appendix 
Table V. All the references texts were accessed on July 24, 
2019. 

B. Results 

This section presents the analysis of information gained 
from the Illuminated Knowledge Graph IKGi of prose LTXi in 
the Knowledge Induction Process. 

TABLE III. LIST OF THE PROSES USED IN THE EXPERIMENT 

 Prose Title  List of prose concepts CL 

1st prose 

LTX1 

 „Ethane chemical 

compound‟[33] 

[„Ethane‟, „hydrocarbon‟, „hydrogen‟, 

„carbon‟, „chemical, „petroleum‟, 

„carbonization‟, „coal‟] 

2nd prose 

LTX2 

 „New Test for Zika 

OKed‟ [34] 

[„Zika‟, „infection‟, „dengue‟, 

„chikungunya‟, „virus‟, „aedes‟, 

„mosquito‟, „antibody‟] 

3rd prose 

LTX3 

 „Anesthesia gases are 

warming the planet‟ 

[35] 

[„Anesthetic‟, „carbon‟, „climate‟, 

„oxide‟, „desflurane‟, „isoflurane‟, 

„sevoflurane‟, „halothane‟] 

The average time needed to read the prose, the eight 
references attached to the prose and identification of the 
highest familiarity of sentential relations connecting the prose 
concepts in each reference are as the following: 4 minutes and 
16 seconds for the 1st prose (LTX1), 5 minutes and 18 seconds 
for the 2nd prose (LTX2), and 2 minutes and 7 seconds for the 
3rd prose (LTX3). As noticeable, the machine spends a few 
minutes to read each prose with its related references. 

Fig. 9 displays the information growth λ per knowledge 
graph in each prose LTXi. The x-axis represents the prose 
knowledge graph G0 and the Illuminated Knowledge Graph 
IKGi after reading each reference text RTXi, whereas the y-
axis represents the growth rate λ. In LTX1, there is a gradual 
increase in the information after reading reference texts RTX1 
to RTX6, even though no new information was inserted after 
reading RTX7. Interestingly, it started to increase again after 
reading RTX8. In LTX2, the information kept growing 
gradually from reading RTX1 to RTX8. In LTX3, information 
increases varied. The information grew after reading RTX1, 
while no new information was added after reading RTX2 to 
RTX4. It increased again after reading RTX5 and RTX6, 
although no new information was inserted after reading RTX7 
and RTX8. This leads to the conclusion that reading references 
in some cases affect the increase of the knowledge positively, 
while in other cases these yield no effect. 

The information overload rate γ in the knowledge graph is 
shown in Fig. 10. Here, the x-axis represents the prose 
knowledge graph G0 and the Illuminated Knowledge Graph 
IKGi after reading each reference text RTXi, and the y-axis 
represents the overload rate γ. Similarly, it is clear that 
information overload varies from being slight to high in the 
three proses LTX after reading new reference texts RTXi. 

 

Fig. 9. Information Growth Rate "λ” Per the Knowledge Graphs. 
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Fig. 10. Information Overload Rate γ Per the Knowledge Graphs. 

Fig. 11 represents the entropy δ per each knowledge graph. 
The x-axis locates for both the prose knowledge graph G0 and 
the Illuminated Knowledge Graph IKGi after reading each 
reference text RTXi, and the y-axis is the entropy δ. It was 
observed that δ in the three proses LTX started with low 
values, and then it bounced to high values after reading the 1st 
reference text RTX1. This implies that RTX1 in the three 
proses LTX contributed to adding a high amount of 
information. Then, in LTX1 the entropy value increased a little 
after having read RTX2 to RTX6 and RTX8. This means that 
texts RTX2 to RTX6 and RTX8 inserted a low amount of 
information, while no new information was inserted when 
reading RTX7. In LTX2, there was a little increase in entropy 
after reading texts RTX2 to RTX8; thus, a limited amount of 
information was inserted. In LTX3, there was also a slight 
increase in the entropy after reading RTX2 and RTX5; a low 
amount of information was inserted here, and no new 
information was added after having read texts RTX3 to RTX4, 
and RTX6 to RTX8. This means that some of the reference 
texts are highly effective in adding information, while other 
texts have little effect. 

Fig. 12 represents the amount of information that was 
gained due to contributions of the prose LTX, the reference 
text RTX, and the Ontology Engine OE concepts in the three 
proses separately. As shown in Fig. 12(a), for LTX1, the 
entropy value of OE concepts bounced to a greater value than 
that of the LTX and RTX concepts after reading texts RTX1 to 
RTX8. This finding suggests that the amount of information 
inserted by the contribution of OE concepts was higher than 
the amount inserted by the contribution of the LTX and RTX 
concepts. In Fig. 12(b), for LTX2, the highest entropy value of 
the LTX, OE, and RTX concepts varied after reading RTX1 to 
RTX8; this indicated that the highest amount of information 
obtained by the contribution of the LTX, OE, or RTX 
concepts was not concentrated on the contribution of any one 
of them. In Fig. 12(c), for LTX3, the entropy value of the OE 
concepts was the highest amongst the LTX and RTX concepts 
after having read RTX1 to RTX8. This means that the amount 
of information inserted by the contribution of the OE concepts 
is higher than the amount inserted by the contribution of the 
LTX and RTX concepts. This explains the importance of the 
LTX, RTX, and OE concepts when inserting information, 
showing that none of these concepts show greater gains than 
any other of these concepts. 

 

Fig. 11. Entropy and Per the Knowledge Graphs. 

 

Fig. 12. Break Down of the Entropy and Per the Knowledge Graphs for the 

Three LTX. 

Fig. 13 shows the size of the giant component of the 
knowledge graph both before and after reading the reference 
texts RTXi. The x-axis refers to the prose knowledge graph G0 
and the Illuminated Knowledge Graph IKGi after reading each 
reference text RTXi, and the y-axis is the size of the giant 
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component GC of the knowledge graph. When the process 
reads a new RTXi, the size of the giant component increases. 
It is observable that for LTX1, the giant component size 
moved from 0.25 to 0.85 after reading RTX1, and growing to 
as high as 1 after reading RTX8. For LTX2, the giant 
component size was 0.25 in the prose knowledge graph G0, 
and after reading RTX1, it reached to 1 and the concepts were 
fully connected. Meanwhile in LTX3, the giant component 
size bounced from 0 to 0.85 after reading RTX1 and arrived at 
1 after reading RTX3. It means that there was an enhancement 
of prose comprehension by reading reference texts for 
connecting the prose concepts in a giant component and 
illuminating sentential relations amongst them. 

The breakdown of the total number of concepts C and the 
number of the sentential relations E in the prose knowledge 
graph G0 and the Illuminated Knowledge Graph IKGfinal for 
each prose LTXi are shown in Table IV, wherein the concepts 
are from the prose LTX, the reference text RTX, and/or the 
Ontology Engine OE. As can be seen, there is a great variance 
in the number of concepts and the number of sentential 
relations between G0 and IKGfinal. Increasing the size may 
affect the information size positively. Therefore, increasing 
the IKGfinal size is a significant sign of the overflowing 
information in the IKGfinal, which can further support 
reinforcement of the prose comprehension. 

 

Fig. 13. Giant Component Size GC per the Knowledge Graphs. 

TABLE IV. BREAK DOWN OF THE TOTAL NUMBER OF SENTENTIAL RELATION 

AND CONCEPTS IN THE THREE PROSES 

 
1st prose 

LTX1 

2nd prose 

LTX2 

3rd prose 

LTX3 

 G0 IKGfinal G0 IKGfinal G0 IKGfinal 

Sentential 

relation 
1 168 1 90 0 33 

Number of 

prose LTX 

concepts 

8 8 8 8 8 8 

Number of 

reference 

concepts 

0 12 0 16 0 5 

Number of 

Ontology 

Engine OE 

concepts 

0 63 0 21 0 11 

Moreover, Fig. 14 illustrates the clustering coefficient β 
obtained in each knowledge graph. The x-axis refers to the 
prose knowledge graph G0 and the Illuminated Knowledge 
Graph IKGi after reading each reference text RTXi, whereas 
the y-axis represents the clustering coefficient β. It is clear that 
some of the graphs are highly clustered; this is due to the fact 
that many of the concepts within these graphs are highly 
related to one another. For LTX1, the graph tended to be 
highly clustered, especially after reading RTX1, RTX4, RTX5 
and RTX8. In LTX2, the cluster coefficient bounced to a 
higher value after reading RTX2, lowered slightly after 
reading RTX3, then slightly increased after reading RTX4 to 
RTX8. In LTX3, the cluster coefficient, which was higher 
when reading RTX1 became stable after reading RTX2 to 
RTX5. It increased again after reading RTX6 and then returned 
to being steady after reading RTX7 and RTX8. This means that 
there is enhancement of comprehension when some of the 
reference texts increase clustering of the concepts. In cases 
where the texts exercise a limited effect on clustering of the 
concepts, enhancement of comprehension is not observed. 

Fig. 15 gives us a view of the integration amongst the 
concepts included within each knowledge graph. The x-axis is 
the prose knowledge graph G0 and the Illuminated Knowledge 
Graph IKGi after reading each reference text RTXi, and the y-
axis is the graph density ρ. As the graph reflects, in the three 
proses LTX, ρ showed a variance amongst the reference texts 
when inserting sentential relations amongst the concepts, 
bringing them close together. 

 

Fig. 14. Cluster Coefficient   Per the Knowledge. 

 

Fig. 15. Density ρ Per the Knowledge Graphs. 
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VI. CONCLUSION 

The objective of this paper was to enhance prose 
comprehension by reducing the time expended on 
understanding the text and increasing the quality of 
comprehension. Accordingly, the comprehension engine was 
developed to read several reference texts, to allocate a 
summary of the highest familiarity knowledge amongst a set 
of target concepts in each reference and to provide lexical 
associations among the concepts by using an Ontology 
Engine. The comprehension engine was evaluated through set 
of graph metrics. The output performance of the 
comprehension engine demonstrates the efficiency of the 
compression engine in reducing reading time and increasing 
the quality of comprehension. Furthermore, the proposed 
engine can have academic implications on students or 
academic learners by providing them with the most familiar 
and lexical knowledge that can help in prose comprehension 
in a short time. Although the proposed engine may help 
readers to increase their knowledge and improve prose 
comprehension, at times this can causes mess and give rise to 
„too much knowledge‟ in prose comprehension, thus 
challenging preservation and retention by human memory. 
Future work will be carried out to develop a second phase of 
the comprehension engine that efficiently select the less 
difficult to understand knowledge from the augmented 
knowledge and present it to readers as an enhanced text. In 
addition, the impact of using the comprehension engine in 
improving the comprehension through evaluating the 
comprehension rate on participants and make a comparison 
between the two-phase results will be studied. 
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APPENDIX 

LIST OF THE REFERENCE TEXT ARTICLES USED IN THE EXPERIMENT. 

Title Link 

Ethane https://en.wikipedia.org/w/index.php?title=Ethane&oldid=784178139 

Hydrocarbon https://en.wikipedia.org/w/index.php?title=Hydrocarbon&oldid=797145615 

Hydrogen https://en.wikipedia.org/w/index.php?title=Hydrogen&oldid=794824238 

Carbon https://en.wikipedia.org/w/index.php?title=Carbon&oldid=797606653 

Chemical substance https://en.wikipedia.org/w/index.php?title=Chemical_substance&oldid=797496319 

Petroleum https://en.wikipedia.org/w/index.php?title=Petroleum&oldid=797608302 

Carbonization https://en.wikipedia.org/w/index.php?title=Carbonization&oldid=795078223 

Coal https://en.wikipedia.org/w/index.php?title=Coal&oldid=797262457 

Zika fever https://en.wikipedia.org/w/index.php?title=Zika_fever&oldid=797239605%20130 

Infection https://en.wikipedia.org/w/index.php?title=Infection&oldid=797795424 

Dengue fever https://en.wikipedia.org/w/index.php?title=Dengue_fever&oldid=798056254 

Chikungunya https://en.wikipedia.org/w/index.php?title=Chikungunya&oldid=797661262 

Virus https://en.wikipedia.org/w/index.php?title=Virus&oldid=797985669 

Aedes https://en.wikipedia.org/w/index.php?title=Aedes&oldid=797888558 

Mosquito https://en.wikipedia.org/w/index.php?title=Mosquito&oldid=797321614 

Antibody https://en.wikipedia.org/w/index.php?title=Antibody&oldid=797925412 119 

Anesthetic https://en.wikipedia.org/w/index.php?title=Anesthetic&oldid=796835414 

Climate https://en.wikipedia.org/w/index.php?title=Climate&oldid=797528936 

Oxide https://en.wikipedia.org/w/index.php?title=Oxide&oldid=789414027 

Desflurane https://en.wikipedia.org/w/index.php?title=Desflurane&oldid=797545466 

Isoflurane https://en.wikipedia.org/w/index.php?title=Isoflurane&oldid=797545327 124 

Sevoflurane https://en.wikipedia.org/w/index.php?title=Sevoflurane&oldid=797688679 

Halothane https://en.wikipedia.org/w/index.php?title=Halothane&oldid=797545700 

 


