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Abstract—First-break (FB) picking is an important and 

necessary step in seismic data processing and there is a need to 

develop precise and accurate auto-picking solutions. Our 

investigation in this study includes eight machine learning 

models. We use 1195 raw traces to extract several features and 

train for accurate picking and monitoring the performance of 

each model using well-defined evaluation metrics. Careful 

investigation of the scores shows that a single metric alone is not 

sufficient to evaluate the arrival picking models in real-time. 

Correlation analysis of predicted probabilities and predicted 

classes of machine learning models confirm that the performance 

metrics that use predicted probabilities have higher score value 

than those that use predicted classes. Our study which 

incorporates comparisons of different machine learning models 

based on different performance metrics, training time, and 

feature importance indicates that the approach we developed in 

this study is helpful and provides an opportunity to determine 

the real-time suitability of different methodologies for automatic 

FB arrival picking with clear deep insight. Based on performance 

scores, we bench-marked the Extra Tree classifier as the most 

efficient model for FB arrival picking with accuracy and F1-

score above 95%. 

Keywords—First-break arrival picking; seismology; neural 

networks; machine learning; feature ranking 

I. INTRODUCTION 

Detection of the first arrival from seismic phases plays an 
important role in solving many seismic exploration problems. 
In fact, picking the first arrivals is the first step in seismic data 
processing [1], [2]. However, the task is challenging due to the 
ever-increasing seismic data volume and therefore, manual 
picking is very time consuming and difficult for human 
experts. Moreover, in seismology, it is crucial to pick the First 
Break (FB) for many applications including imaging the 
subsurface, travel time tomography, understanding near-
surface complexities, hydrocarbon and mineral exploration, 
microseismic monitoring of oil and gas-reservoir, and 
investigating the earth‘s crustal structure [3], [4]. Moreover, 
accurate FB picks help in inverting for a good near-surface 
velocity model in seismic processing. In fact, many algorithms 
of FB picking have been proposed including short-term 
average/long-term average algorithms [5], [6], auto regression 
with Akaike Information Criterion [7], higher-order statistics 
[8], [9]. Although these traditional automatic arrival picking 
algorithms are helpful for many applications and their 
performance cannot overtake that of manual picks, leaving 

them behind would be less useful for seismic imaging. 
Another problem with traditional methods is that they usually 
require a threshold, making them difficult to implement in 
complex seismic regions. On the other hand, manual or 
interactive FB picking methods can help improve performance 
in terms of quality and accuracy, requiring longer time and 
extensive effort, especially when the dataset is large. Due to 
the availability of huge seismic data and the inclusion of more 
difficult data acquisition areas, more robust, accurate and 
better automated first break picking techniques are essential 
for obtaining subsurface information from seismic data. To 
that end, the use of machine learning-based picking models 
bring a significant advantage in terms of cost and time. 

Many research works have been in the literature for FB 
picking using machine learning including recently evolved 
deep machine learning. Unfortunately, there are many issues 
that need to be investigated. For example, comparative studies 
among the different models from the perspective of FB 
picking are not adequately explored. Different machine 
learning model exhibits different performance due to their 
underlying working principles. Again, one single performance 
metric cannot be used to bench mark the performance of the 
particular algorithm because scores of evaluation metric vary 
across the models. More than that, what needs to be 
emphasized for the efficiency of the FB picking model for 
real-time usability is an accurate prediction with minimal 
resources both in terms of time and budget. Hence, the FB 
picking model that optimize training time with acceptable 
performance scores of different established metrics needs to 
be explored. Consequently, we rank features using the 
automatic feature ranking method. To realize these objectives, 
we design, develop and evaluate eight machine learning 
algorithms in addition to three automatic feature selection 
techniques by which we search the features that reduce the 
training time, data acquisition and data processing costs. 

Our approach involves the following steps to optimize FB 
picking: (1) Investigate FB picking by deploying eight 
machine learning models. We analyze the suitability of the 
same in terms of performance score and training time for real-
time deployment of first break arrival picking on noisy and 
original seismic trace data by using five evaluation metrics. 
(2) Bench-mark the highest performance score of about 95% 
for accuracy and F1-score for Extra Tree. Besides, we extract 
and recommend the most common important features based on 
experimental results obtained by fitting three powerful 
ensemble classifiers on noisy data. (3) Correlate/evaluate 
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machine learning classifiers by means of predicted classes and 
predicted probabilities. 

The rest of the paper is organized as follows: Section II 
describes the related works and Section III discusses the 
methods and materials used in this paper. Experiment details 
and results are given in Section IV followed by discussion and 
analysis in Section V. The conclusion and future work is given 
in Section VI. 

II. RELATED WORKS 

The reference [25] integrated traditional seismic methods 
and machine learning for picking. Geophysical techniques 
were first used for preliminary picking and then applied CNN 
to identify, remove and fix poor picks. In [26], arrival picking 
problem was studied by formulating it binary image 
segmentation problem. Arrival was picked using U-net 
architecture which is based on pixel-wise CNN. Like [26], the 
authors in [27] proposed FB picking models using deep 
learning technique. They deployed seven-layered U-Net 
architecture with skip connection. In [28], U-Net was used for 
segmentation of seismic image and Recurrent Neural Network 
(RNN), for arrival picking. Additionally, the authors proposed 
a simple weight adaptation method for generalization of the 
model in unseen data. 

In SC-PSNET [29], the authors extend 3C seismograms 
processing with CNN to 1C seismic processing. Their study 
showed that CNN in combination with RNN is more 
promising for P- and S- detection when there are not enough 
training data available. To mitigate high intensive labour and 
thus high cost of manual seismic picking, the study [30] 
transferred the PhaseNet model and incorporate it with 
double-difference tomography. The results showed that the 
model‘s prediction was nearly as accurate as the result of a 
human expert with very low time and cost. The reference [31] 
proposed a Faster-RCNN based P-wave picking method using 
local window extracted from seismic waveform to enhance the 
accuracy of arrival picking. Faster-RCNN is an object 
localization algorithm based on Regions Proposal Network 
(RPN) commonly used to detect object of interest in the 
complex background. 

In [10], Chen et al. investigated the automatic seismic 
waveform classification and arrival time picking using novel 
anti-noise Convolutional Neural Network (CNN) and K-
means Clustering (KC) techniques. The authors used Mean 
Absolute (MA), Mean Square (MS), Short-Term Average 
Ratio (STAR) and Long-Term Average Ratio (LTAR) as 
features. Prior to this, the same first author of [10] in [11] 
studied FB picking with the same features in an unsupervised 
machine learning manner where it was showed that the 
method developed had much better performance than the 
traditional STA/LTA method in noisy data. In [12], Mezyk 
and Malinowski proposed a Multi-pattern FB picking method 
using Deep Neural Net-work (DNN), Support Vector 
Regression (SVR) and Extreme Gradient Boosting 
(XGBoost). The models were trained and tested using 
different features such as STA/LTA, entropy, and fractal 
dimension and a few others. Their experiment results showed 
that the DNN classifier outperformed SVR and XGBoost. 

Yuan et al. [13] adopted CNN for the classification of seismic 
waveforms, thereby locating FB using a threshold, first local 
minimum rule, and median filter in a sequential manner. The 
experiment results from synthetic and field data showed that 
the use of CNN using the time-space sub-image as inputs has 
efficient classification and picking capability. 

Another convolutional image segmentation based FB 
picking was studied by Wu et al. [14]. Their idea was first to 
convert the microseismic trace into a 1D gray-scale image and 
pick the first arrival manually. Thereafter, based on that time 
index, the traces were labeled to train SegNet which was built 
based on encoder and decoder neural network concept. 
Similarly, PickNet was introduced in the work of [15] with the 
inspiration of the VGG-16 image recognition model to pick P 
and S arrival time. As an overall performance, the model 
could pick high-quality P and S wave arrival times in real 
datasets with potential generalization capabilities to other data 
collected using different seismic networks. Another seismic 
wave arrival time picking model (PhaseNet) was designed and 
tested by Zhu and Beroza [17] using a CNN. Their model was 
adapted from U-net which is a biomedical image processing 
framework built on Deep Neural Network (DNN). 

Different from all the above works, the poor pick 
identification using a CNN was investigated in the work of 
[16] with cross-correlation of adjacent traces as the solution to 
fix the poor picks. P-wave arrival picking using vertical 
component and classification of first-polarity was explored in 
[18] by training two different CNNs for picking of P-wave 
arrival and first-polarity classification, respectively. The 
model‘s prediction was much more accurate than that of the 
analyst with the highest score of classification 95% in terms of 
precision. Gao et al. studied FB picking using fuzzy C-means, 
where they first utilize the vertical and horizontal sliding 
window to determine the first-arrival range and then Particle 
Swarm Optimization (PSO) to locate cluster centers [19]. 
Unlike all studies discussed above, the authors of [20] 
deployed Variational Auto-Encoder (VAE) and a Generative 
Adversarial Network (GAN) for automatic FB picking using 
seismic shot gather images as input. In their work [22], Duan 
and Zhang claimed that seismic traces are correlated with one 
another and the same is underutilized. They proposed a multi-
trace multi-attribute analysis method for FB picking using a 
Support Vector Machine (SVM) to improve automatic 
picking. Another image segmentation-based FP picking as in 
[14] was explored in [21] who used 2D pixel-wise CNN. In 
their work, raw seismic images were first treated as gray scale 
images with normalized pixel values between 0 and 255. Then 
the resulted images were converted into binary images by 
tagging the pixels before arrival as zero and after arrival as 1. 
Though the model exhibited the highest accuracy of 96%, it 
was not suitable for smaller seismic traces. Hollander et al. 
[23] proposed a five-layered deep neural network composed of 
one convolutional layer, one pooling layer, one dense layer, 
and one output layer, for identification of the first break from 
a seismic trace. The model was trained on augmented data to 
classify the trace and thereby locating the first break by the 
use of maximal energy ratio. Transfer learning can save a 
significant amount of training time by enabling the reuse of 
the CNN model trained in other domains. The author in [24] 
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applied the idea for FB identification and arrival time picking 
using Continuous Wavelet Transform (CWT) as input features 
for AlexNet, GoogleNet and SqueezeNet. Though the models 
had superb performance compared to STA/LTA and Adaptive 

Multiband Picking Algorithm (AMPA), the accuracy was only 
about 90%.A summary of all related work is given in Table I. 
Note that most studies used CNN and the accuracy lies in the 
range of 78% and 98%. 

TABLE I. SUMMARY OF ARRIVAL TIME PICKING METHODS 

Problem, Ref. Features  Algorithm Datasets Acc. 

Waveform classification and arrival 

picking[10] 
MA, MS, STA/LTA KC, CNN Synthetic and real data 98.6% 

Event picking [11] Mean, Power, STA/LTA FC Synthetic and real data - 

FB picking [12] 
11 features of STA/LTA, 

entropy, 
ANN, SVR, XGBoost Real data 95% 

 fractal dimension    

Waveform classification and FB picking [13] time-space sub-image CNN Synthetic and real data - 

Semi-automatic FB picking[14] 1D seismic trace image CNN Synthetic and field data  

Arrival time picking[15] 3C Seismic waveform CNN (PickNet) Real-world data 78% 

Poor pick identification[16] Seismic record image CNN Real-world data 95% 

Arrival time picking[17] 3C seismic waveform DNN (PahseNet) NCSN 89.6% (F1) 

P-wave picking and First-motion 

classification[18] 
1C seismic waveform CNN SCSN 95%(P) 

First arrival picking [19] Seismic trace Fuzzy C-means Field data 96.5% 

First arrival picking [20] Seismic image Deep learning (VAE+GAN) Field Data - 

First arrival picking [21] Seismic image CNN Field data 96% 

First-break picking[22] 
advance, multi-trace 

correlation 
SVM pseudo-synthetic, real 

2.4ms-14ms 

(RMS) 

First-break identification[23] energy ratio CNN Private 96% 

FB arrival time identification[24] CWT 
AlexNet, GoogleNet, 

SqueezeNet 
Real data Above 90% 

Poor pick identification, remove and fix [25] Multitrace CNN Private 97.8% 

Automated arrival picking [26] Seismic image CNN (U-Net) Filed data - 

Automatic FB picking [27] Seismic image CNN (U-Net) Seismic data - 

FB picking [28] Seismic image CNN (U-Net), RNN Synthetic data - 

III. METHODS AND MATERIALS 

A. Problem Formulation 

We formulate FB picking as a binary classification 
problem; 1 (True) for the FB event and 0 (False) for the non-
FB event. We explain the details of machine learning models 
used in this study with the metrics used to evaluate 
performance and automatic feature ranking techniques. An 
illustration of FB and Non-FB is given in Fig. 1. 

B. Machine Learning Models 

In this subsection, eight machine learning classifiers are 
experimented for the classification of first-break arrival 
picking. These include Feed-forward Neural Network (FNN), 
K-Nearest Neighbors (KNN), Logistic Regression (LR), 
Decision Tree (DT), Random Forest (RF), Extra Trees (ET), 
Gradient Boosting Trees (GB), and XGB Classifier (XGB). 

1) Feed-forward Neural Network (FNN): Feed-forward 

Neural networks are a set of neurons interconnected in the 

form of layers. The inputs are passed forward by multiplying 

with certain weights and adding the bias. The neurons in 

hidden layers and output layers are activated using different 

activation functions such as linear, tanh, sigmoid, softmax and 

many others. At the output layer, the error is calculated based 

on the actual label and is back-propagated to minimize it by 

the use of some mechanism called gradient descent algorithm. 

In this manner, all the input samples are trained until a 

specified number of epochs is reached. The architecture of 

FNN is designed by including two hidden layers of 32 neurons 

each, with kernel initializer from normal distribution and 

activation as ReLU [32], which help in tackling the gradient 

vanishing problem. As we have two classes to predict, a one-

neuron dense layer with Sigmoid activation is put at the end of 

the architecture. 
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Fig. 1. FB and Non-FB Event; (a) Green Dashed-Line Showing First Break Event, (b) Red Dashed-Line Showing Non-First Break Event, and (c) Illustrative 

Signal Plot of Normalized Amplitude Values of both Events with 11 Samples. 

2) K-Nearest Neighbor (KNN): KNN is a non-parametric 

algorithm that does not require model learning but makes a 

prediction on a lazy learning mode, meaning prediction is 

made just-in-time by calculating the distance between the 

inputs and training instance. Therefore, KNN requires almost 

all data while making predictions thereby making a memory 

burden. Using predefined k along with a new sample, the most 

common one with new a sample is chosen from the nearest k 

samples. 

3) Logistic Regression (LR): The Logistic Regression 

(LR) is a probabilistic model that makes a prediction by 

training data on the logit function. It requires large sample 

sizes and independent variables need not be correlated with 

each other. For logistic regression, we tune hyper parameter 

using random search to get an optimized model which 

returned ‗l2‘ regularization penalty against ‗l1‘, ‗none‘ class-

weight against ‘balanced‘ as the best fits for our problem of 

classification. 
4) Decision Trees (DT): Decision Trees (DT) are flow 

chart-like diagrams with the terminal node representing the 

decision. The results of decision tree algorithms are easy to 

understand and calculate for the human expert and are 

computationally cheap as well. In DT, some relevant questions 

are asked at each node and based on how much information a 

feature provides for the class, the node is branched and this 

will continue until all the children nodes belong to the same 

class or the information gain is zero. 
5) Random Forest (RF): Random Forest (RF) consists of 

a set of trees that are built by taking random training samples, 

where random subsets of features are used when splitting the 

nodes of decision trees. Then for prediction, the results of all 

trees are averaged with a technique call bagging, which is 

bootstrapping aggregating in long-form. 

6) Extra Trees (ET): ET is extremely randomized trees 

and is the same as RF with differences; (1) It uses a random 

split of a tree, rather than best split as in RF, and (2) It builds 

multiple trees without bootstrapping, meaning with the 

replacement of samples. The maximum features considered to 

branch a given node is calculated based on the square root 

value of the total features. 

7) Gradient Boosting Trees (GBT): GBT are a group of 

weak learners that are combined to make a stronger predictive 

model based on weighted minimization. In GBT, new trees are 

added to the model without manipulating the existing trees, 

and appending the result of the new tree to that of existing until 

the loss is minimized or predefined numbers of trees are reached. 

For our classification problem, GBT is trained on 100 trees with a 

maximum depth of 3 for each tree. 

8) Extreme Gradient Boosting Tree (XGBT): Another 

boosting tree is designed based on the implementation of GBT 

but uses an accurate approximation to find fast and robust tree 

models. This is called XGBT that stands distinctly from other 

tree-based models with these two properties; (1) unlike other 

models that use the first-order derivatives of the loss function 

of the base model to minimize the overall error, XGBoosting 

finds the second-order derivatives of the loss function for 

better approximation, (2) It uses advanced regularization 

techniques such as L1 and L2. 

C. Performance Metrics 

Normally, we use accuracy for classification problems in 
machine learning. Sometimes, only the accuracy is typically 
not enough to evaluate a machine learning model. For 
example, in a dataset with a large class imbalance, the model 
will predict correctly the majority class and hence will have a 
high classification accuracy, which in practicality is 
misleading. In this case, additional evaluation metrics are 
required and some of the commonly used ones are explained 
in this subsection. In order to best explain and understand the 
metrics, a confusion matrix is shown in Fig. 2. 

1) Precision (P): Precision is obtained by dividing the 

number of True Positives (TP) by the sum of the number of 

True Positives and False Positives (FP). It can also be called 

the Positive Predictive Value (PPV) and its mathematical 

expression is given as: 

              
  

     
             (1) 

Precision can be regarded as an indicator of how exactly a 
classification algorithm will classify a true class as a true. 
From the equation, it can easily be seen that a low precision 
value means a large number of False Positives. 
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Fig. 2. Confusion Matrix. ‘1‘ Represents FB Event ‘0‘ Non-FB. 

2) Recall (R): Recall is the ratio between the number of 

True Positives and the sum of the number of True Positives 

and the number of False Negatives (FN). In the literature, we 

can see it also as Sensitivity or the True Positive Rate. Its 

formula is given by: 

           
  

     
             (2) 

Recall shows the completeness of a classification algo-
rithm, whereas precision shows the exactness of a 
classification algorithm. A low value of recall testifies that 
there are many False Negatives. 

3) F1-score (F1): The F1 Score is obtained when we 

divide the product of precision and recall with the sum of the 

same and again multiplied by 2. It is also termed as the F 

Score or the F Measure and it shows the balance between the 

precision and the recall. 

    
   

   
              (3) 

4) ROC Curve: It stands for Receiver Operating Charac-

teristics (ROC) curve and is also called AUROC (Area Under 

the Receiver Operating Characteristics). It is used as one of 

the most important performance evaluation metrics for the 

classification model. Using the ROC curve, the performance 

of any classification model can be measured by setting the 

thresholds at various points. Mathematically, the ROC is a 

probability curve and the area under the curve indicates the 

degree or the measure of separability between classes. We can 

interpret the ROC as; the higher the AUC, the better the 

model. That is, the model is predicting True as True and False 

as False. We can plot the ROC curve putting True Positive 

Rate (TPR) on the y-axis and False Positive Rate (FPR) is on 

the x-axis. By analogy, we can say that the model performs 

better if the ROC is about to touch the left-top corner of the 

plot. 

D. Feature Importance 

Machine learning models are largely dependent on high-
quality features. The inclusion of irrelevant or less correlated 
features not only degrades the model performance but also 

wastes the computational resources, training time and cost. 
Therefore, the selection of highly important features con-
tributes towards better performance of the machine learning 
model. From the perspective of seismic data processing in 
which a large volume of data is overwhelming due to the 
availability of high data acquisition technology, the training 
time of the model for real-time deployment is a crucial factor 
that is drawing serious attention from business owners and 
researchers alike. Thus, prioritizing the features or removing 
the less contributing features is the best acceptable choice 
among the groups. As such, we deploy the Recursive Feature 
Elimination (RFE) method in combination with three powerful 
ensemble estimators such as Random Forest, Extra Trees and 
Gradient Boosting, one at a time. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset and Data Preparation 

The dataset used in this study is from the published work 
of Mezyk and Malinowski [12] and is available in Github 
repository1. The data preparation steps and extracted features 
are shown in Fig. 3. For the machine learning model to 
generalize well, a sufficient number of input samples are 
required to be trained. Original raw traces of 1195 are 
perturbed using the Gaussian method to generate more noisy 
traces. Afterwards, feature matrices are constructed by 
extracting a total of nine features and appending label ‗1‘ for 
FB and ‘0‘ for Non-FB. The extracted features are: (1) raw 
trace amplitudes, (2) gradient of the absolute trace amplitudes, 
(3) trace entropy, (4) gradient of the trace entropy, (5) fractal 
dimension of the trace, (6) gradient of fractal dimension, 
(7) STA/LTA of the trace, (8) sum of the amplitude spectra of 
the trace, (9) gradient of the sum of the amplitude spectra. 
And finally we have a training dataset of 289190 instances 
that is balanced with true and false first-break events. From 
the whole noisy dataset, 25% is allotted for validation to 
measure the learning validity of the model while we use 
original traces of 5300 for testing purposes in order to check 
the generalization capability of the learned model. 

 

Fig. 3. Data Preparation Pipeline. Train and Validation Sets are Noisy Data. 

The Test Set Contains Purely Original Traces to Challenge the Generalization 

Capability of the Models. 

                                                            
1 https://github.com/mmezyk/fbpicker/tree/master/data 
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B. Experiment Setup 

We use Python 3.7.3 (Open source programming with the 
largest community) and Scikit-learn (Sklearn) machine 
learning library to implement this work on Keras [41] that use 
Tensor flow as the back-end. To realize this, we used all-in-
one machine learning software package Anaconda 1.9.12 
configured in an NVIDIA GEOFORCE GTX 950 GPU and 
four-core i7 6th generation CPU machine with total graphic 
memory of 16GB and RAM of 16GB. For all experiments, we 
used Adam and binary cross-entropy as optimizer and loss 
function, respectively. The experiment results are reported 
using five best and commonly used metrics such as accuracy, 
precision, recall, F1-score and ROC score as mentioned in 
Section III-C. Besides, we also take into account the training 
time required for each model so that comparative and 
feasibility analysis can be done. 

C. Experiment Results 

1) FNN: The model is compiled using binary cross-

entropy [33] as loss function and Adam [34] (Kingma and Ba, 

2014) as the optimizer. The model is trained for 200 epochs 

with a batch size of 32 on 25% of validation data. The loss, 

and ROC curves are shown in Fig. 4. From Table II, it is seen 

that it has a score of accuracy 92.64%, precision 89.18%, 

recall 97.06% and F1-score 92.95%. From the precision and 

recall scores it is observed that the neural network model 

predicts more non-FB events as FB events than first breaks as 

non-first breaks. This can be clearer we if we analyze the 

confusion matrix, where there are a total of 312 non-FB events 

that are predicted as FB (False Positive) in comparison to 78 

FB that are predicted as non-FB events (False Negative). 

2) KNN, LR and DT: We trained KNN keeping the 

number of neighbors as 3 and, the performance scores as 

shown in Table II are accuracy 91.68%, F1-score 91.95% and 

ROC AUC score 96.17%. LR has a precision of 80.55%, 

recall of 92.38% and accuracy of 85.04%. The rate at which it 

classifies true first break and false break is significantly lower 

than KNN, and hence the higher numbers of False Positives 

and False Negatives. By the DT model, the scores achieved 

are 89.79%, 92.00% and 90.01, for accuracy, recall and F1-

score, respectively. Moreover, False Negatives and False 

Positives are higher than KNN with lower False Positives than 

LR . In DT, the quality of the node split is monitored using the 

Gini impurity measure. Branching of the node is allowed till 

all leaves becomes pure. 

3) RF, ET, GBT and XGBT: The hyper parameter tuning 

using cross-validation random search recommends the 

deployment of random samples while building each tree and 

entropy as information gain. It is also observed that the best 

result is achieved when nodes are split with a minimum 

number of samples of 9 based on 7 features maximum with 

having a minimum of 2 samples at the leaf node. The F1-score 

obtained is 93.39%, with precision and recall 91.19% and 

95.70%, respectively. All scores can be seen in Table II. 

The maximum features considered to branch a given node 
in ET is calculated based on the square root value of the total 
features. In our case, we have nine features and each node is 
split with 3 features maximum. The branching of the node will 
stop when all leaves have a number of samples less than 2. 
The extra tree classifier achieved a precision of 93.07%, 
accuracy of 95.26% and F1-score of 95.38%. 

GBT is trained on 100 trees with a maximum depth of 3 
for each tree. Different from other classifiers above, we use 
Friedman‘s Mean Squared Error (MSE) to monitor the quality 
of a split. We have a ROC AUC score of 98.47%, an accuracy 
of 92.75% and F1-score of 92.94%. XGBT is trained using the 
maximum depth of each tree with 6 and the precision score is 
91.16%. The accuracy and F1-scores are 93.23% and 93.29%, 
respectively. The ROC curves for all shallow machine 
learning models are shown in Fig. 5. 

4) Feature Importance: For feature ranking, we 

experimented with three estimators using the RFE method. 

We use an advanced method of REF where the RF estimator is 

trained using the cross-validation method of StratifiedKFold 

with a 10 split. We use 100 trees with the replacement of 

samples while building trees and Giniimpurity is used to 

calculate information value. For the ET estimator, we use the 

same parameter as Random Forest except bootstrap equals to 

false, meaning the subset of samples used for building one tree 

are not replaced while building subsequent trees. GB 

Estimator is trained with 100 trees as in previous sections on 

stratified 10-fold cross-validation of RFE. For calculating the 

information value, the Friedman Mean Square Error (FMSE) 

is used. We keep the learning rate 0.1 with the maximum 

depth of the tree 3, and loss function as deviance. 

 

Fig. 4. The Loss and ROC Curves of FNN. The Learning behavior of the 

Model is good with Little Peak Fluctuation throughout the Epochs. 

TABLE II. PERFORMANCE SCORES OF ALL MODELS 

Model Acc. Pr Re F1 ROC Time (sec.) 

FNN 92.64 89.18 97.06 92.95 98.64 1661 

DT 89.79 88.11 92.00 90.01 89.79 29 

KNN 91.68 89.07 95.02 91.95 96.17 22 

LR 85.04 80.55 92.38 86.06 95.23 10 

RF 93.23 91.19 95.70 93.39 98.41 160 

ET 95.26 93.07 97.81 95.38 99.23 192 

GBT 92.75 90.58 95.43 92.94 98.47 534 

XGBT 93.23 91.16 95.74 93.39 98.53 163 
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Fig. 5. ROCs of Machine Learning Models. The ET has the Highest Score. 

V. DISCUSSION AND ANALYSIS 

A. Machine Learning Models 

We have evaluated eight different deep machine learning 

models for picking FB and the performance behavior is 
monitored using five evaluation metrics. Understanding the 
real-time deployment and resource requirements for training 
machine learning models, the training times for each models 
are also recorded. The FNN has a recall of 97.06%, which is 
the second-highest in the same category and indicates that it 
predicts the actual first break event as a non-first break more 
than the other model does. The training time of machine 
learning depends on many factors such as the size of the 
dataset, the number of features used, number of epochs, and 
many other factors. Furthermore, choosing a larger batch size 
can make the training faster but with comparatively poor 
performance. 

In general, compared to deep learning models, shallow 
machine learning models are computationally less 
sophisticated with less training time and memory requirements 
than deep learning models. Moreover, traditional machine 
learning models have limited performance when the data 
volumes are extremely large. Nonetheless, they can be 
effectively deployed for real-world problems with the careful 
granular tuning of the model parameters. In this work, as seen 
in Table II and Fig. 6, LR and DT have the lowest and second-
lowest classification performance in terms of all metrics, 
respectively. In terms of recall and ROC, LR performs better 
than DT with scores of 92.38% and 95.23%, respectively. If 
we scan the scores carefully, we observe that the Extra Tree 
(ET) performs best in terms of all metrics with an accuracy of 
95.25% and ROC 99.23%. GBT has the longest training time 
with 534 seconds followed by Extra Trees with 192 seconds. 
LR takes the least amount of training time of 10 seconds 
among all classifiers. This trend is noticed from the values 
given in the last column of Table II and Fig. 7. 

From the different classifiers we evaluated in this work, 
Extra Tree clearly outperformed other models in terms of all 
evaluation metrics. The second highest performers are RF and 
XGBT with very similar scores if we consider the accuracy, 
precision and F1-score as evaluation criteria. In terms of recall 
and ROC, FNN is the second-best performer. If, from all 
classifiers, the suitable models with less training time and 
better accuracy are to choose for real-time deployment, ET, 

RF and XGBT are the perfect choice because they all need 
reasonable training time, below 200 seconds. Therefore, for 
FB arrival classification, traditional machine learning is 
enough for real-time deployment if ready-made pre-calculated 
features are to be used, that is if only trace amplitude-based 
features instead of the seismic image are to be deployed as 
features. 

B. Feature Importance 

1) RFE using Random Forest Estimator: REF removes 

less important features in an iterative fashion. Feature 

importance is calculated as the coefficient of some estimators 

such as Random Forest. From the experimental results it is 

noticed that the highest performance is obtained when all nine 

features are used. But this method gives STA/LTA, the 

traditional method, the highest importance and the gradient of 

trace amplitude (g trc amp) the least importance. The other 

best five features with decreasing importance are the trace 

amplitude (trc amp), fractal dimension of the trace (fdm), the 

gradient of fractal dimension (g fdm), the sum of the 

amplitude spectra (sum amp spec) of the trace and trace 

entropy (trc ent). This trend can be seen in Fig. 8. 

2) RFE using Extra Trees Estimator: As in RF, the best 

six features according to their importance are the STA/LTA, 

the fractal dimension of the trace, the trace amplitude, gradient 

of fractal dimension, trace entropy, and the sum of the 

amplitude spectra of the trace. As seen in Fig. 9, the fractal 

dimension of the trace, which is in third place in RF, has now 

become the second important feature in the Extra Trees 

estimator. This is due to their handling of input samples while 

training the different trees. 

 

Fig. 6. Performance Scores of Machine Learning Models. 

 

Fig. 7. Training Time (in Seconds) for Machine Learning Models. 
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Fig. 8. Feature Ranking using RF Estimator. 

 

Fig. 9. Feature Ranking using ET Estimator. 

3) RFE using Gradient Boosting Estimator: Almost like 

earlier estimators, this estimator selects STA/LTA, the 

amplitude of the trace, the fractal dimension of the trace, and 

gradient of fractal dimension as four most significant features 

as seen in Fig. 10. 

From the above experiment results, it is apparent that the 
STA/LTA, the amplitude of the trace, the fractal dimension of 
the trace, and gradient of fractal dimension are the most 
important common features for the classification of FB 
picking. 

C. Prediction Correlation 

The machine learning models used in this study provide a 
prediction for both class labels (i.e. 0 or 1) and probabilities 
by using a prediction function. Direct class labels are used to 
calculate accuracy, precision, recall and F1 score, and 
probabilities are used for calculating AUC, ROCAUC, MSE, 
MAE, RMSE and many others. In terms of class label 
prediction, Gradient Boosting Trees and Extreme Gradient 
Boosting trees have the highest positive correlation with 0.95. 
The second highest correlation pairs with 0.91 and 0.90 are ET 
and RF, ET and XGBT, respectively. This can be seen in 
Fig. 11. If we compare the correlation in terms of prediction 
probability, we see that almost all classifiers are correlated 
with values greater than 0.90. This is the reason that ROC 
scores are higher than those of accuracy and F1 measures. 
Moreover, we also observed that the correlation of the 
decision tree and logistic regression with other classifiers are 
less than that of others in both cases, confirming that both 

models are not suitable enough to handle first-break arrival 
picking efficiently, compared to other models. Furthermore, as 
seen in Fig. 12, XGB and GBT have a strong correlation 
between them with a coefficient of 1. 

 

Fig. 10. Feature Ranking using Gradient Boosting Estimator. 

 

Fig. 11. Pearson Correlation of Machine Learning Classifiers used in this 

Paper. The Correlation between each Pair of the Classifier is based on 

Predicted Class (1 for FB Event, 0 for non-FB Event). 

 

Fig. 12. Pearson Correlation of Machine Learning Classifiers used in this 

Paper. The Correlation between each Pair of the Classifier is based on 

Predicted Probability. (1 for FB Event, 0 for Non-FB Event). 
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VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this study, we have explored and investigated FB arrival 
picking by formulating it as a binary classification problem. In 
that vein, we deploy eight machine learning models. The 
models are trained on noisy data generated applying Gaussian 
perturbation using nine features and tested on original data for 
generalization capability. The models architectures are fine-
tuned in line with the first break arrival picking problem by 
undergoing rigorous experiments. Extra Tree has the highest 
accuracy of 95.26% and F1-score of 95.38%. All the top 
performers have acceptable training time and show suitability 
for the real-time automatic deployment of first break picking. 
Our deployment of an RFE on nine features using three 
ensemble classifiers suggests four common important features: 
the STA/LTA, the amplitude of the trace, the fractal 
dimension of the trace and gradient of the fractal dimension. 
Careful investigation of the performance scores proves that a 
single metric alone is not sufficient to evaluate the FB picking 
models. As such, other types of measures such as precision, 
recall and F1-scores are required to further validate the 
performance of the model. In line with this, we noticed that 
the use of precision and recall can help experts in obtaining 
deeper insight into the classification behavior thereby 
allowing better real-time decisions. 

B. Limitations and Future Works 

In this paper, we consider only single sample features 
derived from a single trace using machine learning techniques. 
Though traditional machine learning techniques are less 
complicated and require less training time, their performance 
suffers from degradation when a huge volume of data is 
involved. Another limitation is that the models are compared 
using a single dataset. Therefore, as future work, we want to 
investigate FB picking using features derived from multiple 
samples on different datasets by deploying hybrid deep 
learning models. 
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