
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

421 | P a g e

www.ijacsa.thesai.org

B-droid: A Static Taint Analysis Framework for

Android Applications

Rehab ALmotairy1, Yassine Daadaa2

College of Computer and Information Sciences

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Saudi Arabia

Abstract—Android is currently the most popular smartphone

operating system in use, with its success attributed to the large

number of applications available from the Google Play Store.

However, these contain issues relating to the storage of the user’s

sensitive data, including contacts, location, and the phone’s

unique identifier (IMEI). Use of these applications therefore risks

exfiltration of this data, including unauthorized tracking of

users’ behavior and violation of their privacy. Sensitive data

leaks are currently detected with taint analysis approaches. This

paper addresses these issues by proposing a new static taint

analysis framework specifically for Android platforms, termed

“B-Droid”. B-Droid is based on static taint analysis using a large

set of sources and sinks techniques, side by side with the fuzz

testing concept, in order to detect privacy leaks, whether

malicious or unintentional by analyses the behavior of

Applications Under Test (AUTs). This has the potential to offer

improved precision in comparison to earlier approaches. To

ensure the quality of our analysis, we undertook an evaluation

testing a variety of Android applications installed on a mobile

after filtering according to the relevant permissions. We found

that B-Droid efficiently detected five of the most prevalent

commercial spyware applications on the market, as well as

issuing an immediate warning to the user, so that they can decide

not to continue with the AUTs. This paper provides a detailed

analysis of this method, along with its implementation and

results.

Keywords—Static analysis; taint analysis; fuzz testing; android

applications; mobile malwares; data flow analysis

I. INTRODUCTION

Android‟s market share of mobile phones grew to 74.6%
in 2020 [1]. However, there remains considerable concern that
popular Android apps tend to leak sensitive information about
the user, i.e. phone number, the ID of the mobile device,
location, and details of the Subscriber Identity Module (SIM)
card. In addition to violating the privacy policies of the user,
this can potentially lead to the user‟s behavior being
unknowingly tracked. Even precisely programmed apps may
suffer from these leaks. A major contributor to user data leaks
is advertisement libraries, included by some applications to
earn money, often enabling the applications to be free to use
[2]. These libraries permit advertisements to target a user's
private information and identify him or her through unique
identifiers (e.g. the MAC-address and IMEI) as well as
location or country [3]. However, many app developers are
unaware of the scale to which user‟s privacy can be
compromised and the large amounts of data potentially held
by these ad libraries.

A number of steps have been previously undertaken to
ensure the security of apps available to users, but this
procedure is complex. For example, developers can upload a
new app to the Google Play Store, where it is checked by the
Google Bouncer [4]. This analyses the security of the app by
conducting a time-limited dynamic analysis, with the aim of
identifying any malicious content or behavior. This represents
welcome progress, but has, offered only limited success. The
majority of mobile platforms, including Android, limit the
privileges of apps with a permission model, one that should
prevent such apps from gaining access to sensitive data.
However, this does not always prove effective, resulting in the
release of sensitive data [2]. Such data leaks may not only
occur in response to malicious apps, but also be due to an
app‟s failure to adhere to secure coding practices [4]. It is
therefore vital to analyze the data flow within the device,
ensuring firstly, sensitive data does not cross established
boundaries and secondly, that any untrusted aspect is unable to
enter trusted data repositories. This type of analysis is known
as taint analysis, i.e. any untrustworthy data source is
considered to be tainted. Taint analysis has been conducted on
Android systems by several researchers.

This current paper focuses on establishing whether data
can flow from a sensitive data source to an undesired data
sink. For example, a smartphone holds data that should be
private to the user, i.e. personal messages, unique identifier
and banking details. An undesired sink can be set up to divert
the network Application Programming Interface (API) or
applications that cannot be trusted. This study‟s definition of a
data source is one that is external to the app, and from which
the app reads data (i.e. a device‟s ID, along with contacts,
photographs, and current location). A data sink is a resource
external to the app to which the app writes data (i.e. the
Internet, outbound text messages and the file system).

II. BACKGROUND AND RELATED WORK

In the following sections, we provide some concepts which
are relevant to our research and lists previous and related work
in the field of static taint analysis.

A. Background

This section provides the theoretical background to the
present study, including an overview of Android systems, taint
analysis, mobile malwares, and the fuzz testing concept.

1) Android overview: This study focuses on Android,

which is currently the most popular mobile platform globally,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

422 | P a g e

www.ijacsa.thesai.org

being ranked as the premier operating system for smartphones

in 2020 [1]. Android apps generally use four types of

components, either on their own or in combination. Fig. 1

(below) illustrates the possible interactions between these

components.

 An Activity refers to the parts of the Android app
visible to the user, thus forming the user interface.

 A Service performs tasks that are time intensive but
invisible to the user, i.e. they run in the background.

 System events and user-specific events are received by
the Broadcast Receiver.

 The Content Provider allows additional apps or
components to access unstructured data, functioning as
a standard interface.

Fig. 1. Overview of Basic Concepts of Android Apps.

2) Taint analysis overview: Taint analysis can be either

dynamic or static. Static analysis can be described as a method

for program analysis in which the source code (or bytecode) is

analyzed but not executed. On the other hand, dynamic

analysis involves analyzing a code or application by means of

its execution, i.e. analyzing an Android app by running it on

an Android device.

Examples of dynamic taint analysis include CopperDroid
[5], TaintDroid [3], DroidScope [6] and Aurasium [7].
However, it should be noted that the rate of execution of
dynamic analysis is less advanced and deficient in code
coverage [8] in comparison to static taint analysis.

Static taint analysis lacks runtime overheads, but can
detect privacy leaks without running the application [2]. Static
taint analyses do not contain the same problems as dynamic
taint analyses, but they have their own issues, i.e. they lack the
precision required to approximate runtime objects and abstract
from the inputs of a program [9]. Much work has been
invested in static taint analysis, with over half focusing on
points-to-based methods and data flow ([9], [10], [11], [12],
[13]). Little research has previously been conducted into
analyzing data flows statically in a system comprised of
multiple applications. This is significant, as the data‟s path to
a sink might involve passing through one or more
components. The advantage of static analysis is that all of the
possible execution paths can be explored, not just those
invoked during execution. This is beneficial when conducing
security analysis, due to breaches of security frequently
occurring through unforeseen methods. However, it may not
be easy to predict how a program will behave if it is not
actually executed. Furthermore, it has been proven that it is

not possible to predict all of the means by which an arbitrary
nontrivial program may be executed. Thus, the behavior of
programs cannot always be correctly predicted. Nonetheless,
static analysis remains valuable, as it provides some
approximation of how different parts of a program may
behave when executed [14].

3) Mobile malwares: Skycure [15] have reported that as

many as one in three mobile devices has a medium to high risk

of disclosing its user‟s data. Furthermore, in comparison with

iOS devices, Android devices demonstrate almost twice the

level of risk of containing malware. This section discusses the

most common and damaging malwares impacting on mobile

phones.

a) Trojan: This is defined as software that works in the

background, acting maliciously, but regarded by the user as

harmless. A Trojan assists hacker by carrying out actions

facilitating attacks by weakening the system security. One

example is FakeNetflix, which tricks users into believing they

are downloading the official version of Netflix, but instead

installs a Trojan on the phone, allowing hackers to access an

Android user‟s credentials for their Netflix account.

b) Spyware: This is further common type of malware,

consisting of software allowing its author to „spy‟ on the user

by facilitating unauthorized access to data or collecting

information. It runs in the background of the system, where it

remains unnoticed by the device user. Two examples of

spyware are Nickspy and GPSSpy, both of which run on

Android devices. They are able to access the user‟s confidential

information and transmit it to the author of the spyware.

4) Fuzz testing: Fuzz testing or fuzzing [16] is an

effective technique for finding security vulnerabilities in

software or computer systems. It is a technique traditionally

used for testing software and can be fully or semi-automated.

It supplies unexpected, invalid, or random data as inputs to

applications, which can then be monitored to determine

whether it engages in unexpected behavior, crashes, or fails

built-in code assertions. Applications under fuzz testing fail

when they behave in a manner their developers neither

intended nor anticipated. There are four categories of failure

modes in traditionally applied fuzzing:

a) Crashes

b) Endless loops

c) Resource leaks or shortages

d) Unexpected behavior

These failure modes vary, based on factors including the
type of system or software being tested and the underlying
operating system. In this current study, B-Droid was designed
and implemented according to the last failure mode category,
i.e. unexpected behavior [17]. The consequences depend on
the function and purpose of the software, including when and
where it is operated. In general, the key to detecting malware
is to place it in an ideal environment, followed by providing it
with information and monitoring its behavior.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

423 | P a g e

www.ijacsa.thesai.org

B. Related Work

The literature has suggested that a large body of work is
related to static taint analysis approaches, each of which aims
to resolve one or more of the many problems facing program
analysts when dealing with Android applications. In this
section we briefly review some of the existing solutions.

Arzt et al. [9] used the FlowDroid static taint analysis
approach to simultaneously evaluate efficiency and precision.
This is also the tool we used in our own approach. The results
showed that FlowDroid only took a minute to find several
security breaches for 500 real world applications, along with
1000 malware samples that were analyzed for 16 seconds per
minute.

Bintaint [18] addressed the binary vulnerability mining
problem using static taint analysis, so generating the Taint
Control Flow Graphs (TCFG). This proposed tool is evaluated
employing different compatibility levels of machines using
X86 programs for different architecture embedded devices.
The outcomes indicated that the proposed Bintaint framework
is capable of defeating all the computational overheads of
conventional methodologies, as well as addressing all
vulnerability issues, without false negativity.

Precise-DF [19] is a novel static analysis method of
detecting the taint flow in android apps, through the
methodology of reusing the DidFail static analysis tool for fast
modular analysis. This approach also uses the Boolean
formulas for the DidFail‟s flow equations, which can help to
record the conditions of the flow control for all possible taint
flow programs. This approach is novel, as it does not depend
on traditional taint flow analysis approaches to evaluate code
and using reflection of apps. This method is more involved in
providing security to the android apps up to the next level.
Taint analysis to GDPR [20] formulizes how taint analysis can
be stretched out and enlarged, in order to identify the likely
unintended leakage of sensitive data. This study applies the
standard static taint analysis methodology to detect any
potential data breach, as well as the reconstruction of the flow
for the data breach, with the aim of identifying how a breach
could take place in relation to the flow. The results
demonstrated that flows are not permitted by the privacy
policies.

STAR [21] is a prototype designed to address the context-
sensitive, flow-sensitive, and multi-source sensitive static taint
analysis designed to track the information leaks in android
apps. Its novel approach uses two concepts to achieve the
performance and scalability of the analysis. The first approach
employs the novel summarization technique, beneficial for
analyzing the scale for the number of source APIs. The second
approach combines techniques in order to establish an
efficient propagation of the abstract states, both within and
across the method boundaries. FastDroid [22] is a tool
proposed as a security measure tool for android apps, being
capable of providing efficiency and precision in the detection
of sensitive data leaks. Three test suites were used to evaluate
the performance of the FastDroid tool, with the results
demonstrating high levels of precision and recalls, as well as
effective efficiency in the results achieved. FastDroid differs
from conventional approaches due to its technique of using

propagation of taint values rather than the data flow values
employed in traditional approaches. This resulted in improved
efficiency.

COVA [23] this study offers a comprehensive level
qualitative analysis for the evaluation of increased precision in
static taint analysis. The study used the taint flows reported in
FlowDroid [9] in 1,022 real world apps for android, with the
results showing some key findings relating to conditions under
which taint flows occur.

The analysis showed that specific settings (i.e.
environmental setting, user interaction and I/O) are taint flows
that are also involved in some specific conditions. BackFlow
[24] is a context-sensitive taint flow reconstructor tool that
builds paths linking sources to sinks. The results revealed that
when BackFlow generates a taint graph for an injection
warning, there is empirical proof that such an alert is a true
alarm. DepTaint [25] implements a form of static taint
analysis that analyzes the taint variables propagated by
implicit flows and explicit flows. DepTaint greatly exceeds
the static checker of LLVM in both defining taint variables
and achieving more fine-grained pathways of taint
propagation. ANTaint [26] improves scalability. An
experiment involving 60 cases demonstrated that ANTaint is
appropriate for 95% of cases, by extending the call graph and
applying taint propagation on demand for libraries.

III. ANALYSIS METHOD

When designing and implementing a static taint analysis
for detecting malware, it is first vital to consider a robust and
native Android anti-malware platform capable of running on
smartphones rather than on a third-party device i.e. a computer
or laptop. This requires a platform that is efficient modular,
automated and static. Our platform consists of three main
stages (De-Obfuscation – Data Flow Analysis – Fuzz Testing).
During the first stage, we de-obfuscate all Android smart-
phone-installed applications if their granted permissions touch
our privacies, in order to obtain their source code. From this
de-obfuscation stage, we go through the static analysis stage
using taint analysis, i.e. a special type of data flow analysis.
We then integrate the open source FlowDroid tool [9] as a
module into our B-Droid platform, followed by double
checking the results during the third stage, using a fuzz testing
module for the Applications Under Test (AUT). This efficient
platform can sandbox any doubtful applications, while
instantly testing their leakage by placing them into a real and
ideal environment and giving them fake privacy information.
The platform then monitors any unacceptable behavior.

The design and implementation of the B-Droid is
accomplished in four layers, as shown in Fig. 2.

 Layer 1: Permissions analysis layer:

This is the main module focusing on the following
functionalities:

a) Reading all installed apps‟ AndroidManifest files.

b) Searching for permissions of interest inside

AndroidManifest files.

c) Preparing the doubtful apps filter.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

424 | P a g e

www.ijacsa.thesai.org

Fig. 2. Proposed Approach.

 Layer 2: Fuzz testing layer:

This layer is comprised of three fuzzing stages:

1) Fuzz testing: This is the base class for the fuzzing

process, containing the parent attributes and methods of fuzz

testing. The main task of the B-Droid is to detect Internet

usage that demonstrates unexpected behavior for doubtful

applications authorized to access the following permissions:

a) Receive SMS.

b) Process outgoing calls.

c) Read phone state.

These doubtful applications will certainly be authorized to
access INTERNET permissions. The B-Droid test case
scenario is organized to enable it to detect the misuse of any of
the above granted permissions.

2) Fuzz testing injectors: This is the base class for the

following injector classes:

a) Fuzz Received SMS: This class model is responsible

for preparing a well-formatted fake SMS.

b) Fuzz Incoming Call: This class model is responsible

for triggering a real incoming call.

c) Fuzz Outgoing Call: This class model is responsible

for initiating a real outgoing call [17].

3) Internet usage analysis: This is the Internet usage

measurement layer, which monitors the sent and received

packet changes in a specific period for AUT.

 Layer 3: De-Obfuscator & Static Analysis:

This layer is comprised of three stages:

4) APK Extractor: This is the module that we developed

to extract the APK file from our doubtful applications list

transferred from layer 1.

5) De-Obfuscator: This is the module responsible for

decompressing the APK file and retrieving its source code

[27]:

a) Resource files (xml, text, icons).

b) Dex files (JAVA, JAR).

6) Flow droid: This is the malware static analysis module

[9] that inspects the AUT code, in order to derive information

concerning path behavior.

 Layer 4: Final Report Generator:

This layer is comprised of 3 stages:

7) Fuzzing report: This is the result obtained after fuzz

testing successfully finalizes its mission on AUT and reports

whether or not the application carries out malicious behavior.

8) Static analysis report: This is the malware analysis

decision maker module, which generates a pass/fail report

about AUT in response to any identified information leakages

or program vulnerabilities.

9) Final report: This compares the two previous reports to

conclude our work and clearly classify whether or not AUT is

malware.

In general, a misinterpretation of a non-malicious activity
as an attack by security system results in a “False Positive”
error. These errors are a critical issue for today‟s
cybersecurity. The design of our anti-malware B-Droid
platform (which uses both taint analysis and fuzz testing
running separately on an AUT) will, as discussed in
Section IV, decrease the false positive rate.

IV. IMPLEMENTATION DETAILS

The following subsections discuss the structure and flow
chart related to each layer.

A. Permissions Analysis and Filter Layer

This section illustrates the structure and flow chart of the
permissions analysis and filter layer. Prior to an examination
of the details of the flow chart, we must first note that we have
selected a set of dangerous permissions (RECEIVED_SMS,
READ_PHONE_STATE, NEW_OUTGOING_CALL) which
can be requested to invade the user's privacy and access
private data by any malicious application [28].

As shown in Fig. 3, the functionalities of this layer can be
divided into two classes: firstly, main activity and secondly,
permissions analysis.

The main activity class is the starting point of the B-Droid
lifecycle. The main functions of this class are to characterize
the application permissions risk and prepare the signatures of
application permissions. These are mined in the
AndroidManifest files of all installed applications. We then
turn to the permissions analysis class functionalities, which
appear in the third process. This process enabled us to
sequentially read the AndroidManifest files of all installed
applications, followed by searching for one or more
permission signatures within our area of interest. The
application is added to the doubtful list if the signature is
found. This layer mechanism resulted in a list of all the
installed doubtful applications that are granted one (or more)
permissions of interest, in addition to the INTERNET
permission.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

425 | P a g e

www.ijacsa.thesai.org

Fig. 3. Permissions Analysis and Filter Flow Chart.

B. Fuzzing Injector Layer

This section examines the issue from the opposing
perspective, i.e. broadcasting fake intents that perform as if
real. Although there are an almost infinite number of possible
inputs to any given application, our specific inputs or fuzzing
injectors focused solely on calls and SMSs. We therefore
prepared a real SMS, along with an incoming call and an
outgoing call, which we termed injectors. These were then
broadcast into the Android application layer to act as bait. B-
Droid is able to identify whether AUT takes any of these baits.

Starting from the end of the previous layer, and after
filtering all installed applications, the process commences
when the user chooses any of the doubtful applications, i.e.
AUT. The first process after selecting AUT is to obtain this
application‟s signature, as outlined above. The signature(s)
stimulate the B-Droid to prepare the matched injector(s) for
the fuzzing process. The following points outline the
structures of the three injectors participating in the fuzzing
scenario.

1) SMS Injector:

 The received SMS injector is initiated by the previous
layer if the AUT permission signature was RECEIVED
_SMS. The first process is to create a PDU-formatted
SMS [29] with content and other metadata.

 The second process consists of creating an implicit
intent to be loaded with the SMS PDU message as
additional data. This intent is simultaneously deployed
with “android.provider.Telephony.SMS_RECEIVED”.
This action is used by most malware applications
interested in SMSs and is coded in AndroidManifest.
The SMS injector is then ready to simulate a real
received SMS content, along with its intent.

 The final process in this injection is to broadcast the
fake SMS. This is done by broadcasting the prepared
intent to the Android application layer, which then
informs the Android OS that a new SMS has been
received within the message body.

2) Incoming call injector: This class implements the

incoming call injector with the help of the telephone

verification service. This service entails returning a call to a

customer on the number provided, in order to verify that: a)

the individual placing the order is the same as the owner of the

phone and b) that the phone is indeed working. We used this

service to perform an automated real incoming call injected

into AUT by integrating Cognalys [30] Android API with our

project. Cognalys provides a telephone verification service

through a multi-platform package that application developers

are able to use in their applications to check mobile phone

numbers.

 The incoming call injector commences as a response to
the AUT permission signature Read_Phone_State.

 The first step in the process was to request Cognalys‟
API service, by registering with the Cognalys server,
then downloading and integrating its Android API with
our Android project B-Droid. When registering with
Cognalys, the user obtains an API key and an Access
Token. These two entities are embedded into the
verification call request, in addition to the cell phone
number receiving the verification call.

 The second process was to process Cognalys‟ incoming
call, i.e. informing the user that we were waiting for an
incoming call by forcing B-Droid to run a waiting view
until the incoming call was successfully received.

 Once the verification call had successfully taken place,
the role of the third process was to read the response of
this verification call, which contained a verification
code and the result code. In our case, we were not
interested in the verification code (i.e. our main task
was to simply receive a real incoming call), but we
were concerned with the result code, which informed
us whether or not the incoming call was successfully
transmitted. If the call is not received (which rarely
happens), we would need to resend a new Cognalys
request until the response result status code was
returned successfully.

3) Outgoing call injector: We turn our attention to the

final injector, i.e. the outgoing call. The simplest and most

efficient means of carrying out a fully automated dynamic real

outgoing call is to find a means of forcing the cell phone to

call its number. If the user tries to call, then a real outgoing

call is made for a period of 4 seconds, which results in the

mobile operator giving a response of “busy number” and the

call is automatically terminated. This led to our injector

simulating a real outgoing call environment for AUT.

 As with previous injectors, the current injector is
initiated as a result of the AUT permission signature
New_Outgoing_Call.

 The first process is to prepare an implicit intent with
the action of calling a phone number and loading it
with a bundle of additional data for the dialed mobile
phone number.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

426 | P a g e

www.ijacsa.thesai.org

 The second process is to take the result of the previous
process, (i.e. the prepared intent), which then initiates a
new process with that intent, i.e. forcing the cell phone
to call itself.

C. Internet usage Analysis Layer

This forms the comparator layer for each of the above
layers, being considered a monitoring layer in the B-Droid
application hierarchy. It is responsible for accounting the
transmitted and received internet packets of AUT before,
during, and following the injection or fuzz testing lifecycle.
The results of this layer directly impact AUT‟s pass/fail
report, i.e. it establishes whether or not this particular AUT is
a malware application.

 The starting point is triggered automatically in a
synchronous manner when any of the doubtful
applications listed is selected by the user, thus entering
the fuzzing scenario.

 The first process of this layer is to obtain and store the
AUT traffic information (i.e. numbers of transmitted
and received packets) prior to fuzzing. This
information is comprised of the offset numbers the
comparison will use to determine whether, by the end
of fuzzing, it increases in number or not.

 During the fuzzing life cycle (approximately 15
seconds for each fuzz test case or injector lifecycle),
the second process is run in the background to count
any transmitted or received packets related to AUT‟s
internet usage.

 By the end of the fuzz test case(s) life cycle(s), the
third process amalgamates the previous process results
with the first process offsets, storing them classified by
the injectors‟ internet usage. It will then be fed back
into the pass/fail report generator, as discussed in the
next section.

D. De-Obfuscator and Static Analysis Layer

The de-obfuscator and static analysis layer inspect the
AUT code to derive information about the app‟s behavior. In
general, static analysis can check for programming errors and
security flaws. However, our platform uses a taint analysis
approach [9], i.e. a special type of data flow analysis. It
follows a sensitive “tainted” object from source to sink,
tracking the relevant tainted data along the path. Taint analysis
can be used to find information leakages and program
vulnerabilities, which form the focus of this paper.

1) APK Extractor: The Android Application Package

(APK) contains the executable application installed on android

phones or tablets. We therefore needed to implement a module

on our B-Droid platform capable of extracting APK from the

installed application. An APK Extractor module was designed

and implemented for this purpose, capable of extracting APKs

from the AUT list. The APKs thus obtained were stored in the

phone‟s internal memory, ready for the next static analysis

stage.

 Initiation of the application leads to processing of a list
of all the applications installed on the device. Our APK
extractor module employs the built-in classes
PackageManager and ApplicationInfo to identify and
retrieve all the APK files of the installed app.

 We accessed the AUT public source directory paths
through our implemented APKExractor Class.

 We then converted these paths to an APK File Object,
storing them in the phone‟s internal memory.

2) De-Obfuscator: This forms our module to decompile

and extract the source code of an Android application

(including XML files and image assets), JAR Packages and

dex files, which work natively on our Android device.

Generally, any Android application consists of 3 main

components:

a) JAVA files: inside which the developer draws his/her

picture.

b) JAR files: all external ready-made libraries the

developer imports into his/her project to use its built-in classes

and functions easily and fairly.

c) Resources files: in this case we have all xml files,

layouts, media files, drawables and AndroidManifestFile.

From the above main components, we implemented three
main decompiler classes in each one: JAVAExtractionWorker
Class, JARExtractionWorker Class, and
ResourceExtractionWorker Class [27].

3) FlowDroid: We used FlowDroid [9] as this implements

a special technique for data flow analysis, known as taint

analysis. Its procedure is to follow data along the programs‟

path of execution, which can be performed both forwards and

backwards. A taint analysis keeps a record of data and its path

from preset data sources to preset data sinks. It is designed

with the objective of discovering a range of existing

connections between provided sources and sinks. It is

frequently used for security-relevant tasks. When the analysis

is focused on the integrity of the application, untrusted inputs

are specified as sources and should not reach sensitive sinks.

Fig. 4 shows the different steps necessary for the analysis of

our AUTs. Once the De-Obfuscation module is ready,

FlowDroid [9] searches for call-back methods and lifecycles,

as well as calls to sources and sinks in the application source

code.

This is achieved by parsing different Android-specific
files, such as the layout XML files, the dex files including the
executable code and the manifest file that specifies the
services, activities, content providers and broadcast receivers
in the application. Furthermore, from the entry point list,
FlowDroid [9] produces the main method. This is the primary
approach for producing a call graph and an Inter-procedural
Control-Flow Graph (ICFG). This detects all sources capable
of being accessed from the given entry points. Starting at these
sources, the taint analysis tracks taints by traversing the ICFG.
This also introduces a function called Taint Wrapping, which
can be used to substitute code unavailable for analysis, so as to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

427 | P a g e

www.ijacsa.thesai.org

optimize performance. Finally, FlowDroid [9] reports all
discovered flows from sources to sinks. The detailed
information is provided in the final report module.

E. Final Report layer

The final destination in our approach is the report
generator layer, in which we conclude our output results,
drawn from the fuzzing and taint analysis modules. It is within
this layer that we make and present our decision over whether
or not the AUT presents malicious behavior.

1) Fuzzing report: The final stage in our fuzzing module

is the pass/fail report generator, which is responsible for

giving the Android user a clear report concerning AUT. In the

case of failure, the report contains the leakage of privacies on

which AUT has eavesdropped. In addition, it states whether

the AUT passed the test without any leakage.

 The starting point commences automatically following
the successful conclusion of the injection life cycle(s)
for all injector(s).

 The output of the “Tracking AUT Traffic Information
after fuzzing” process is requested from the previous
processes to enable a comparison of the traffic
information before and after fuzzing, and to calculate
these changes for each injector during its lifecycle.

 If the AUT traffic information is found to have
increased following the fuzzing lifecycle, it is written
in the failure report as spy evidence, tagged by its
permission signature. As an example, If the AUT
traffic information increased during fuzzing with
Received SMS, then it is written in the report as: This
App Intercepts Your Received SMS, and the same for
the other two properties (Incoming and Outgoing
calls). If the traffic information is the same before and
after the fuzzing lifecycle, then it will be checked as a
clean app.

 The second process stores the results of the pass/fail
report, sending them immediately to the user‟s
notification bar.

2) Static analysis report: This analyzes the apps‟

bytecode and configuration files to find potential privacy

leaks, as follows:

 It searches the application for lifecycle and callback
methods, as well as calls to sources and sinks.

 It then generates the dummy main method from the list
of lifecycle and callback methods. This is then used to
generate a call graph and an inter-procedural control-
flow graph (ICFG), as shown in Fig. 4.

 Starting at the detected sources, the taint analysis then
tracks taints by traversing the ICFG.

 Finally, Taint Analysis reports all discovered flows
from sources to sinks, including full path information.

Fig. 4. Overview of Flowdroid.

V. EVALUATION AND RESULTS

A. Results

We tested B-Droid against a dataset of over 100 Android
applications uploaded on Google Play (or other third-party
Android stores), as shown in Fig. 5. We selected a variety of
application categories (Social Media Apps, Chat Apps, Caller
Id Apps, and pure Mobile Remote Access Trojans (MRATs
Apps)). As show Fig. 8, the results of B-Droid against Social
Media Applications and Chat Applications were negative
(pass) as well as for the Flowdroid tool. However, for Caller
Id and MRATs Applications, the results were positive (fail) in
fuzz testing and a few were positive (fail) in Flowdroid. The
sample of Social Media and Chat Applications is summarized
in Table I and the sample of MRATs and Caller ID
Applications are summarized in Table II. These tables show
the results of the comparison between B-droid and the
prominent taint analysis tool Flowdroid.

 Evaluation 1:

The Caller ID Applications and MRATs we examined
changed their Internet usage behavior during the fuzzing
lifecycle, employing the available mobile Internet data, i.e.
Mobile Data or Wi-Fi. Fig. 7 demonstrates that the number of
bytes transmitted during the fuzzing lifecycle differed in
AUTs. B-Droid reported that all these applications spied on
information related to outgoing calls, incoming calls and
received SMSs (see the sample of these results in Table II).
Furthermore, the majority of MRAT vendors allowed potential
customers to have a free trial of their spy product for 2–7
days. However, B-Droid detected that, even after the ending of
the trial period, these free versions continued to transmit
private data from the mobile phone.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

428 | P a g e

www.ijacsa.thesai.org

Fig. 5. AUT Flow Chart.

TABLE I. SAMPLE OF TESTED SOCIAL MEDIA AND CHAT APPLICATIONS

App

Name
Installed Package

Store/

Provider

B-

droid FlowDroid

Snapchat com.snapchat.android
Google

Play
Pass 0 Leaks

Instagram com.instagram.android
Google

Play
Pass 0 Leaks

Messenger com.facebook.orca
Google

Play
Pass 0 Leaks

Twitter com.twitter.android
Google

Play
Pass 0 Leaks

WhatsApp com.whatsapp
Google

Play
Pass 0 Leaks

Telegram org.telegram.messenger
Google

Play
Pass 0 Leaks

TABLE II. SAMPLE OF TESTED MRATS AND CALLER ID APPLICATIONS

App Name Installed Package
Store/

Provider
B-droid

FlowDroi

d

Android

Auto
com.system.task Xnspy.com Fail 0 Leaks

Sync

Manager

com.android.core.m

ngp

Snoopza.co

m
Fail 0 Leaks

Sync

Service

com.android.core.m

ntq

Hoverwatch.

com
Fail 0 Leaks

Setting com.sec.android.as
my.a-

spy.com
Fail 1 Leaks

Vibo

Caller
com.vibolive Google Play Fail 0 Leaks

CallApp
com.callapp.contact

s
Google Play Fail 0 Leaks

True Caller com.truecaller Google Play Fail 0 Leaks

a. NOTE: (Fail= Positive Pass= Negative)

 Evaluation 2:

As shown in Fig. 6, the fuzz testing of the Caller Id
Applications gave positive (fail) results for all the permissions
of interest to B-Droid (Incoming Call, Outgoing Call, and
Received SMS). End users can be sure that the scope of work
of this type of application is simply to read incoming and
outgoing dialled phone numbers and instantaneously, once it

has access to the Internet, it works outside the phone to
retrieve the names matched with those numbers as stored in
cloud databases.

 Evaluation 3:

Compared to the popular Flowdroid tool, B-droid is able to
detect leaks that the Flowdroid misses. As shown in Table II,
static taint (Flowdroid) is insufficiently accurate with the clear
malicious applications (MRATs) and the results showed that
the majority of these malwares had no leakage (0 Leakage).
Our contribution here is B-Droid, which can work hand-in-
hand with Flowdroid to correct its weaker points, along with
the development team of Static taint (Flowdroid)
recommended a dynamic analysis technique work with
Flowdroid to review its results. So, we see that static analysis
and fuzz testing work hand in hand, such that they further
strengthen their respective findings.

 Evaluation 4:

We have transferred our B-Droid model into a form
useable by smartphone end users, enabling it to achieve the
usability concept as shown in Fig. 9.

Fig. 6. Sample of Caller Id Apps Report.

Fig. 7. Sample of MRATs Apps Report.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

429 | P a g e

www.ijacsa.thesai.org

Fig. 8. Sample of Social Media App Report.

Fig. 9. B-droid Application Interface.

B. Limitations

Malware must be already installed on the mobile and
running, this exposes our data to dangerous and frequent
device failures. We must have a sim card and internet access
to produce accurate results. In addition, due to the limitations
of mobile memory, some applications are incapable of being
decompiled.

VI. CONCLUSION AND FUTURE WORK

The future of applications analysis lies in the Incorporation
of several techniques all must work in tandem to reduce their
respective weaknesses and turn their integration into strength.
In our research, this is the approach we took.

This paper proposes an anti-malware platform, which we
have called B-Droid. This is based on static taint analysis
using source and sink techniques alongside the fuzz testing
concept, in order to analyze the behavior of AUTs against
internet usage during the fuzzing lifecycle. B-Droid enables us
to test malware applications, examine the results and issue an
immediate warning to the user, allowing him to decide
whether or not to continue with AUT malware. B-Droid can
carry out static taint analysis and fuzz testing on all installed
applications after filtering, relative to their permissions. We

tested our approach on a set of real-world apps randomly
selected from the Google Play market (or other third-party
Android stores), which resulted in identifying a number of
leaks. Our results confirmed that a large percentage of Caller
Id applications fail to implement appropriate security
safeguards. B-Droid detected that all MRATs applications
were spying on information related to outgoing and incoming
calls and received SMSs, particularly those that were free. In
addition, these free versions continued to transmit private data
from the mobile phone following the ending of the trial
period. Furthermore, B-Droid efficiently detected five of the
top commercial spyware applications sold on the market.

In the future, we will focus on designing a cloud database
to be connected to our B-Droid for storing all malware-
detected applications and their attached information. This will
be a valuable reference source for all researchers in this field.
We also aim to work on implementing new injectors for
fuzzing more important privacies (i.e. location, camera, call
recording) and plan to test a large number of publicly
available Android apps. In addition, we will focus on
improving efficiency.

ACKNOWLEDGMENT

We would like to thank Dr.Mohammad al-zawawy for his
useful comments and suggestions.

REFERENCES

[1] Statista, “Market share of mobile operating systems in Indonesia from
January 2012 to August 2020,” no. July, 2020, [Online]. Available:
https://www.statista.com/statistics/262205/market-share-held-by-
mobile-operating-systems-in-indonesia/.

[2] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” 2014, doi: 10.1145/2614628.2614633.

[3] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput.
Syst., 2014, doi: 10.1145/2619091.

[4] A. S. Bhosale, “Precise Static Analysis of Taint Flow for Android
Application Sets,” 2014.

[5] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic Reconstruction of Android Malware Behaviors,” no. January,
2015, doi: 10.14722/ndss.2015.23145.

[6] L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,”
2012.

[7] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” 2012.

[8] W. Huang, Y. Dong, A. Milanova, and J. Dolby, “Scalable and precise
taint analysis for android,” 2015 Int. Symp. Softw. Test. Anal. ISSTA
2015 - Proc., pp. 106–117, 2015, doi: 10.1145/2771783.2771803.

[9] S. Arzt et al., “FlowDroid : Precise Context , Flow , Field , Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps.”

[10] L. Li et al., “IccTA : Detecting Inter-Component Privacy Leaks in
Android Apps.”

[11] Z. Yang and M. Yang, “LeakMiner : Detect information leakage on
Android with static taint analysis,” pp. 0–3, 2012, doi:
10.1109/WCSE.2012.26.

[12] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static
analyzer for detecting privacy leaks in android applications,” MoST, vol.
12, 2012.

[13] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
Automatically detecting potential privacy leaks in Android applications
on a large scale,” 2012, doi: 10.1007/978-3-642-30921-2_17.

[14] I. Dillig, T. Dillig, and A. Aiken, “Precise reasoning for programs using
containers,” 2010, doi: 10.1145/1926385.1926407.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

430 | P a g e

www.ijacsa.thesai.org

[15] B. Amro, “Malware Detection Techniques for Mobile Devices,” vol. 7,
no. 4, pp. 1–10, 2017.

[16] A. Labade and H. Ambulgekar, “Fuzzing for Android Application :
Systematic Literature Review,” 2020.

[17] M. H. Saad, A. Serageldin, and G. I. Salama, “Android spyware disease
and medication,” 2015 2nd Int. Conf. Inf. Secur. Cyber Forensics,
InfoSec 2015, no. 5, pp. 118–125, 2016, doi:
10.1109/InfoSec.2015.7435516.

[18] Z. Feng, Z. Wang, W. Dong, and R. Chang, “Bintaint: A Static Taint
Analysis Method for Binary Vulnerability Mining,” Int. Conf. Cloud
Comput. Big Data Blockchain, ICCBB 2018, 2018, doi:
10.1109/ICCBB.2018.8756383.

[19] W. Klieber, W. Snavely, L. Flynn, and M. Zheng, “Practical precise
taint-flow static analysis for android app sets,” ACM Int. Conf.
Proceeding Ser., 2018, doi: 10.1145/3230833.3232825.

[20] A. Mitrakas, K. Rannenberg, E. Schweighofer, and N. Tsouroulas,
Tailoring Taint Analysis to GDPR. 2018.

[21] W. Choi, J. Kannan, and D. Babic, “A scalable, flow-and-context-
sensitive taint analysis of android applications,” J. Vis. Lang. Comput.,
vol. 51, no. October 2018, pp. 1–14, 2019, doi:
10.1016/j.jvlc.2018.10.005.

[22] J. Zhang, C. Tian, and Z. Duan, “FastDroid: Efficient taint analysis for
android applications,” Proc. - 2019 IEEE/ACM 41st Int. Conf. Softw.
Eng. Companion, ICSE-Companion 2019, pp. 236–237, 2019, doi:
10.1109/ICSE-Companion.2019.00092.

[23] L. Luo, E. Bodden, and J. Spath, “A qualitative analysis of android taint-
analysis results,” Proc. - 2019 34th IEEE/ACM Int. Conf. Autom. Softw.
Eng. ASE 2019, pp. 102–114, 2019, doi: 10.1109/ASE.2019.00020.

[24] P. Ferrara, “BackFlow:Backward Context-Sensitive Flow
Reconstruction of Taint Analysis Results,” 2020.

[25] R. Ma, X. Wang, and X. Wang, “DepTaint : A Static Taint Analysis
Method Based on Program Dependence,” 2020.

[26] Y. Wu et al., “Scaling static taint analysis to industrial SOA
applications : a case study at Alibaba,” 2020.

[27] N. Rajendran, “decompiler for android.,” pp. 1–9, 2020, [Online].
Available: https://github.com/niranjan94/show-java.

[28] Android Developers, “Manifest.permission,” [Online]. Available:
https://developer.android.com/reference/android/Manifest.permission.

[29] John Wiley & Sons, “Android Messaging,” 2014.

[30] Cognalys Inc, “Cognalys Android Library (CAL),” [Online]. Available:
https://cognalys.com/.

