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Abstract—Android is currently the most popular smartphone 

operating system in use, with its success attributed to the large 

number of applications available from the Google Play Store. 

However, these contain issues relating to the storage of the user’s 

sensitive data, including contacts, location, and the phone’s 

unique identifier (IMEI). Use of these applications therefore risks 

exfiltration of this data, including unauthorized tracking of 

users’ behavior and violation of their privacy. Sensitive data 

leaks are currently detected with taint analysis approaches. This 

paper addresses these issues by proposing a new static taint 

analysis framework specifically for Android platforms, termed 

“B-Droid”. B-Droid is based on static taint analysis using a large 

set of sources and sinks techniques, side by side with the fuzz 

testing concept, in order to detect privacy leaks, whether 

malicious or unintentional by analyses the behavior of 

Applications Under Test (AUTs). This has the potential to offer 

improved precision in comparison to earlier approaches. To 

ensure the quality of our analysis, we undertook an evaluation 

testing a variety of Android applications installed on a mobile 

after filtering according to the relevant permissions. We found 

that B-Droid efficiently detected five of the most prevalent 

commercial spyware applications on the market, as well as 

issuing an immediate warning to the user, so that they can decide 

not to continue with the AUTs. This paper provides a detailed 

analysis of this method, along with its implementation and 

results. 

Keywords—Static analysis; taint analysis; fuzz testing; android 

applications; mobile malwares; data flow analysis 

I. INTRODUCTION 

Android‟s market share of mobile phones grew to 74.6% 
in 2020 [1]. However, there remains considerable concern that 
popular Android apps tend to leak sensitive information about 
the user, i.e. phone number, the ID of the mobile device, 
location, and details of the Subscriber Identity Module (SIM) 
card. In addition to violating the privacy policies of the user, 
this can potentially lead to the user‟s behavior being 
unknowingly tracked. Even precisely programmed apps may 
suffer from these leaks. A major contributor to user data leaks 
is advertisement libraries, included by some applications to 
earn money, often enabling the applications to be free to use 
[2]. These libraries permit advertisements to target a user's 
private information and identify him or her through unique 
identifiers (e.g. the MAC-address and IMEI ) as well as 
location or country [3]. However, many app developers are 
unaware of the scale to which user‟s privacy can be 
compromised and the large amounts of data potentially held 
by these ad libraries. 

A number of steps have been previously undertaken to 
ensure the security of apps available to users, but this 
procedure is complex. For example, developers can upload a 
new app to the Google Play Store, where it is checked by the 
Google Bouncer [4]. This analyses the security of the app by 
conducting a time-limited dynamic analysis, with the aim of 
identifying any malicious content or behavior. This represents 
welcome progress, but has, offered only limited success. The 
majority of mobile platforms, including Android, limit the 
privileges of apps with a permission model, one that should 
prevent such apps from gaining access to sensitive data. 
However, this does not always prove effective, resulting in the 
release of sensitive data [2]. Such data leaks may not only 
occur in response to malicious apps, but also be due to an 
app‟s failure to adhere to secure coding practices [4]. It is 
therefore vital to analyze the data flow within the device, 
ensuring firstly, sensitive data does not cross established 
boundaries and secondly, that any untrusted aspect is unable to 
enter trusted data repositories. This type of analysis is known 
as taint analysis, i.e. any untrustworthy data source is 
considered to be tainted. Taint analysis has been conducted on 
Android systems by several researchers. 

This current paper focuses on establishing whether data 
can flow from a sensitive data source to an undesired data 
sink. For example, a smartphone holds data that should be 
private to the user, i.e. personal messages, unique identifier 
and banking details. An undesired sink can be set up to divert 
the network Application Programming Interface (API) or 
applications that cannot be trusted. This study‟s definition of a 
data source is one that is external to the app, and from which 
the app reads data (i.e. a device‟s ID, along with contacts, 
photographs, and current location). A data sink is a resource 
external to the app to which the app writes data (i.e. the 
Internet, outbound text messages and the file system). 

II. BACKGROUND AND RELATED WORK 

In the following sections, we provide some concepts which 
are relevant to our research and lists previous and related work 
in the field of static taint analysis. 

A. Background 

This section provides the theoretical background to the 
present study, including an overview of Android systems, taint 
analysis, mobile malwares, and the fuzz testing concept. 

1) Android overview: This study focuses on Android, 

which is currently the most popular mobile platform globally, 
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being ranked as the premier operating system for smartphones 

in 2020 [1]. Android apps generally use four types of 

components, either on their own or in combination. Fig. 1 

(below) illustrates the possible interactions between these 

components. 

 An Activity refers to the parts of the Android app 
visible to the user, thus forming the user interface. 

 A Service performs tasks that are time intensive but 
invisible to the user, i.e. they run in the background. 

 System events and user-specific events are received by 
the Broadcast Receiver. 

 The Content Provider allows additional apps or 
components to access unstructured data, functioning as 
a standard interface. 

 

Fig. 1. Overview of Basic Concepts of Android Apps. 

2) Taint analysis overview: Taint analysis can be either 

dynamic or static. Static analysis can be described as a method 

for program analysis in which the source code (or bytecode) is 

analyzed but not executed. On the other hand, dynamic 

analysis involves analyzing a code or application by means of 

its execution, i.e. analyzing an Android app by running it on 

an Android device. 

Examples of dynamic taint analysis include CopperDroid 
[5], TaintDroid [3], DroidScope [6] and Aurasium [7]. 
However, it should be noted that the rate of execution of 
dynamic analysis is less advanced and deficient in code 
coverage [8] in comparison to static taint analysis. 

Static taint analysis lacks runtime overheads, but can 
detect privacy leaks without running the application [2]. Static 
taint analyses do not contain the same problems as dynamic 
taint analyses, but they have their own issues, i.e. they lack the 
precision required to approximate runtime objects and abstract 
from the inputs of a program [9]. Much work has been 
invested in static taint analysis, with over half focusing on 
points-to-based methods and data flow ([9], [10], [11], [12], 
[13]). Little research has previously been conducted into 
analyzing data flows statically in a system comprised of 
multiple applications. This is significant, as the data‟s path to 
a sink might involve passing through one or more 
components. The advantage of static analysis is that all of the 
possible execution paths can be explored, not just those 
invoked during execution. This is beneficial when conducing 
security analysis, due to breaches of security frequently 
occurring through unforeseen methods. However, it may not 
be easy to predict how a program will behave if it is not 
actually executed. Furthermore, it has been proven that it is 

not possible to predict all of the means by which an arbitrary 
nontrivial program may be executed. Thus, the behavior of 
programs cannot always be correctly predicted. Nonetheless, 
static analysis remains valuable, as it provides some 
approximation of how different parts of a program may 
behave when executed [14]. 

3) Mobile malwares: Skycure [15] have reported that as 

many as one in three mobile devices has a medium to high risk 

of disclosing its user‟s data. Furthermore, in comparison with 

iOS devices, Android devices demonstrate almost twice the 

level of risk of containing malware. This section discusses the 

most common and damaging malwares impacting on mobile 

phones. 

a) Trojan: This is defined as software that works in the 

background, acting maliciously, but regarded by the user as 

harmless. A Trojan assists hacker by carrying out actions 

facilitating attacks by weakening the system security. One 

example is FakeNetflix, which tricks users into believing they 

are downloading the official version of Netflix, but instead 

installs a Trojan on the phone, allowing hackers to access an 

Android user‟s credentials for their Netflix account. 

b) Spyware: This is further common type of malware, 

consisting of software allowing its author to „spy‟ on the user 

by facilitating unauthorized access to data or collecting 

information. It runs in the background of the system, where it 

remains unnoticed by the device user. Two examples of 

spyware are Nickspy and GPSSpy, both of which run on 

Android devices. They are able to access the user‟s confidential 

information and transmit it to the author of the spyware. 

4) Fuzz testing: Fuzz testing or fuzzing [16] is an 

effective technique for finding security vulnerabilities in 

software or computer systems. It is a technique traditionally 

used for testing software and can be fully or semi-automated. 

It supplies unexpected, invalid, or random data as inputs to 

applications, which can then be monitored to determine 

whether it engages in unexpected behavior, crashes, or fails 

built-in code assertions. Applications under fuzz testing fail 

when they behave in a manner their developers neither 

intended nor anticipated. There are four categories of failure 

modes in traditionally applied fuzzing: 

a) Crashes 

b) Endless loops 

c) Resource leaks or shortages 

d) Unexpected behavior 

These failure modes vary, based on factors including the 
type of system or software being tested and the underlying 
operating system. In this current study, B-Droid was designed 
and implemented according to the last failure mode category, 
i.e. unexpected behavior [17]. The consequences depend on 
the function and purpose of the software, including when and 
where it is operated. In general, the key to detecting malware 
is to place it in an ideal environment, followed by providing it 
with information and monitoring its behavior. 
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B. Related Work 

The literature has suggested that a large body of work is 
related to static taint analysis approaches, each of which aims 
to resolve one or more of the many problems facing program 
analysts when dealing with Android applications. In this 
section we briefly review some of the existing solutions. 

Arzt et al. [9] used the FlowDroid static taint analysis 
approach to simultaneously evaluate efficiency and precision. 
This is also the tool we used in our own approach. The results 
showed that FlowDroid only took a minute to find several 
security breaches for 500 real world applications, along with 
1000 malware samples that were analyzed for 16 seconds per 
minute. 

Bintaint [18] addressed the binary vulnerability mining 
problem using static taint analysis, so generating the Taint 
Control Flow Graphs (TCFG). This proposed tool is evaluated 
employing different compatibility levels of machines using 
X86 programs for different architecture embedded devices. 
The outcomes indicated that the proposed Bintaint framework 
is capable of defeating all the computational overheads of 
conventional methodologies, as well as addressing all 
vulnerability issues, without false negativity. 

Precise-DF [19] is a novel static analysis method of 
detecting the taint flow in android apps, through the 
methodology of reusing the DidFail static analysis tool for fast 
modular analysis. This approach also uses the Boolean 
formulas for the DidFail‟s flow equations, which can help to 
record the conditions of the flow control for all possible taint 
flow programs. This approach is novel, as it does not depend 
on traditional taint flow analysis approaches to evaluate code 
and using reflection of apps. This method is more involved in 
providing security to the android apps up to the next level. 
Taint analysis to GDPR [20] formulizes how taint analysis can 
be stretched out and enlarged, in order to identify the likely 
unintended leakage of sensitive data. This study applies the 
standard static taint analysis methodology to detect any 
potential data breach, as well as the reconstruction of the flow 
for the data breach, with the aim of identifying how a breach 
could take place in relation to the flow. The results 
demonstrated that flows are not permitted by the privacy 
policies. 

STAR [21] is a prototype designed to address the context-
sensitive, flow-sensitive, and multi-source sensitive static taint 
analysis designed to track the information leaks in android 
apps. Its novel approach uses two concepts to achieve the 
performance and scalability of the analysis. The first approach 
employs the novel summarization technique, beneficial for 
analyzing the scale for the number of source APIs. The second 
approach combines techniques in order to establish an 
efficient propagation of the abstract states, both within and 
across the method boundaries. FastDroid [22] is a tool 
proposed as a security measure tool for android apps, being 
capable of providing efficiency and precision in the detection 
of sensitive data leaks. Three test suites were used to evaluate 
the performance of the FastDroid tool, with the results 
demonstrating high levels of precision and recalls, as well as 
effective efficiency in the results achieved. FastDroid differs 
from conventional approaches due to its technique of using 

propagation of taint values rather than the data flow values 
employed in traditional approaches. This resulted in improved 
efficiency. 

COVA [23] this study offers a comprehensive level 
qualitative analysis for the evaluation of increased precision in 
static taint analysis. The study used the taint flows reported in 
FlowDroid [9] in 1,022 real world apps for android, with the 
results showing some key findings relating to conditions under 
which taint flows occur. 

The analysis showed that specific settings (i.e. 
environmental setting, user interaction and I/O) are taint flows 
that are also involved in some specific conditions. BackFlow 
[24] is a context-sensitive taint flow reconstructor tool that 
builds paths linking sources to sinks. The results revealed that 
when BackFlow generates a taint graph for an injection 
warning, there is empirical proof that such an alert is a true 
alarm. DepTaint [25] implements a form of static taint 
analysis that analyzes the taint variables propagated by 
implicit flows and explicit flows. DepTaint greatly exceeds 
the static checker of LLVM in both defining taint variables 
and achieving more fine-grained pathways of taint 
propagation. ANTaint [26] improves scalability. An 
experiment involving 60 cases demonstrated that ANTaint is 
appropriate for 95% of cases, by extending the call graph and 
applying taint propagation on demand for libraries. 

III. ANALYSIS METHOD 

When designing and implementing a static taint analysis 
for detecting malware, it is first vital to consider a robust and 
native Android anti-malware platform capable of running on 
smartphones rather than on a third-party device i.e. a computer 
or laptop. This requires a platform that is efficient modular, 
automated and static. Our platform consists of three main 
stages (De-Obfuscation – Data Flow Analysis – Fuzz Testing). 
During the first stage, we de-obfuscate all Android smart-
phone-installed applications if their granted permissions touch 
our privacies, in order to obtain their source code. From this 
de-obfuscation stage, we go through the static analysis stage 
using taint analysis, i.e. a special type of data flow analysis. 
We then integrate the open source FlowDroid tool [9] as a 
module into our B-Droid platform, followed by double 
checking the results during the third stage, using a fuzz testing 
module for the Applications Under Test (AUT). This efficient 
platform can sandbox any doubtful applications, while 
instantly testing their leakage by placing them into a real and 
ideal environment and giving them fake privacy information. 
The platform then monitors any unacceptable behavior. 

The design and implementation of the B-Droid is 
accomplished in four layers, as shown in Fig. 2. 

 Layer 1: Permissions analysis layer: 

This is the main module focusing on the following 
functionalities: 

a) Reading all installed apps‟ AndroidManifest files. 

b) Searching for permissions of interest inside 

AndroidManifest files. 

c) Preparing the doubtful apps filter. 
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Fig. 2. Proposed Approach. 

 Layer 2: Fuzz testing layer: 

This layer is comprised of three fuzzing stages: 

1) Fuzz testing: This is the base class for the fuzzing 

process, containing the parent attributes and methods of fuzz 

testing. The main task of the B-Droid is to detect Internet 

usage that demonstrates unexpected behavior for doubtful 

applications authorized to access the following permissions: 

a) Receive SMS. 

b) Process outgoing calls. 

c) Read phone state. 

These doubtful applications will certainly be authorized to 
access INTERNET permissions. The B-Droid test case 
scenario is organized to enable it to detect the misuse of any of 
the above granted permissions. 

2) Fuzz testing injectors: This is the base class for the 

following injector classes: 

a) Fuzz Received SMS: This class model is responsible 

for preparing a well-formatted fake SMS. 

b) Fuzz Incoming Call: This class model is responsible 

for triggering a real incoming call. 

c) Fuzz Outgoing Call: This class model is responsible 

for initiating a real outgoing call [17]. 

3) Internet usage analysis: This is the Internet usage 

measurement layer, which monitors the sent and received 

packet changes in a specific period for AUT. 

 Layer 3: De-Obfuscator & Static Analysis: 

This layer is comprised of three stages: 

4) APK Extractor: This is the module that we developed 

to extract the APK file from our doubtful applications list 

transferred from layer 1. 

5) De-Obfuscator: This is the module responsible for 

decompressing the APK file and retrieving its source code 

[27]: 

a) Resource files (xml, text, icons). 

b) Dex files (JAVA, JAR). 

6) Flow droid: This is the malware static analysis module 

[9] that inspects the AUT code, in order to derive information 

concerning path behavior. 

 Layer 4: Final Report Generator: 

This layer is comprised of 3 stages: 

7) Fuzzing report: This is the result obtained after fuzz 

testing successfully finalizes its mission on AUT and reports 

whether or not the application carries out malicious behavior. 

8) Static analysis report: This is the malware analysis 

decision maker module, which generates a pass/fail report 

about AUT in response to any identified information leakages 

or program vulnerabilities. 

9) Final report: This compares the two previous reports to 

conclude our work and clearly classify whether or not AUT is 

malware. 

In general, a misinterpretation of a non-malicious activity 
as an attack by security system results in a “False Positive” 
error. These errors are a critical issue for today‟s 
cybersecurity. The design of our anti-malware B-Droid 
platform (which uses both taint analysis and fuzz testing 
running separately on an AUT) will, as discussed in 
Section IV, decrease the false positive rate. 

IV. IMPLEMENTATION DETAILS 

The following subsections discuss the structure and flow 
chart related to each layer. 

A. Permissions Analysis and Filter Layer 

This section illustrates the structure and flow chart of the 
permissions analysis and filter layer. Prior to an examination 
of the details of the flow chart, we must first note that we have 
selected a set of dangerous permissions (RECEIVED_SMS, 
READ_PHONE_STATE, NEW_OUTGOING_CALL) which 
can be requested to invade the user's privacy and access 
private data by any malicious application [28]. 

As shown in Fig. 3, the functionalities of this layer can be 
divided into two classes: firstly, main activity and secondly, 
permissions analysis. 

The main activity class is the starting point of the B-Droid 
lifecycle. The main functions of this class are to characterize 
the application permissions risk and prepare the signatures of 
application permissions. These are mined in the 
AndroidManifest files of all installed applications. We then 
turn to the permissions analysis class functionalities, which 
appear in the third process. This process enabled us to 
sequentially read the AndroidManifest files of all installed 
applications, followed by searching for one or more 
permission signatures within our area of interest. The 
application is added to the doubtful list if the signature is 
found. This layer mechanism resulted in a list of all the 
installed doubtful applications that are granted one (or more) 
permissions of interest, in addition to the INTERNET 
permission. 
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Fig. 3. Permissions Analysis and Filter Flow Chart. 

B. Fuzzing Injector Layer 

This section examines the issue from the opposing 
perspective, i.e. broadcasting fake intents that perform as if 
real. Although there are an almost infinite number of possible 
inputs to any given application, our specific inputs or fuzzing 
injectors focused solely on calls and SMSs. We therefore 
prepared a real SMS, along with an incoming call and an 
outgoing call, which we termed injectors. These were then 
broadcast into the Android application layer to act as bait. B-
Droid is able to identify whether AUT takes any of these baits. 

Starting from the end of the previous layer, and after 
filtering all installed applications, the process commences 
when the user chooses any of the doubtful applications, i.e. 
AUT. The first process after selecting AUT is to obtain this 
application‟s signature, as outlined above. The signature(s) 
stimulate the B-Droid to prepare the matched injector(s) for 
the fuzzing process. The following points outline the 
structures of the three injectors participating in the fuzzing 
scenario. 

1) SMS Injector: 

 The received SMS injector is initiated by the previous 
layer if the AUT permission signature was RECEIVED 
_SMS. The first process is to create a PDU-formatted 
SMS [29] with content and other metadata. 

 The second process consists of creating an implicit 
intent to be loaded with the SMS PDU message as 
additional data. This intent is simultaneously deployed 
with “android.provider.Telephony.SMS_RECEIVED”. 
This action is used by most malware applications 
interested in SMSs and is coded in AndroidManifest. 
The SMS injector is then ready to simulate a real 
received SMS content, along with its intent. 

 The final process in this injection is to broadcast the 
fake SMS. This is done by broadcasting the prepared 
intent to the Android application layer, which then 
informs the Android OS that a new SMS has been 
received within the message body. 

2) Incoming call injector: This class implements the 

incoming call injector with the help of the telephone 

verification service. This service entails returning a call to a 

customer on the number provided, in order to verify that: a) 

the individual placing the order is the same as the owner of the 

phone and b) that the phone is indeed working. We used this 

service to perform an automated real incoming call injected 

into AUT by integrating Cognalys [30] Android API with our 

project. Cognalys provides a telephone verification service 

through a multi-platform package that application developers 

are able to use in their applications to check mobile phone 

numbers. 

 The incoming call injector commences as a response to 
the AUT permission signature Read_Phone_State. 

 The first step in the process was to request Cognalys‟ 
API service, by registering with the Cognalys server, 
then downloading and integrating its Android API with 
our Android project B-Droid. When registering with 
Cognalys, the user obtains an API key and an Access 
Token. These two entities are embedded into the 
verification call request, in addition to the cell phone 
number receiving the verification call. 

 The second process was to process Cognalys‟ incoming 
call, i.e. informing the user that we were waiting for an 
incoming call by forcing B-Droid to run a waiting view 
until the incoming call was successfully received. 

 Once the verification call had successfully taken place, 
the role of the third process was to read the response of 
this verification call, which contained a verification 
code and the result code. In our case, we were not 
interested in the verification code (i.e. our main task 
was to simply receive a real incoming call), but we 
were concerned with the result code, which informed 
us whether or not the incoming call was successfully 
transmitted. If the call is not received (which rarely 
happens), we would need to resend a new Cognalys 
request until the response result status code was 
returned successfully. 

3) Outgoing call injector: We turn our attention to the 

final injector, i.e. the outgoing call. The simplest and most 

efficient means of carrying out a fully automated dynamic real 

outgoing call is to find a means of forcing the cell phone to 

call its number. If the user tries to call, then a real outgoing 

call is made for a period of 4 seconds, which results in the 

mobile operator giving a response of “busy number” and the 

call is automatically terminated. This led to our injector 

simulating a real outgoing call environment for AUT. 

 As with previous injectors, the current injector is 
initiated as a result of the AUT permission signature 
New_Outgoing_Call. 

 The first process is to prepare an implicit intent with 
the action of calling a phone number and loading it 
with a bundle of additional data for the dialed mobile 
phone number. 
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 The second process is to take the result of the previous 
process, (i.e. the prepared intent), which then initiates a 
new process with that intent, i.e. forcing the cell phone 
to call itself. 

C. Internet usage Analysis Layer 

This forms the comparator layer for each of the above 
layers, being considered a monitoring layer in the B-Droid 
application hierarchy. It is responsible for accounting the 
transmitted and received internet packets of AUT before, 
during, and following the injection or fuzz testing lifecycle. 
The results of this layer directly impact AUT‟s pass/fail 
report, i.e. it establishes whether or not this particular AUT is 
a malware application. 

 The starting point is triggered automatically in a 
synchronous manner when any of the doubtful 
applications listed is selected by the user, thus entering 
the fuzzing scenario. 

 The first process of this layer is to obtain and store the 
AUT traffic information (i.e. numbers of transmitted 
and received packets) prior to fuzzing. This 
information is comprised of the offset numbers the 
comparison will use to determine whether, by the end 
of fuzzing, it increases in number or not. 

 During the fuzzing life cycle (approximately 15 
seconds for each fuzz test case or injector lifecycle), 
the second process is run in the background to count 
any transmitted or received packets related to AUT‟s 
internet usage. 

 By the end of the fuzz test case(s) life cycle(s), the 
third process amalgamates the previous process results 
with the first process offsets, storing them classified by 
the injectors‟ internet usage. It will then be fed back 
into the pass/fail report generator, as discussed in the 
next section. 

D. De-Obfuscator and Static Analysis Layer 

The de-obfuscator and static analysis layer inspect the 
AUT code to derive information about the app‟s behavior. In 
general, static analysis can check for programming errors and 
security flaws. However, our platform uses a taint analysis 
approach [9], i.e. a special type of data flow analysis. It 
follows a sensitive “tainted” object from source to sink, 
tracking the relevant tainted data along the path. Taint analysis 
can be used to find information leakages and program 
vulnerabilities, which form the focus of this paper. 

1) APK Extractor: The Android Application Package 

(APK) contains the executable application installed on android 

phones or tablets. We therefore needed to implement a module 

on our B-Droid platform capable of extracting APK from the 

installed application. An APK Extractor module was designed 

and implemented for this purpose, capable of extracting APKs 

from the AUT list. The APKs thus obtained were stored in the 

phone‟s internal memory, ready for the next static analysis 

stage. 

 Initiation of the application leads to processing of a list 
of all the applications installed on the device. Our APK 
extractor module employs the built-in classes 
PackageManager and ApplicationInfo to identify and 
retrieve all the APK files of the installed app. 

 We accessed the AUT public source directory paths 
through our implemented APKExractor Class. 

 We then converted these paths to an APK File Object, 
storing them in the phone‟s internal memory. 

2) De-Obfuscator: This forms our module to decompile 

and extract the source code of an Android application 

(including XML files and image assets), JAR Packages and 

dex files, which work natively on our Android device. 

Generally, any Android application consists of 3 main 

components: 

a) JAVA files: inside which the developer draws his/her 

picture. 

b) JAR files: all external ready-made libraries the 

developer imports into his/her project to use its built-in classes 

and functions easily and fairly. 

c) Resources files: in this case we have all xml files, 

layouts, media files, drawables and AndroidManifestFile. 

From the above main components, we implemented three 
main decompiler classes in each one: JAVAExtractionWorker 
Class, JARExtractionWorker Class, and 
ResourceExtractionWorker Class [27]. 

3) FlowDroid: We used FlowDroid [9] as this implements 

a special technique for data flow analysis, known as taint 

analysis. Its procedure is to follow data along the programs‟ 

path of execution, which can be performed both forwards and 

backwards. A taint analysis keeps a record of data and its path 

from preset data sources to preset data sinks. It is designed 

with the objective of discovering a range of existing 

connections between provided sources and sinks. It is 

frequently used for security-relevant tasks. When the analysis 

is focused on the integrity of the application, untrusted inputs 

are specified as sources and should not reach sensitive sinks. 

Fig. 4 shows the different steps necessary for the analysis of 

our AUTs. Once the De-Obfuscation module is ready, 

FlowDroid [9] searches for call-back methods and lifecycles, 

as well as calls to sources and sinks in the application source 

code. 

This is achieved by parsing different Android-specific 
files, such as the layout XML files, the dex files including the 
executable code and the manifest file that specifies the 
services, activities, content providers and broadcast receivers 
in the application. Furthermore, from the entry point list, 
FlowDroid [9] produces the main method. This is the primary 
approach for producing a call graph and an Inter-procedural 
Control-Flow Graph (ICFG). This detects all sources capable 
of being accessed from the given entry points. Starting at these 
sources, the taint analysis tracks taints by traversing the ICFG. 
This also introduces a function called Taint Wrapping, which 
can be used to substitute code unavailable for analysis, so as to 
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optimize performance. Finally, FlowDroid [9] reports all 
discovered flows from sources to sinks. The detailed 
information is provided in the final report module. 

E. Final Report layer 

The final destination in our approach is the report 
generator layer, in which we conclude our output results, 
drawn from the fuzzing and taint analysis modules. It is within 
this layer that we make and present our decision over whether 
or not the AUT presents malicious behavior. 

1) Fuzzing report: The final stage in our fuzzing module 

is the pass/fail report generator, which is responsible for 

giving the Android user a clear report concerning AUT. In the 

case of failure, the report contains the leakage of privacies on 

which AUT has eavesdropped. In addition, it states whether 

the AUT passed the test without any leakage. 

 The starting point commences automatically following 
the successful conclusion of the injection life cycle(s) 
for all injector(s). 

 The output of the “Tracking AUT Traffic Information 
after fuzzing” process is requested from the previous 
processes to enable a comparison of the traffic 
information before and after fuzzing, and to calculate 
these changes for each injector during its lifecycle. 

 If the AUT traffic information is found to have 
increased following the fuzzing lifecycle, it is written 
in the failure report as spy evidence, tagged by its 
permission signature. As an example, If the AUT 
traffic information increased during fuzzing with 
Received SMS, then it is written in the report as: This 
App Intercepts Your Received SMS, and the same for 
the other two properties (Incoming and Outgoing 
calls). If the traffic information is the same before and 
after the fuzzing lifecycle, then it will be checked as a 
clean app. 

 The second process stores the results of the pass/fail 
report, sending them immediately to the user‟s 
notification bar. 

2) Static analysis report: This analyzes the apps‟ 

bytecode and configuration files to find potential privacy 

leaks, as follows: 

 It searches the application for lifecycle and callback 
methods, as well as calls to sources and sinks. 

 It then generates the dummy main method from the list 
of lifecycle and callback methods. This is then used to 
generate a call graph and an inter-procedural control-
flow graph (ICFG), as shown in Fig. 4. 

 Starting at the detected sources, the taint analysis then 
tracks taints by traversing the ICFG. 

 Finally, Taint Analysis reports all discovered flows 
from sources to sinks, including full path information. 

 

Fig. 4. Overview of Flowdroid. 

V. EVALUATION AND RESULTS 

A. Results 

We tested B-Droid against a dataset of over 100 Android 
applications uploaded on Google Play (or other third-party 
Android stores), as shown in Fig. 5. We selected a variety of 
application categories (Social Media Apps, Chat Apps, Caller 
Id Apps, and pure Mobile Remote Access Trojans (MRATs 
Apps)). As show Fig. 8, the results of B-Droid against Social 
Media Applications and Chat Applications were negative 
(pass) as well as for the Flowdroid tool. However, for Caller 
Id and MRATs Applications, the results were positive (fail) in 
fuzz testing and a few were positive (fail) in Flowdroid. The 
sample of Social Media and Chat Applications is summarized 
in Table I and the sample of MRATs and Caller ID 
Applications are summarized in Table II. These tables show 
the results of the comparison between B-droid and the 
prominent taint analysis tool Flowdroid. 

 Evaluation 1: 

The Caller ID Applications and MRATs we examined 
changed their Internet usage behavior during the fuzzing 
lifecycle, employing the available mobile Internet data, i.e. 
Mobile Data or Wi-Fi. Fig. 7 demonstrates that the number of 
bytes transmitted during the fuzzing lifecycle differed in 
AUTs. B-Droid reported that all these applications spied on 
information related to outgoing calls, incoming calls and 
received SMSs (see the sample of these results in Table II). 
Furthermore, the majority of MRAT vendors allowed potential 
customers to have a free trial of their spy product for 2–7 
days. However, B-Droid detected that, even after the ending of 
the trial period, these free versions continued to transmit 
private data from the mobile phone. 
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Fig. 5. AUT Flow Chart. 

TABLE I. SAMPLE OF TESTED SOCIAL MEDIA AND CHAT APPLICATIONS 

App 

Name 
Installed Package 

Store/ 

Provider 

B-

droid FlowDroid 

Snapchat com.snapchat.android 
Google 

Play 
Pass  0 Leaks 

Instagram com.instagram.android 
Google 

Play 
Pass 0 Leaks 

Messenger com.facebook.orca 
Google 

Play 
Pass 0 Leaks 

Twitter com.twitter.android 
Google 

Play 
Pass 0 Leaks 

WhatsApp com.whatsapp 
Google 

Play 
Pass 0 Leaks 

Telegram org.telegram.messenger 
Google 

Play 
Pass 0 Leaks 

TABLE II. SAMPLE OF TESTED MRATS AND CALLER ID APPLICATIONS 

App Name Installed Package 
Store/ 

Provider 
B-droid 

FlowDroi

d 

Android 

Auto 
com.system.task Xnspy.com Fail 0 Leaks 

Sync 

Manager 

com.android.core.m

ngp 

Snoopza.co

m 
Fail 0 Leaks 

Sync 

Service 

com.android.core.m

ntq 

Hoverwatch.

com 
Fail 0 Leaks 

Setting com.sec.android.as 
my.a-

spy.com 
Fail 1 Leaks 

Vibo 

Caller  
com.vibolive Google Play Fail 0 Leaks 

CallApp 
com.callapp.contact

s 
Google Play Fail 0 Leaks 

True Caller com.truecaller Google Play Fail 0 Leaks 

a. NOTE: (    Fail= Positive         Pass= Negative) 

 Evaluation 2: 

As shown in Fig. 6, the fuzz testing of the Caller Id 
Applications gave positive (fail) results for all the permissions 
of interest to B-Droid (Incoming Call, Outgoing Call, and 
Received SMS). End users can be sure that the scope of work 
of this type of application is simply to read incoming and 
outgoing dialled phone numbers and instantaneously, once it 

has access to the Internet, it works outside the phone to 
retrieve the names matched with those numbers as stored in 
cloud databases. 

 Evaluation 3: 

Compared to the popular Flowdroid tool, B-droid is able to 
detect leaks that the Flowdroid misses. As shown in Table II, 
static taint (Flowdroid) is insufficiently accurate with the clear 
malicious applications (MRATs) and the results showed that 
the majority of these malwares had no leakage (0 Leakage). 
Our contribution here is B-Droid, which can work hand-in-
hand with Flowdroid to correct its weaker points, along with 
the development team of Static taint (Flowdroid) 
recommended a dynamic analysis technique work with 
Flowdroid to review its results. So, we see that static analysis 
and fuzz testing work hand in hand, such that they further 
strengthen their respective findings. 

 Evaluation 4: 

We have transferred our B-Droid model into a form 
useable by smartphone end users, enabling it to achieve the 
usability concept as shown in Fig. 9. 

 

Fig. 6. Sample of Caller Id Apps Report. 

 

Fig. 7. Sample of MRATs Apps Report. 
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Fig. 8. Sample of Social Media App Report. 

 

Fig. 9. B-droid Application Interface. 

B. Limitations 

Malware must be already installed on the mobile and 
running, this exposes our data to dangerous and frequent 
device failures. We must have a sim card and internet access 
to produce accurate results. In addition, due to the limitations 
of mobile memory, some applications are incapable of being 
decompiled. 

VI. CONCLUSION AND FUTURE WORK 

The future of applications analysis lies in the Incorporation 
of several techniques all must work in tandem to reduce their 
respective weaknesses and turn their integration into strength. 
In our research, this is the approach we took. 

This paper proposes an anti-malware platform, which we 
have called B-Droid. This is based on static taint analysis 
using source and sink techniques alongside the fuzz testing 
concept, in order to analyze the behavior of AUTs against 
internet usage during the fuzzing lifecycle. B-Droid enables us 
to test malware applications, examine the results and issue an 
immediate warning to the user, allowing him to decide 
whether or not to continue with AUT malware. B-Droid can 
carry out static taint analysis and fuzz testing on all installed 
applications after filtering, relative to their permissions. We 

tested our approach on a set of real-world apps randomly 
selected from the Google Play market (or other third-party 
Android stores), which resulted in identifying a number of 
leaks. Our results confirmed that a large percentage of Caller 
Id applications fail to implement appropriate security 
safeguards. B-Droid detected that all MRATs applications 
were spying on information related to outgoing and incoming 
calls and received SMSs, particularly those that were free. In 
addition, these free versions continued to transmit private data 
from the mobile phone following the ending of the trial 
period. Furthermore, B-Droid efficiently detected five of the 
top commercial spyware applications sold on the market. 

In the future, we will focus on designing a cloud database 
to be connected to our B-Droid for storing all malware-
detected applications and their attached information. This will 
be a valuable reference source for all researchers in this field. 
We also aim to work on implementing new injectors for 
fuzzing more important privacies (i.e. location, camera, call 
recording) and plan to test a large number of publicly 
available Android apps. In addition, we will focus on 
improving efficiency. 
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