
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

334 | P a g e

www.ijacsa.thesai.org

Discovery Engine for Finding Hidden Connections in

Prose Comprehension from References

Amal Babour1, Javed I. Khan2, Fatema Nafa3, Kawther Saeedi4, Dimah Alahmadi5

Faculty of Computing and Information Technology

Department of Information Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia1, 4, 5

Department of Computer Science, Kent State University, Kent, OH 44240 USA2

Department of Computer Science, Salem State University, Salem, MA 01970 USA3

Abstract—Reading is one of the essential practices of modern

human learning. Comprehending prose text simply from the

available text is particularly challenging as in general the

comprehension of prose requires the use of external knowledge

or references. Although the processes of reading comprehension

have been widely studied in the field of psychology, no algorithm

level models for comprehension have yet to be developed. This

paper has proposed a comprehension engine consisting of

knowledge induction which connects the knowledge space by

augmenting associations within it. The connections are achieved

through the automatic incremental reading of external references

and the capturing of high familiarity knowledge associations

between prose concepts. The Ontology Engine is used to find

lexical knowledge associations amongst concept pairs, with the

objective being to obtain a knowledge space graph with a single

giant component to establish a base model for prose

comprehension. The comprehension engine is evaluated through

experiments with various selected prose texts. Akin to human

readers, it could mine reference texts from modern knowledge

corpuses such as Wikipedia and WordNet. The results

demonstrate the potential efficiency of using the comprehension

engine that enhances the quality of reading comprehension in

addition to reducing reading time. This comprehension engine is

considered the first algorithm level model for comprehension

compared with existing works.

Keywords—Knowledge graph; ontology engine; text

comprehension; text summarization; Wikipedia; WordNet

I. INTRODUCTION

Text comprehension is a form of knowledge acquisition
whereby readers interact with text and relate the ideas
represented to their knowledge and experiences [1]. Generally,
reading a single text does not qualify readers to achieve the
required level of comprehension. This is because the
comprehension process depends largely on reader knowledge
or additional knowledge acquired from external sources. A
well written text embeds a set of cues to build up a coherent
representation of the text. Although the text normally presents
a set of related concepts, this does not qualify readers to
achieve complete comprehension. In this paper, the focus is on
prose comprehension. Prose is a type of text which includes
complex concepts manifesting particular meanings of a
specific domain with associations among concepts. As prose
comprehension is difficult to achieve from a simple reading of
the text alone, external knowledge is required to understand
the text. The external knowledge readers need is known as

prior knowledge [2]. This prior knowledge is different from
one to one comprehension. Sometimes, readers may not even
have a minimum level of prior knowledge about a specific
topic, making it necessary for them to obtain it by using
external sources. Lexicons and external references are two
common examples of acquiring additional knowledge. By
drawing upon prior knowledge, readers fill the knowledge gap
in the prose by connecting the prose contents with their prior
knowledge. The process of prose comprehension is flexible to
implement and incorporates external information sources into
the prose text. An example of such a process is integrating an
encyclopedia with linguistic information/ dictionaries.

Although human readers tend to consult external
knowledge mediums such as books, Wikipedia, or journal
articles to bridge this knowledge gap, such a process is often
time consuming and tedious. It requires reading a large
amount of text and then finding the relevant portions of the
reference to catalyze understanding. While the mental process
behind such knowledge induction is intriguing, adopting
computational algorithms can help more effective reading
comprehension of prose by automatically capturing relevant
text pieces from external references and relevant knowledge
association of the prose concepts as a summary. This can
leverage greater overall comprehension process of a prose
text.

The topic of the human reading rate has been widely
studied. Carver‟s reading model identifies the relationship
model between reading and comprehension [3]. He defines
five reading processes: memorizing, learning, rauding,
skimming, and scanning. The reading rate of an individual
varies on the basis of material difficulty and reading objective
[3, 4]. For example, skimming may be used when a reader
requires an overview of the material, whereas learning may be
used when a reader requires comprehension of the material.
Carver‟s reading model provides a reading rate that measures
how many words are read per minute (wpm) for each of the
five processes. For memorization, the rate is 138 wpm,
whereas for learning it is 200 wpm, and for rauding the rate is
300 wpm. For skimming, the rate is 450 wpm, and finally for
scanning it is 600 wpm. For example, if readers read a text of
2000 words for the purpose of learning, it takes about 10
minutes for them to read and comprehend it.

The previous work focused on generating summarized
texts and/or recruiting participants to analyze their level of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

335 | P a g e

www.ijacsa.thesai.org

comprehension. To the best of knowledge, no existing work
proposing an algorithm level model for comprehension.
Accordingly, the contribution of this paper can be summarized
as follows:

 Develop an algorithm level model comprehension
engine to enhance prose comprehension.

 Evaluate the proposed model through set of graph
metrics.

The proposed comprehension engine contributes to the
reading rate that readers may need to acquire specific
knowledge from reference texts. This engine is based on the
Knowledge Induction Process which targets increasing
knowledge comprehension through two steps: 1) the
incremental reading of external reference texts and giving an
extractive summary of each by capturing of the highest
familiarity knowledge associations amongst prose concepts.
One of the distinct features of the proposed algorithm is that it
captures the highest familiarity knowledge along with the
fewest associations pertaining to prose concepts through a
minimum number of external concepts; and 2) using Ontology
Engine to find lexical knowledge associations amongst
concepts. This can save readers time and increase their
efficiency, which are two main advantages of the
comprehension engine.

The rest of the paper is structured as follows: Section II
provides an overview of the related work. Section III
introduces the development of the comprehension engine.
Section IV presents an evaluation of the proposed engine.
Section V presents the materials used in the experiment and
the results, and the final section (Section VI) discusses the
conclusion and the future work.

II. RELATED WORK

Considerable research has been done in text
summarization and text comprehension in recent years. Some
of the research introduced valuable techniques used to produce
extractive and abstractive summarization. Extractive
summarization summarizes the text by extracting sentences
containing salient information from the text itself, while
abstractive summarization summarizes the text by
paraphrasing the text using words that might not in the text
[5]. In recent years, various approaches have been developed
for automatic summarization and have been applied widely in
different domains.

Van Lierde and Chow [6] combined fuzzy and statistics
approaches to obtain extractive summarization. The fuzzy
based technique contained manually generated rules where the
rules were proceeded based on the length of the sentence. By
using these rules, all the sentences were assigned with a
weight value ranging from zero to one, where the weight for
each sentence was used as a feature in the fuzzy inference
system. The authors used such a system to perform the
summarization through a number of fuzzy-logic-based
analyzers. The work had an advantage of taking into
consideration the linguistic variables and human perception.

Hernández-Castañeda et al. [7] proposed a method for
extractive automatic text summarization (EATS). The method

based on the conversion of the text into numerical vectors by
applying different generation methods. The vectors are
grouped into clusters based on measuring proximity among
the vectors. Latent Dirichlet allocation (LDA) was used to
obtain the key sentences in each cluster that make up the
summarized text.

Furthermore, Azadani et al. [8] used graph-based
summarization techniques to produce extractive
summarization. The technique represented a document as a
graph in which a node can correspond to various semantic
units including words, phrases, concepts or sentences, whereas
an edge demonstrated the relation in connectivity between the
nodes. The authors used the frequent itemset mining algorithm
to extract the summary.

For summarizing multiple documents, Fuad et al. [9] used
two techniques, sentence clustering and neural sentence to
produce abstractive summarization. In sentence clustering
techniques, they used a deep neural network architecture to
represent text. In neural sentence, they applied seq2seq
encoder-decoder technique. The proposed method took a
related ordered set of sentences and produced a single
sentence by merging the input sentence from multiple
documents; the output was only one sentence as a summary.

For the purpose of text summarization and comprehension,
Ding et al. [10] proposed a text summarization generation
model to enrich representing the information of the original
text and improve the text comprehension. Their method was
based on seq2seq through a dual-encoder, the Gain-Benefit
gate for decoding, and the probability distributions of the
keywords in the text.

In [11], Caglieroet et al. proposed a method named
TESTdriven SUMmarization (TestSumm) to recommend text
summarization based on a learner‟s level of comprehension.
The method provides multiple-choice tests to assess the
learner‟s comprehension level of different topics. It performs a
Multilingual Weighted Itemset-based Summarizer (MWISum)
that relies on frequent itemset mining sentence selection and
ranking to generate the material summary. It recommends a
personalized summary to learners who did not pass the
multiple-choice test.

All the previous text summarization research focused on
reducing the volume of the text by capturing or rephrasing the
most important sentences that include main keywords and
present it to the reader. On the other hand, the current text
comprehension research based on recruiting participants and
applying descriptive statistics to analyze their performance.
Thus, this paper has introduced a text summarization method
that may increase the number of concepts in the summary in
some cases for the purpose of text comprehension.

III. KNOWLEDGE INDUCTION PROCESS

“Knowledge graph is an emerging technology for massive
knowledge management and intelligent services in the big data
era” [12]. It provides an ideal technical solution to realize the
integration of knowledge sources by incorporating noisy
information and connecting the fragmented pieces of
knowledge from multiple sources in a consistent way. In this
paper, a knowledge graph called the Illuminated Knowledge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

336 | P a g e

www.ijacsa.thesai.org

Graph (IKG) is proposed to illuminate the relationships among
prose concepts using multiple knowledge sources for the
purpose of comprehension. These ideas and goals were the
inspiration for the graph name.

The IKG is a graph which captures the state of learning
process. It shows prose concepts (CL) and associations
amongst the concepts. The associations can be found by
reading the prose (LTX) and reading some parts relevant to
the concepts as a summary from external reference texts
(RTX) as well as an Ontology Engine (OE). Beside the CL
concepts, the graph could include external concepts belong to
RTX or OE in the associations added from them to connect
the prose CL concepts. A directed graph presents IKG = (C,
E), where C is a concept set and E is an edge set. A concept ci
includes set of senses (si,1, si,2, .., si,x), where i is the number of
concept and x is the number of senses. An edge connects two
concepts through a specific sense of each concept. The edge
represents a sentential relation between the concepts. It can be
a syntactical explicit and/or an Ontology Engine relation,
where the latter is one of the six types of word relations:
Hyponym, Hypernym, Holonym, Instance, Meronym, or
Synonym. Fig. 1(a) illustrates an example of five concepts in
IKG. c1={Country}, c2={State}, c3={freedom}, c4={Ohio} and
c5={Liberty}, where c1, c4 and c5 are the CL belonging to
LTX. c2 belongs to a RTX. c3 belongs to an OE.

A Knowledge Path (K) represents the relationship path
between two concepts. It is represented as a sequence of edges
connecting concepts ci and cj in a preserved sense. The
concepts ci and cj belong to CL. The concepts in the middle
may be external to CL. The following are examples of
geometric paths:

1) {c1–s1,1: Synonym: s2,1–c2–s2,1: Instance: s4,1– c4}.

2) {c1–s1,1: Synonym: s2,1–c2–s2,1: syntactic explicit: s4,1–

c4}.

3) {c1–s1,1: Synonym: s2,1–c2–s2,2: Hyponym: s3,1–c3–s3,1:

Hyponym: s5,4 –c5}.

ci refers to the ith concept. si,j is the jth sense of the ith
concept. For example, c1 is the first concept and s1,1 is the first
sense of the first concept. Fig. 1(b, c, d, e) represents examples
of geometric paths. The knowledge paths can be derived from
geometric paths. For example:

1) {c1–s1,1: Synonym: s2,1–c2–s2,1: Instance: s4,1–c4}.

2) {c1–s1,1: Synonym: s2,1–c2–s2,1: syntactic explicit: s4,1–

c4}.

3) {c2–s2,2: Hyponym: s3,1–c3–s3,1: Hyponym: s5,4–c5}.

The three paths that mentioned above are considered
knowledge paths, as the incoming and the outgoing senses of
each concept are preserved. Fig. 1(b, c, e) represents examples
of knowledge paths.

A prose can be often rich with concepts using domain
specific terms. While reading such prose, non-specialist
readers find these terms difficult to comprehend. They may
face these difficulties while reading prose in any domain such
as science, medical, finance and technology. Therefore,
external knowledge helps the comprehension of prose by the
integration with the prose concepts [13, 14]. This is not always

a straightforward process, as readers‟ prior knowledge may
vary. Inexperienced readers may get overwhelmed by the
amount of diverse external knowledge sources and types
available since the latter can range from reference texts,
dictionaries, and papers to conversations with experts.
Identifying the right source of knowledge from a vast range of
information can be a time consuming and exhausting task.

Therefore, this work proposes the Knowledge Induction
Process to enhance prose comprehension. The process is
designed to capture knowledge missing in a prose. The
external knowledge source is captured through augmenting
knowledge associations of prose concepts using reference
texts and an Ontology Engine. The proposed solution assumes
that concepts are known prior to the process of finding the
knowledge associations amongst the concepts. The process
reads appropriate parts from relevant reference texts and then
captures a summary of the highest familiarity knowledge
associations connecting the prose concepts. The Ontology
Engine captures lexical knowledge associations for every
concept pair. This process is formally presented in the
following way: Given a prose LTX for comprehension, a set

of prose concepts CL, CL= {ci, ci+1…., cn}∈ LTX, a set of

reference texts RTX, and an Ontology Engine OE. Find the
IKG to represent knowledge associations amongst CL. The
IKG is built through two fundamental techniques, namely a
generation concepts representation and a reference
consultation.

A. Generation of Concept Representation

To understand a prose text, a reader may break it up into a
set of concepts and then find knowledge associations amongst
these concepts. In order to find new or missing knowledge
associations among the prose concepts, this process can be
automated by applying a computational representation model.
It is assumed that this enhances the prose comprehension. A
graph is used to represent the concept and the associations,
where each concept is represented by a node and each
sentential relation between two concepts is represented by an
edge.

A Syntactical Explicit Graph generator function KG() is
used to convert a prose text LTX to a knowledge graph G0,
and a reference text RTX to a reference knowledge graph GR.
For each sentence in LTX/RTX, the function searches for
pairs of concepts ci and cj if a word or a sequence of words
found eb, b=1,2,…,n between them in the same sentence,
where in LTX, ci and cj belong to CL and in RTX, ci and cj
belong to the reference text noun concepts. The distance
between ci and cj is <= L, where L is the maximum number of
words allowed between ci and cj. If it does, the function saves
[ci, eb, cj] to be an edge in the graph representing a syntactical
relation between ci and cj.

To allocate the most familiar knowledge associations that
connect the prose concepts, it is crucial to evaluate the
familiarity of knowledge associations. These can be calculated
through the edge weight in the knowledge graph. Calculating
the weight/familiarity value is based on the type of the
sentential relation between concepts. The sentential relation
types reflect the structures between any pair of concepts. The
weight wi,j is calculated by (1) where fi,j is the frequency of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

337 | P a g e

www.ijacsa.thesai.org

relation type between concept ci and cj attained from the
“Gutenberg Project” [15]. The "Gutenberg Project '' is an
online resource offering over 53,000 free e-books with expired
US copyrights. This online archive is a very popular dataset
frequently applied in text mining research [16, 17].

 (

)
 (1)

The familiarity value of a sequence of words between ci
and cj is calculated based on the lowest weight of words
sequence. The log of a word frequency is divided by 109, as
word frequencies are in the millions. The result is multiplied
by -1 to avoid negative values. High frequency refers to high
familiarity of a relation type. An inverse relationship between
f and w indicates that the higher the frequency, the less its
weight or the less its cost.

Fig. 1. Example of an Illuminated Knowledge Graph. (b, c, d, e)

Exemplifying Geometric Path. (b, c, e) are Examples of Knowledge Paths.

Table I explains five types of the sentential relations
between concept pairs. (1) is where a single word eb appears
between ci and cj, b=1. (i.e. Carbon-Carbon releases
carbonization), here ci = Carbon-Carbon, cj = carbonization,
and e1= releases. The weight of the edge is identified by
considering the frequency within (1) as the frequency of the
word e1. (2) is where multiple words eb appear between ci and
cj, b > 1 (i.e. Ethane is structurally the simplest hydrocarbon),
where ci = Ethane, cj = hydrocarbon, b=2, e1= structurally,
and e2= simplest. The weight of the edge is computed by
considering the weight of e1 and e2 separately and then
allocating the minimum weight. (3) is a class/subclass,
wherein the sentential relation is either a hypernym or
hyponym (i.e. Ethane is a hyponym of hydrocarbon), ci =
Ethane, cj = hydrocarbon and e= hyponym. The weight of the
edge is determined by considering the frequency within (1) as
the frequency of the word class. (4) is a part or subpart,
wherein the sentential relation is either a holonym or
meronym (Hydrogen is a holonym of water), ci = Hydrogen,
cj, = water and e= holonym. The weight of the edge is
determined by considering the frequency within (1) as the
frequency of the word part. (5) is a synonym, if the sentential
relation is synonym (Ethane is a synonym for C2H6). ci =
Ethane, cj = C2H6 and e= synonym. The frequency of the
synonym relation is supposed to be 1. Therefore, the weight of
the edge is determined by considering 1 in the frequency given
by (1).

To generate an IKG, the Knowledge Induction Process
performs six steps as presented in Fig. 2:

1) Converting a prose LTX to a prose knowledge graph G0

representing the syntactical relation between each pair in the

prose concepts CL by performing a Graph generator function

KG().

2) Converting a reference text RTXi to a reference

knowledge graph GRi representing the syntactical relation

between each pair of the RTXi concepts by performing the

same Graph generator function KG() used in step 1.

3) Extracting the highest familiarity knowledge path(s) of

RTXi connecting CL from GRi by performing the Terminal to

Terminal Traffic Steiner Tree function TTTST(). The extracted

path(s) is called a Terminal to Terminal Traffic Steiner tree(s)

TTTST and it is represented in a graph called GUi.

4) Joining G0 and GUi in a graph called Gtemp

representing the current state of the assimilated knowledge

among CL by performing an assimilation function

Gassmilation().

5) Finding OE-Knowledge-Path(s) connecting each pair of

Gtemp concepts by performing the OE-Knowledge-Paths

function KPOE(). The found paths are represented in a graph

called GWi.

6) Joining Gtemp and GWi in an Illuminated Knowledge

Graph IKGi representing the current state of the assimilated

knowledge amongst CL by performing the assimilation

function Gassmilation().

Each time the process reads a new RTXi, it performs steps
2 to 6 where, in step 4, G0 is replaced with IKGi. Fig. 3 shows

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

338 | P a g e

www.ijacsa.thesai.org

an example explaining the impact of using reference texts and
an Ontology Engine for adding knowledge associations
amongst a set of prose concepts about 'Ethane' chemical

compound, where CL= {ethane, hydrocarbon, hydrogen,
carbon, carbon-carbon and carbonization}.

TABLE I. TYPES OF SENTENTIAL RELATIONS

Sentential relation type Sentential relation structure wi,j value

Syntactical Relation

(1): Single word:

ci – si,* : eb : sj,* – cj ; b=1
wi,j = w(e1)

(2): Multiple words:

ci – si,* : e1 e2…en : sj,* – cj; b=1,2,…,n
wi,j =min(w(eb))

OE Relation

(3): Class/Subclass:

ci – si,* : Hypernym : sj,* – cj or ci – si,* : Hyponym : sj,* – cj
wi,j = w(eclass)

(4): Part/Subpart:

ci –si,* : Holonym : sj,* – cj or ci – si,* : Meronym : sj,* – cj
wi,j = w(epart)

(5): Synonym:

ci – si,* : Synonym : sj,* – cj
wi,j = w(esynonym) =1

Fig. 2. Comprehension Engine.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

339 | P a g e

www.ijacsa.thesai.org

Fig. 3. Connecting CL Process using Reference Texts and Ontology Engine. (a) a set of Prose Concepts at the Initial Prose. (b) Knowledge Path K from the

Initial Prose LTX. (c, e, f) Additional Knowledge Path K Extracted from RTX1, RTX2, and RTX3. (d) Additional Knowledge Path K Extracted from Ontology

Engine OE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

340 | P a g e

www.ijacsa.thesai.org

B. Reference Consultation

1) Highest familarity knowledge extraction using a

reference text: Knowledge within a prose is limited, as readers

cannot capture the knowledge relevant to all concepts required

to comprehend the prose within the prose text only. Therefore,

external reference texts are required to capture knowledge

association amongst prose concepts. The reference texts are

used to fill the knowledge gap of prose.

There are a number of Steiner tree versions that can be
useful for identifying knowledge associations amongst the
prose concepts [18, 19]. The main role of a Steiner tree in the
proposed engine is to capture the highest familiarity
knowledge paths amongst the prose concepts CL from each
reference text GRi with a minimum cost and a minimum
number of external concepts, where the sentences of the
captured knowledge paths are considered the summary of the
reference text.

Given a connected, undirected reference knowledge graph
GRi= (C, E), where C is a set of reference text concepts and E
is a set of edges representing the relations amongst the graph
concepts, the weight for each edge wi,j reflects its cost, where
the cost here expresses the familiarity value of the sentential
relation between the concepts of the edge ends ci and cj as
shown in Fig. 4(a). Fig. 4(b) shows the set of prose concepts
CL that need to find the highest familiarity knowledge paths
amongst them in GRi. Minimum Steiner Tree (MST) is an
approach based on finding knowledge with the minimum cost
amongst prose concepts [18]. The cost of MST is calculated

by ∑(wi,j), where i, j ∈ C, i≠j. Sometimes, connecting the

CL in a MST requires the addition of external concepts to CL.
This case can be found in Fig. 4(c), C= {A, B, C, D, E}, CL=
{A, C, E, D}. The returned Steiner tree is {E, D, B, A, C} and
it costs 10.

Fig. 4. Example of a Reference Knowledge Graph and different Types of

Steiner Trees.

Suppose there is traffic (Tr) between ci and cj, where the
traffic indicates the comprehension amount of the relation
between the two concepts. In this case, the aim of the Steiner
tree is to reduce the traffic amongst CL, whereby low traffic
means high comprehension. Here, the Steiner tree is called
Terminal to Terminal Traffic Steiner Tree (TTTST). Its cost is

∑ (wi,j × Tri,j), where i, j ∈ C and i≠j. In Fig. 4(d), supposes

that the traffic between each two concepts is Tri,j=1 and the
traffic between concept E and concept A is TrE,A=100 and
between concept E and concept D is TrE,D=100. In this case,
the traffic weighted cost for the returned Steiner tree is ((4 ×
100) + (1 × 1) + (3 × 1) + (2 × 1)) = 406.

Fig. 5 represents the TTTST algorithm in the following
way. The algorithm input is GRi and CL. GRi is a reference
knowledge graph representing the syntactical relation between
each pair of RTXi concepts. The algorithm output is GUi,
which is a tree extracted from GRi representing the highest
familiarity knowledge path(s) connecting CL.

Def TTTST ():

Input: GRi, CL

Output: TTTST: Terminal to Terminal Traffic Steiner Tree

1. //initialization

1. for each co in GRi:

3. if CL!= null:

4. for each concept c in co

5. prev[c]= -1

6. cost[c]=INFINITY

7. Visited[c]=False

8. Q=null

9. s= pick any concept from CL

10. enqueue(Q,s)

11. While Q!= null:

12. c= dequeue(Q)

13. Visited[c]=True

14. if c in CL:

15. cost[c]= 0

16. add c to M

17. remove c from CL

18. for each neighbour ci of c:

19. if ci not in Q and Visited[ci]==False:

20. enqueue(Q, ci)

21. temp= cost[c] + wci,c

22. if temp == cost[ci] and c in CL:

23. prev[ci]=c //a knowledge path with minimum external concepts

to ci is found

24. cost[ci]=temp

25. else if temp < cost[ci]

26. prev[ci]=c // a less costly knowledge path to ci is found

27. cost[ci]=temp

28. TTTST = getPaths(M[], prev[])

29. return TTTST

Fig. 5. Terminal to Terminal Traffic Steiner Tree Algorithm.

For each component co in GRi, the algorithm uses a queue
data structure Q to store each visited concept with its
neighbors. It initializes Q by picking any concept from CL as
the source s. Then, it initializes the cost between s and each
concept c in the co to INFINITY and the previous concept
prev of each c to -1. In the loop iteration, it dequeues the first
concept c in Q, marks it as visited, and checks if c belongs to
CL. If so, it updates its cost to 0, adds it to M where M stores
the found CL concepts, and removes it from CL. Then, it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

341 | P a g e

www.ijacsa.thesai.org

enqueues all the neighbors‟ ci’s of concept c if they are
marked as non-visited, assigns prev and calculates the cost for
each of them. If the current ci cost is equal to the previous one
and c belongs to CL that means a knowledge path with
minimum external concepts is found. Then, ci’s prev is
updated to the new concept. However, if the current ci cost is
less than its previous one that means a less costly knowledge
path to ci is found wherein less cost means high familiarity.
Then, ci’s prev and cost are updated to the new lesser values
and the process is repeated until the queue is emptied. If all
items in co are checked, getPaths() constructs the TTTST from
M and prev. The returned TTTST is represented in GUi [20].
Suppose the graph shown in Fig. 6 is a reference knowledge
graph GRi. If CL = {c1, c7, c8} and the traffic for each edge
Tr=1, then the TTTST returned by algorithm will be
{c1,c3,c6,c7,c8}.

2) Knowledge extraction using ontology engine: A useful

source of knowledge is the Ontology Engine. An Ontology

Engine to provide lexical knowledge associations between any

two concepts by using OE-Knowledge-Paths function KPOE()

is utilized. This helps in adding a new type of knowledge

which can contribute to increasing knowledge and improving

comprehension. The OE-Knowledge-Path is a sequence of

edges connecting any two concepts in a preserved sense. Each

edge represents an ontological relation between its ends, where

the ontological relation for each edge is one of the following

relations: (1) synonym; (2) hypernym; (3) hyponym;

(4) holonym; and (5) meronym.

Fig. 7 represents the KPOE algorithm. It uses an Ontology
Engine to search for OE-Knowledge-Path(s) connecting
concept s and concept t, where s and t are the first and the last
concepts in the path and the length of the path is less than or
equal to α. The input of the algorithm is s, t, R, and
relationalGraph. R is a dictionary that holds all the
ontological engine relations in the Ontology Engine, and
relationalGraph is a dictionary of all concepts that have any
of the ontological relations in R with the last node of the
current path. The algorithm does not return the shortest path
between s and t because it could be a path of multiple sense
concepts. Rather, it searches if the neighbors of s have the
same sense of s and have any of the ontological relation in R
with s. If so, it searches the neighbors of the neighbors until it
reaches t.

NodeQ and PathQ are two queue data structures used in
the algorithm. NodeQ keeps the current path that has a concept
need to explore its neighbor. PathQ holds the currently created
paths. The algorithm starts with s as the current path. The
while loop iterates through PathQ paths searching for an OE-
Knowledge-Path that connects s and t. In each iteration, it
dequeues the first path in PathQ and signs it in NodeQ. Then,
it checks whether the last concept in NodeQ matches t. If so, it
saves the path in Kpaths as an OE-Knowledge-Path between s
and t; otherwise, it checks if the NodeQ length is less than α. If
the last concept in NodeQ matches t, for the sense of the
NodeQ’s last concept, the function gets all of the concepts that
have one of the ontological relations in R with the last concept
in NodeQ, and adds them to relationalGraph. A number of
paths are created between each relationalGraph concept and

the current path. PathQ saves the newly created paths. If all
the paths in PathQ are checked and Kpaths do not exist, the
function returns „Not found‟ [20].

Fig. 6. Terminal to Terminal Traffic Steiner Tree Example.

Def KPOE ():

Input: s, t, R, α

Output: OE-Knowledge-Paths between s and t

PathQ = []

1. Kpaths = []

2. // push the first path into PathQ

3. PathQ.append([s])

4. for sen in s.sense():

5. while PathQ:

6. // get the first path from the PathQ

7. NodeQ = PathQ.pop(0)

8. // get the last node from NodeQ

9. node= NodeQ[-1]

10. // path found

11. if node == t:

12. Kapths.append(NodeQ)

13. return Kpaths

14. else:

15. If len(NodeQ) <= α:

16. sl= list()

17. for key, value in R.iteritems():

18. re= value

19. // get all concepts have relations from R with node and have the same sense

of node

20. x= re (node, sen, key)

21. sl=sl+x

22. relationalGraph[node] = sl

23. // enumerate all adjacent nodes, construct a new path and push into the queue

24. for adjacent in relationalGraph.get(node,[]):

25. new_path=list(NodeQ)

26. new_path.append (adjacent)

27. if len(new_path) < α:

28. PathQ.append(adjacent)

29. else:

30. break

31. if !(Kpaths):

32. return „Not found‟

Fig. 7. Discovering OE- Knowledge-Paths Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

342 | P a g e

www.ijacsa.thesai.org

Fig. 8. Example of an OE-Knowledge-Path.

For example, consider s=“country”, t=“group”, and α=
4. The returned OE-Knowledge-Path by the algorithm is
country (hyponym) people (hyponym) group. The process of
discovering the OE-Knowledge-Path between “country” and
“group” is shown in Fig. 8.

IV. COMPREHENSION MODEL EVALUATION

An evaluation model is needed to assess the
comprehension engine. The statistical characteristics of the
knowledge obtained by the comprehension engine need to be
measured. However, the process of measuring knowledge is
still a difficult area that needs to be explored. “The fluid and
intangible nature of knowledge makes its measurement an
enormously complex and daunting task” [21].

The paper has proposed the use of graph theoretical
metrics that provide a natural way to describe the structure and
interplay of graph edges. A set of graph metrics presented in
this section are divided into two types: quantitative assessment
and organizational assessment. The mentioned types are
important for the following reasons. (1) Quantitative
assessment calculates rare knowledge growth, knowledge
overload, and entropy to elaborate different aspects about the
amount of knowledge that can be gained from the graph.
(2) Organizational assessment calculates the size of the giant
component, cluster coefficient and graph density to study the
strength of the connections between concepts and their
neighbors and the connectedness of the graph where high
connectivity means high comprehension. The following
section explains the real comprehension model based on all
the mentioned graph metrics.

A. Content of Information

Comprehension enhancement is influenced by the size of
obtained knowledge in the IKG. The obtained knowledge
graph size can be computed by counting the entire number of
concepts C and the entire number of relations E in IKG. Based
on the Knowledge Induction Process, the graph starts with the
prose knowledge graph G0. It is transformed into IKG1 after
reading RTX1, and then into IKG2 after reading RTX2 until it
reaches IKGfinal after reading all the RTXi. At each state, the
size of IKG may be increased and knowledge may be
augmented. The knowledge growth rate λ is computed by (2)

where |IKGi| is the IKG size after reading RTXi and |G0| is the
prose knowledge graph size.

 i

 G
 (2)

The knowledge overload rate γ may also be increased, and
it can be determined by (3):

 i G

 G
 (3)

The amount of information that can be obtained from the
knowledge graph can also be calculated by measuring the
Entropy δ of the knowledge graph, where high entropy
indicates that the knowledge graph has a high amount of
information and vice versa. Based on [22], δ can be computed
by (4):

 -∑ p
i
log(p

i
)

 n

i=

 (4)

Where pi is the degree distribution probability of concept ci
in the knowledge graph that can be determined by (5):

 (5)

Where, di is the degree of concept ci and |E| is the entire
number of the relations in the knowledge graph. δ is divided
by log(n) to obtain a measure between 0 and 1, where n is the
entire number of the knowledge graph concepts.

B. Knowledge Organization

It is obvious that the existence of relationships amongst
concepts in the prose influences comprehension. The greater
the increase in the relations among the concepts, the higher the
understanding of the relations between them. This falls under
a graph organization notion that can be calculated by the size
of the giant component [23] that can be calculated using (6):

 C
 (6)

Where |C`| is the number of connected concepts forming a
giant component and |C | is the total number of concepts in the
knowledge graph. The relation amongst the concepts and their
neighbors in the knowledge graph can be calculated by the
cluster coefficient β [24]. Based on [25], β is obtained by
using (7):

 =∑
2NICi

di(di-1)

n

i=

 (7)

Where NICi is the neighbors‟ interconnection coefficient
of concept ci, which denotes to the number of the sentential
relations between the first neighbors of concept ci, and di is the
sentential relations of concept ci which counts the first
neighbors of concept ci. The graph is considered highly
clustered when the value is towards 1. The knowledge graph
density ρ is another way to study the Knowledge graph
organization to explore the completion and the integrations
amongst concepts [26]. A complete knowledge graph contains
all possible sentential relations E and density equals 1. The
graph density ρ is calculated by (8) [27].

 (8)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

343 | P a g e

www.ijacsa.thesai.org

Calculating the knowledge growth rate λ, the knowledge
overload γ rate, and the cluster coefficient β require a reading
of the external consultation to perform their calculations.
Thus, their values are zero before reading the external
references. The following example explains the influence of
reading three reference texts with an Ontology Engine for
adding knowledge associations amongst the prose concepts.
The comprehension model evaluation for the proposed metrics
before using external consultations in Fig. 3(b), and after
using them in Fig. 3(f), respectively, is shown in Table II.

TABLE II. EXAMPLE OF THE COMPREHENSION ENGINE EVALUATION BEFORE

AND AFTER USING REFERENCE EXTERNAL CONSULTATION

Before using

external

consultations

after using

external

consultations

Growth λ 0 2.5

Overlap γ 0 1.5

Entropy 1.5 0.96

Giant Component Size GC 0.5 1

Cluster Coefficient 0 0.92

Density ρ 0.07 0.21

V. EXPERIMENT

A. Content Material

An experiment was conducted on three prose texts LTX,
and eight concepts were selected arbitrarily as the list of the
prose concepts CL from each LTX. Wordnet [28] is a reliable
Ontology Engine that has been used by many researchers in
this area. It is a vast lexical database introduced by George
Miller at the Cognitive Science Laboratory at Princeton
University that is used as a dictionary of word senses and
semantic relations between words [29-31]. This experiment
was based on Wordnet Version 1.7 as a general reference text.

The used benchmark reference text articles for this paper
were derived from https://en.wikipedia.org. Wikipedia articles
were employed as RTX. For each LTX, a number of articles
are taken from Wikipedia to represent each concept in CL. For
the article allocation, the method presented in [32] to
automatically select Wikipedia articles was chosen. Table III
displays the selected LTXi, as well as the CL for each prose.

For each LTXi, the sentential relation among the concepts
in its CL is represented in the prose knowledge graph G0.
Through the Knowledge Induction Process, the system builds
a set of Illuminated Knowledge Graphs IKGi by scanning all
of the RTX, where IKGi is the sentential relation amongst the
concepts in CL after reading a new RTXi. The complete list of
the used reference text articles can be found in Appendix
Table V. All the references texts were accessed on July 24,
2019.

B. Results

This section presents the analysis of information gained
from the Illuminated Knowledge Graph IKGi of prose LTXi in
the Knowledge Induction Process.

TABLE III. LIST OF THE PROSES USED IN THE EXPERIMENT

 Prose Title List of prose concepts CL

1st prose

LTX1

 „Ethane chemical

compound‟[33]

[„Ethane‟, „hydrocarbon‟, „hydrogen‟,

„carbon‟, „chemical, „petroleum‟,

„carbonization‟, „coal‟]

2nd prose

LTX2

 „New Test for Zika

OKed‟ [34]

[„Zika‟, „infection‟, „dengue‟,

„chikungunya‟, „virus‟, „aedes‟,

„mosquito‟, „antibody‟]

3rd prose

LTX3

 „Anesthesia gases are

warming the planet‟

[35]

[„Anesthetic‟, „carbon‟, „climate‟,

„oxide‟, „desflurane‟, „isoflurane‟,

„sevoflurane‟, „halothane‟]

The average time needed to read the prose, the eight
references attached to the prose and identification of the
highest familiarity of sentential relations connecting the prose
concepts in each reference are as the following: 4 minutes and
16 seconds for the 1st prose (LTX1), 5 minutes and 18 seconds
for the 2nd prose (LTX2), and 2 minutes and 7 seconds for the
3rd prose (LTX3). As noticeable, the machine spends a few
minutes to read each prose with its related references.

Fig. 9 displays the information growth λ per knowledge
graph in each prose LTXi. The x-axis represents the prose
knowledge graph G0 and the Illuminated Knowledge Graph
IKGi after reading each reference text RTXi, whereas the y-
axis represents the growth rate λ. In LTX1, there is a gradual
increase in the information after reading reference texts RTX1
to RTX6, even though no new information was inserted after
reading RTX7. Interestingly, it started to increase again after
reading RTX8. In LTX2, the information kept growing
gradually from reading RTX1 to RTX8. In LTX3, information
increases varied. The information grew after reading RTX1,
while no new information was added after reading RTX2 to
RTX4. It increased again after reading RTX5 and RTX6,
although no new information was inserted after reading RTX7
and RTX8. This leads to the conclusion that reading references
in some cases affect the increase of the knowledge positively,
while in other cases these yield no effect.

The information overload rate γ in the knowledge graph is
shown in Fig. 10. Here, the x-axis represents the prose
knowledge graph G0 and the Illuminated Knowledge Graph
IKGi after reading each reference text RTXi, and the y-axis
represents the overload rate γ. Similarly, it is clear that
information overload varies from being slight to high in the
three proses LTX after reading new reference texts RTXi.

Fig. 9. Information Growth Rate "λ” Per the Knowledge Graphs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

344 | P a g e

www.ijacsa.thesai.org

Fig. 10. Information Overload Rate γ Per the Knowledge Graphs.

Fig. 11 represents the entropy δ per each knowledge graph.
The x-axis locates for both the prose knowledge graph G0 and
the Illuminated Knowledge Graph IKGi after reading each
reference text RTXi, and the y-axis is the entropy δ. It was
observed that δ in the three proses LTX started with low
values, and then it bounced to high values after reading the 1st
reference text RTX1. This implies that RTX1 in the three
proses LTX contributed to adding a high amount of
information. Then, in LTX1 the entropy value increased a little
after having read RTX2 to RTX6 and RTX8. This means that
texts RTX2 to RTX6 and RTX8 inserted a low amount of
information, while no new information was inserted when
reading RTX7. In LTX2, there was a little increase in entropy
after reading texts RTX2 to RTX8; thus, a limited amount of
information was inserted. In LTX3, there was also a slight
increase in the entropy after reading RTX2 and RTX5; a low
amount of information was inserted here, and no new
information was added after having read texts RTX3 to RTX4,
and RTX6 to RTX8. This means that some of the reference
texts are highly effective in adding information, while other
texts have little effect.

Fig. 12 represents the amount of information that was
gained due to contributions of the prose LTX, the reference
text RTX, and the Ontology Engine OE concepts in the three
proses separately. As shown in Fig. 12(a), for LTX1, the
entropy value of OE concepts bounced to a greater value than
that of the LTX and RTX concepts after reading texts RTX1 to
RTX8. This finding suggests that the amount of information
inserted by the contribution of OE concepts was higher than
the amount inserted by the contribution of the LTX and RTX
concepts. In Fig. 12(b), for LTX2, the highest entropy value of
the LTX, OE, and RTX concepts varied after reading RTX1 to
RTX8; this indicated that the highest amount of information
obtained by the contribution of the LTX, OE, or RTX
concepts was not concentrated on the contribution of any one
of them. In Fig. 12(c), for LTX3, the entropy value of the OE
concepts was the highest amongst the LTX and RTX concepts
after having read RTX1 to RTX8. This means that the amount
of information inserted by the contribution of the OE concepts
is higher than the amount inserted by the contribution of the
LTX and RTX concepts. This explains the importance of the
LTX, RTX, and OE concepts when inserting information,
showing that none of these concepts show greater gains than
any other of these concepts.

Fig. 11. Entropy and Per the Knowledge Graphs.

Fig. 12. Break Down of the Entropy and Per the Knowledge Graphs for the

Three LTX.

Fig. 13 shows the size of the giant component of the
knowledge graph both before and after reading the reference
texts RTXi. The x-axis refers to the prose knowledge graph G0
and the Illuminated Knowledge Graph IKGi after reading each
reference text RTXi, and the y-axis is the size of the giant

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

345 | P a g e

www.ijacsa.thesai.org

component GC of the knowledge graph. When the process
reads a new RTXi, the size of the giant component increases.
It is observable that for LTX1, the giant component size
moved from 0.25 to 0.85 after reading RTX1, and growing to
as high as 1 after reading RTX8. For LTX2, the giant
component size was 0.25 in the prose knowledge graph G0,
and after reading RTX1, it reached to 1 and the concepts were
fully connected. Meanwhile in LTX3, the giant component
size bounced from 0 to 0.85 after reading RTX1 and arrived at
1 after reading RTX3. It means that there was an enhancement
of prose comprehension by reading reference texts for
connecting the prose concepts in a giant component and
illuminating sentential relations amongst them.

The breakdown of the total number of concepts C and the
number of the sentential relations E in the prose knowledge
graph G0 and the Illuminated Knowledge Graph IKGfinal for
each prose LTXi are shown in Table IV, wherein the concepts
are from the prose LTX, the reference text RTX, and/or the
Ontology Engine OE. As can be seen, there is a great variance
in the number of concepts and the number of sentential
relations between G0 and IKGfinal. Increasing the size may
affect the information size positively. Therefore, increasing
the IKGfinal size is a significant sign of the overflowing
information in the IKGfinal, which can further support
reinforcement of the prose comprehension.

Fig. 13. Giant Component Size GC per the Knowledge Graphs.

TABLE IV. BREAK DOWN OF THE TOTAL NUMBER OF SENTENTIAL RELATION

AND CONCEPTS IN THE THREE PROSES

1st prose

LTX1

2nd prose

LTX2

3rd prose

LTX3

 G0 IKGfinal G0 IKGfinal G0 IKGfinal

Sentential

relation
1 168 1 90 0 33

Number of

prose LTX

concepts

8 8 8 8 8 8

Number of

reference

concepts

0 12 0 16 0 5

Number of

Ontology

Engine OE

concepts

0 63 0 21 0 11

Moreover, Fig. 14 illustrates the clustering coefficient β
obtained in each knowledge graph. The x-axis refers to the
prose knowledge graph G0 and the Illuminated Knowledge
Graph IKGi after reading each reference text RTXi, whereas
the y-axis represents the clustering coefficient β. It is clear that
some of the graphs are highly clustered; this is due to the fact
that many of the concepts within these graphs are highly
related to one another. For LTX1, the graph tended to be
highly clustered, especially after reading RTX1, RTX4, RTX5
and RTX8. In LTX2, the cluster coefficient bounced to a
higher value after reading RTX2, lowered slightly after
reading RTX3, then slightly increased after reading RTX4 to
RTX8. In LTX3, the cluster coefficient, which was higher
when reading RTX1 became stable after reading RTX2 to
RTX5. It increased again after reading RTX6 and then returned
to being steady after reading RTX7 and RTX8. This means that
there is enhancement of comprehension when some of the
reference texts increase clustering of the concepts. In cases
where the texts exercise a limited effect on clustering of the
concepts, enhancement of comprehension is not observed.

Fig. 15 gives us a view of the integration amongst the
concepts included within each knowledge graph. The x-axis is
the prose knowledge graph G0 and the Illuminated Knowledge
Graph IKGi after reading each reference text RTXi, and the y-
axis is the graph density ρ. As the graph reflects, in the three
proses LTX, ρ showed a variance amongst the reference texts
when inserting sentential relations amongst the concepts,
bringing them close together.

Fig. 14. Cluster Coefficient Per the Knowledge.

Fig. 15. Density ρ Per the Knowledge Graphs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

346 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

The objective of this paper was to enhance prose
comprehension by reducing the time expended on
understanding the text and increasing the quality of
comprehension. Accordingly, the comprehension engine was
developed to read several reference texts, to allocate a
summary of the highest familiarity knowledge amongst a set
of target concepts in each reference and to provide lexical
associations among the concepts by using an Ontology
Engine. The comprehension engine was evaluated through set
of graph metrics. The output performance of the
comprehension engine demonstrates the efficiency of the
compression engine in reducing reading time and increasing
the quality of comprehension. Furthermore, the proposed
engine can have academic implications on students or
academic learners by providing them with the most familiar
and lexical knowledge that can help in prose comprehension
in a short time. Although the proposed engine may help
readers to increase their knowledge and improve prose
comprehension, at times this can causes mess and give rise to
„too much knowledge‟ in prose comprehension, thus
challenging preservation and retention by human memory.
Future work will be carried out to develop a second phase of
the comprehension engine that efficiently select the less
difficult to understand knowledge from the augmented
knowledge and present it to readers as an enhanced text. In
addition, the impact of using the comprehension engine in
improving the comprehension through evaluating the
comprehension rate on participants and make a comparison
between the two-phase results will be studied.

REFERENCES

[1] R. G. Ortego and I. M. Sánchez, "Relevant parameters for the
classification of reading books depending on the degree of textual
readability in primary and compulsory secondary education (cse)
students," IEEE Access, vol. 7, pp. 79044-79055, 2019.

[2] N. S. Al Madi, "A Study of Learning Performance and Cognitive Activity
During Multimodal Comprehension Using Segmentation-integration
Model and EEG," Kent State University, 2014.

[3] R. P. Carver, "Reading rate: Theory, research, and practical implications,"
Journal of Reading, vol. 36, no. 2, pp. 84-95, 1992.

[4] R. P. Carver, "Rauding theory predictions of amount comprehended under
different purposes and speed reading conditions," Reading Research
Quarterly, pp. 205-218, 1984.

[5] A. P. Widyassari, S. Rustad, G. F. Shidik, E. Noersasongko, A. Syukur,
and A. Affandy, "Review of Automatic Text Summarization Techniques
& Methods," Journal of King Saud University-Computer and Information
Sciences, 2020.

[6] H. Van Lierde and T. W. Chow, "Learning with fuzzy hypergraphs: A
topical approach to query-oriented text summarization," Information
Sciences, vol. 496, pp. 212-224, 2019.

[7] Á. Hernández-Castañeda, R. A. García-Hernández, Y. Ledeneva, and C. E.
Millán-Hernández, "Extractive Automatic Text Summarization Based on
Lexical-Semantic Keywords," IEEE Access, vol. 8, pp. 49896-49907,
2020.

[8] M. N. Azadani, N. Ghadiri, and E. Davoodijam, "Graph-based biomedical
text summarization: An itemset mining and sentence clustering approach,"
Journal of biomedical informatics, vol. 84, pp. 42-58, 2018.

[9] T. A. Fuad, M. T. Nayeem, A. Mahmud, and Y. Chali, "Neural sentence
fusion for diversity driven abstractive multi-document summarization,"
Computer Speech & Language, vol. 58, pp. 216-230, 2019.

[10] J. Ding, Y. Li, H. Ni, and Z. Yang, "Generative Text Summary Based on
Enhanced Semantic Attention and Gain-Benefit Gate," IEEE Access, vol.
8, pp. 92659-92668, 2020.

[11] L. Cagliero, L. Farinetti, and E. Baralis, "Recommending personalized
summaries of teaching materials," IEEE Access, vol. 7, pp. 22729-22739,
2019.

[12] T. Yu, J. Li, Q. Yu, Y. Tian, X. Shun, L. Xu, L. Zhu, and H. Gao,
"Knowledge graph for TCM health preservation: design, construction, and
applications," Artificial Intelligence in Medicine, vol. 77, pp. 48-52, 2017.

[13] A. Babour, J. I. Khan, and F. Nafa, "Deepening Prose Comprehension by
Incremental Free Text Conceptual Graph Mining and Knowledge," in
2016 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), 2016, pp. 208-215: IEEE.

[14] J. I. Khan and M. S. Hardas, "Does sequence of presentation matter in
reading comprehension? a model based analysis of semantic concept
network growth during reading," in 2013 IEEE Seventh International
Conference on Semantic Computing, 2013, pp. 444-452: IEEE.

[15] M. Hart. (1971). Project Gutenberg. Available: http://www.gutenberg.org/,
Accessed on: 21 July, 2017.

[16] A. Agrawal and A. An, "Unsupervised emotion detection from text using
semantic and syntactic relations," in 2012 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology, 2012,
vol. 1, pp. 346-353: IEEE.

[17] D. Chandran, K. Crockett, D. Mclean, and Z. Bandar, "FAST: A fuzzy
semantic sentence similarity measure," in 2013 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 2013, pp. 1-8: IEEE.

[18] H. Takahashi, "An approximate solution for the Steiner problem in
graphs," 1980.

[19] L. Kou, G. Markowsky, and L. Berman, "A fast algorithm for Steiner
trees," Acta informatica, vol. 15, no. 2, pp. 141-145, 1981.

[20] A. Babour, "A Computational Mimicry of the Knowledge Augmentation
Process in Comprehension based Learning," Kent State University, 2017.

[21] M. A. Ragab and A. Arisha, "Knowledge management and measurement:
a critical review," Journal of knowledge management, 2013.

[22] C. E. Shannon and W. Weaver, The Mathematical Theory of
Communication, by CE Shannon (and Recent Contributions to the
Mathematical Theory of Communication), W. Weaver. University of
illinois Press, 1949.

[23] R. Hekmat and P. Van Mieghem, "Study of connectivity in wireless ad-
hoc networks with an improved radio model," in Proc. of WiOpt, 2004,
vol. 10.

[24] P. Drieger, "Semantic network analysis as a method for visual text
analytics," Procedia-social and behavioral sciences, vol. 79, no. 2013, pp.
4-17, 2013.

[25] D. J. Watts and S. H. Strogatz, "Collective dynamics of „small-
world‟networks," nature, vol. 393, no. 6684, pp. 44 -442, 1998.

[26] N. S. Al Madi and J. I. Khan, "Is learning by reading a book better than
watching a movie? a computational analysis of semantic concept network
growth during text and multimedia comprehension," in 2015 International
Joint Conference on Neural Networks (IJCNN), 2015, pp. 1-8: IEEE.

[27] T. F. Coleman and J. J. Moré, "Estimation of sparse Jacobian matrices and
graph coloring blems," SIAM journal on Numerical Analysis, vol. 20, no.
1, pp. 187-209, 1983.

[28] G. A. Miller, "WordNet: a lexical database for English," Communications
of the ACM, vol. 38, no. 11, pp. 39-41, 1995.

[29] S. Menaka and N. Radha, "Text classification using keyword extraction
technique," International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, no. 12, pp. 734-740, 2013.

[30] J.-M. Chen, M.-C. Chen, and Y. S. Sun, "A novel approach for enhancing
student reading comprehension and assisting teacher assessment of
literacy," Computers & Education, vol. 55, no. 3, pp. 1367-1382, 2010.

[31] J. Kamps, M. Marx, R. J. Mokken, and M. De Rijke, "Using WordNet to
measure semantic orientations of adjectives," in LREC, 2004, vol. 4, pp.
1115-1118: Citeseer.

[32] A. Babour, F. Nafa, and J. I. Khan, "Connecting the dots in a concept
space by Iterative reading of Freetext references with Wordnet," in 2015
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), 2015, vol. 1, pp. 441-444: IEEE.

[33] Ethane, Encyclopaedia Britannica [Online], 2013, https://www.britannica.
Com/science/ethane, Accessed on: July 24, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

347 | P a g e

www.ijacsa.thesai.org

[34] K. Grens. (Mar 22, 2016). New Test for Zika OKed. Available:
https://www.the-scientist.com/the-nutshell/new-test-for-zika-oked-33858,
Accessed on: July 24, 2017.

[35] M. DeMarco. (April 7, 2015). Anesthesia gases are warming the planet.
Available: https://www.sciencemag.org/news/2015/04/anesthesia-gases-
are-warming-planet, Accessed on: July 24, 2017.

APPENDIX

LIST OF THE REFERENCE TEXT ARTICLES USED IN THE EXPERIMENT.

Title Link

Ethane https://en.wikipedia.org/w/index.php?title=Ethane&oldid=784178139

Hydrocarbon https://en.wikipedia.org/w/index.php?title=Hydrocarbon&oldid=797145615

Hydrogen https://en.wikipedia.org/w/index.php?title=Hydrogen&oldid=794824238

Carbon https://en.wikipedia.org/w/index.php?title=Carbon&oldid=797606653

Chemical substance https://en.wikipedia.org/w/index.php?title=Chemical_substance&oldid=797496319

Petroleum https://en.wikipedia.org/w/index.php?title=Petroleum&oldid=797608302

Carbonization https://en.wikipedia.org/w/index.php?title=Carbonization&oldid=795078223

Coal https://en.wikipedia.org/w/index.php?title=Coal&oldid=797262457

Zika fever https://en.wikipedia.org/w/index.php?title=Zika_fever&oldid=797239605%20130

Infection https://en.wikipedia.org/w/index.php?title=Infection&oldid=797795424

Dengue fever https://en.wikipedia.org/w/index.php?title=Dengue_fever&oldid=798056254

Chikungunya https://en.wikipedia.org/w/index.php?title=Chikungunya&oldid=797661262

Virus https://en.wikipedia.org/w/index.php?title=Virus&oldid=797985669

Aedes https://en.wikipedia.org/w/index.php?title=Aedes&oldid=797888558

Mosquito https://en.wikipedia.org/w/index.php?title=Mosquito&oldid=797321614

Antibody https://en.wikipedia.org/w/index.php?title=Antibody&oldid=797925412 119

Anesthetic https://en.wikipedia.org/w/index.php?title=Anesthetic&oldid=796835414

Climate https://en.wikipedia.org/w/index.php?title=Climate&oldid=797528936

Oxide https://en.wikipedia.org/w/index.php?title=Oxide&oldid=789414027

Desflurane https://en.wikipedia.org/w/index.php?title=Desflurane&oldid=797545466

Isoflurane https://en.wikipedia.org/w/index.php?title=Isoflurane&oldid=797545327 124

Sevoflurane https://en.wikipedia.org/w/index.php?title=Sevoflurane&oldid=797688679

Halothane https://en.wikipedia.org/w/index.php?title=Halothane&oldid=797545700

