
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

138 | P a g e

www.ijacsa.thesai.org

LightGBM-based Ransomware Detection using API

Call Sequences

Duc Thang Nguyen, Soojin Lee*

Department of Computer Science and Engineering

Korea National Defense University, Nonsan, Republic of Korea

Abstract—Along with the development of technology as well

as the explosion in digital data in the era of fourth industrial

revolution, cyberattacks using ransomware are emerging as a

serious threat to many agencies and organizations. The harm of

ransomware is not limited to the areas of information technology

and finance but also affects areas related to people's lives, such as

the medical field. Therefore, research to identify and detect these

types of malicious code is urgent. this paper present a novel

approach of identifying and classifying ransomware based on

dynamic analysis techniques combined with the use of machine

learning algorithms. First, this research focused on the

Application programming interface (API) call functions that are

extracted during a dynamic analysis of executable samples using

the Cuckoo sandbox. Second, research used LightGBM, a

gradient boosting decision tree algorithm, for training and then

detecting and classifying normal software and eight different

types of ransomware. Experimental results showed that the

proposed approach achieves an overall accuracy rate of 98.7%

when performing multiclass classification. In particular, the

detection rates of ransomware and normalware were both

99.9%. At the same time, the accuracy in identifying two specific

types of ransomware, WannaCry and Win32:FileCoder, reached

100%.

Keywords—Ransomware; machine learning; API call; dynamic

analysis technique; gradient boosting decision tree; GBDT;

lightGBM

I. INTRODUCTION

Ransomware is a form of malicious code which, upon
infecting a victim's device, encrypts and then steals the
victim’s data and prevents legitimate access to it until the
victim pays a ransom. In early versions of ransomware, the
code mainly performed the trick of locking the victim's system,
aimed at non-computer savvy users. However, today's
ransomware mainly uses crypto-viral extortion techniques.
These methods take advantage of the most modern encryption
techniques to encrypt almost all of the victim's personal data
(e.g., photos, documents, texts). Even the most knowledgeable
users or experts also face considerable difficulties. It is almost
impossible to recover the data until receiving the decryption
key. In a properly executed crypto-viral ransomware attack,
recovering data without a decryption key is a problem that is
difficult to solve. The attack also requires digital currencies
that are difficult to track, such as Bitcoin, for ransom, making it
even more difficult to investigate and track down the culprit.

The use of ransomware is accelerated and becoming
increasingly dangerous compared to levels seen in the past.
Ransomware is now a national security issue for all countries

around the world, and it will only become worse. In particular,
during the recent Covid-19 pandemic, attacks on many
hospitals and medical facilities indicate a new risk of
ransomware, considering that its influence caused the death of
a patient (Fireeye’s 2021 report). Ransomware at present is real
threat to humans' lives. Threat actors will increasingly target
the most critical assets, such as sensitive data and architectures,
held by organizations, leading to much higher ransom amounts.
Ransoms have already reached the tens of millions of dollars
and are expect to grow. While many organizations pay ransoms
and do regain access to their data. And they often forget that
the attackers still have their data and can allow anyone to buy
the data right from their websites (SophosLab’s Threat Report
2021). Data theft creates a secondary extortion market.

The continued success of ransomware poses a serious cyber
security threat. According to the statistics of reputable security
firms, ransomware can spread maliciously in many types of
ways, via sophisticated techniques used to avoid detection by
antivirus software. Therefore, the need to analyze these types
of malware is urgent given the explosion of data in the fourth
industrial revolution with millions of Internet of Things
devices connected to the Internet every day.

Attackers are increasingly turning to ransomware as a
service (RaaS) with more customization capabilities that
rapidly increase the number of ransomware variants and types.
Therefore, traditional signature-based detection techniques are
not effective. Current techniques often build on complex
models that combine many features extracted through static
analysis or dynamic analysis, along with various
transformations to distinguish between ransomware and normal
software. They are based on certain features extracted from a
dynamic analysis or static analysis, such as API sequences,
opcode strings of files, file entropy levels, and/or change in
system files. The use of the API function call sequence to
detect and classify ransomware types had been applied in many
practical studies, such as in [1], [2], [3], [4], showing
promising results. However, the fundamental problem of
detection methods based on static analysis is weak detection
when attackers use code obfuscation methods or zero-day
attacks. Furthermore, the malicious code classification methods
based on API functions extracted from static analysis lead to
one drawback. These methods are easily evaded when an
attacker inserts normal API calls or declares unused API
functions during a ransomware execution.

Among various features, this research focuses on the
Windows API call frequency, which is extracted via a dynamic
analysis technique. Proposal method use it as the primary

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

139 | P a g e

www.ijacsa.thesai.org

factor in conjunction with certain transformations that improve
the speed and accuracy in identifying instances of malicious
code extortion. Proposal method also applies LightGBM, a
gradient boosting decision tree (GBDT) algorithm, to increase
the accuracy and speed of detecting and classifying
ransomware.

The next sections of the paper are organized as follows:
Section 2 presents ransomware detection techniques that are
currently being studied. Section 3 describes the proposed
approach and algorithms used, and Section 4 explains the
collected dataset and the experimental method. Section 5
analyzes the experimental results and Section 6 concludes the
paper.

II. RELATED RESEARCH

There are two main approaches when analyzing and
detecting ransomware: static analysis and dynamic analysis [5].
While the static analysis technique mainly focuses on
analyzing and checking the file structure and executable file
formats without running the file, a dynamic analysis allows
malware to run to observe its behavior in the system ultimately
to eliminate the infection.

This Section reviews several ransomware analysis methods
which are on the basis of the above two techniques in terms of
the extracted information. Then, current multiclass
classification methods will be reviewed.

In terms of API sequences, to achieve malicious purposes
especially when implementing ransomware, attackers must use
and execute a specific API sequence. So there are big
differences between malicious codes and normal software in
API call sequences. There have been several studies focusing
on an analysis of API call sequences to detect general malware
as well as ransomware. For example, in [1] Sgandurra et al.
presented a ransomware detection method based on dynamic
analysis and applied a type of machine learning known as
EldeRan. They collected several features extracted from their
dynamical analysis, such as API calls, registry and file system
change logs, dropped files, and crypto-function patterns in
binary files. EldeRan studied a dataset with 1524 samples
consisting of 582 ransomware and 942 benign samples. By
using a regularized logistic regression method for
classification, they could achieve 96.3% detection rate in
binary classification.

In [3] Hwang et al. combined a Markov model with random
forest model to build two-stage mixed ransomware detection
model. The Markov model is used to capture the characteristics
of ransomware with the Windows API call sequence pattern
that obtained by a dynamic analysis. During the second stage,
the random forest machine learning model’s mission is to
control misclassified samples in the remaining data. The
accuracy of this two-stage mixed detection method is 97.3%. In
binary classification, False positive (FP) and False negative
(FN) rate are relatively high, 4.8% and 1.5% respectively. In
[6], Bae et al. used the Intel PIN tool to extract Windows API
call sequences and then generated n-gram sets from these API
sequences. These n-gram sets were used to classify
ransomware, malware and benign files. The authors concluded

that their method could detect ransomware with a detection
accuracy up to 98.65%.

Several file-based techniques can identify the presence or
existence of ransomware based on the transformation in files of
system or in files of a particular format. In [7], after studying a
dataset including 1359 ransomware samples from 2006 to
2014, Kharraz et al. concluded that it is not complicated to
design an advanced technique to block several types of
ransomware by monitoring file system anomaly activities. This
method can be effective even against those using sophisticated
cryptographic malware or some types of zero-day ransomware
attacks. In [8], Lee et al. measured the entropy of six different
file formats and then used machine learning to detect infected
files to protect the original file in a backup system while
synchronizing the time. By identifying files infected with
ransomware, this method allows the recovery of those files
from system storage when the user's system is infected.
Khammas [4] proposed a method that detects ransomware
based on a static analysis. The method used frequent pattern
mining and the gain ratio technique to extract 1000 features
directly from raw binary files. A random forest technique is
applied to the classification process. The dataset consists of
1680 executable files made up of 840 ransomware and 840
normal files. The accuracy rate was 97.7%.

In network-based studies, Cabaj et al. [9] proposed a
solution to identify ransomware based on HTTP traffic
communication when the ransomware connects to the
attacker’s C&C server. The experimental results obtained
detection rates of 97–98%. However, the authors only
monitored and observed the network traffic communication of
two types of ransomware, CryptoWall and Locky. The author
in [10] presented an advanced ransomware identification
method based on an analysis of network traffic activities. The
study observed TCP, HTTP, DNS, and NBNS traffic and
extracted 18 different features. They prototyped a multi-
classifier network-based ransomware detection method that
combines of two different levels: the packet level and the flow
level. The highest detection accuracy rates for the two
corresponding levels were 97.92% and 97.08%. However, this
research only focused and analyzed on the Locky
ransomware’s network activities and is thus not suitable for
other types of ransomware.

Other researchers also used a hybrid method that integrates
dynamic and static analysis techniques to distinguish between
ransomware and normalware. For instance, Shaukat et al. [11]
presented a method called RansomwareWall. The set of
features collected by static analysis and dynamic analysis is fed
to the machine learning engine for binary classification of
samples as ransomware or benign. Using a dataset of 574
samples from 12 ransomware families, the experimental result
presented detection rates ranging from 85.7% (using logistic
regression) to 98.25% (using a gradient tree boosting
algorithm).

For multiclass classification, some researchers are not only
working to distinguish between ransomware files and normal
files but also looking for ways to distinguish between different
types of ransomware. For example, Zhang et al. proposed an
approach for multiple classifications of seven ransomware

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

140 | P a g e

www.ijacsa.thesai.org

families based on a static analysis [12]. They built N-gram
sequences by extracting opcode sequences from Portable
executable (PE) file samples and then calculated the term
frequency - inverse document frequency (TF-IDF) to identify
the feature N-gram vectors. The feature vectors were then
subjected to five machine-learning methods to classify
ransomware. The dataset included 1,787 ransomware samples
of seven ransomware families crawled from VirusTotal that
broke out from 2012 to 2017. In the experiments, the best
accuracy achieved was 91.43% for the multiclass classification
method when using a random forest algorithm and 99.3% for
the binary classification of ransomware and 'goodware'.

In [13], Baldwin et al. presented a WEKA toolset for
ransomware multiclass classification based on a static analysis.
They extracted 443 opcodes from binary files and used them to
calculate the percentage of each opcode occurrence relative to
the overall opcode. The support vector machine (SMV)
learning technique was used for binary classification between
benign and ransomware, while the PUK kernel was used for
multiclass classification. The best accuracy gained from the
results was approximately 96.5% when differentiating a dataset
consisting of 443 samples of six classes (one benign and five
ransomware families). Vinayakumar et al. studied a dataset of
974 samples (219 benign files and 755 ransomware files from
seven ransomware families) and focused on the API call
sequence for ransomware detection [2]. Their method gathered
131 API sequences with a dynamic analysis technique and used
a multi-layer perceptron (MLP) model for classification. The
experimental results showed that the best accuracy rate was
98% for multiclass classification; however, the true positive
rates (TPR) of crypto-locker and cryptowall ransomware were
only 88.9% and 83.3%.

Current studies mainly focus on binary classification
between ransomware and normalware. However, with the rapid
growth of blackmail attacks as well as the variety of types of
ransomware, the detection and detailed classification of each
ransomware family type are necessary at present. There have
been a few studies related to multiclass classification, but those
studies mainly focused on classifying categories together.
Moreover, the accuracy when identifying each type of
ransomware is not very high, leading to the ineffective
prevention of malicious code, placing user data in danger. In
order to overcome the drawbacks of previous multiclass
classification techniques, this paper present a novel approach
based on a dynamic analysis and the LightGBM algorithm to
detect multiple types of ransomware and to distinguish
between ransomware and benign files.

III. PROPOSED METHOD AND ALGORITHM

A. LightGBM Algorithm

Decision trees “learn” by breaking down observations
based on feature values. In the decision tree learning process,
finding the best split is the most time-consuming stage. Two
algorithms which use different gradient boosting decision tree
(GBDT) implementations to find the best splits are as follows:

 Pre-sort: Object values are pre-sorted and all split points
can be evaluated.

 Histogram-based: Continuous features are divided into
separate bins used to create histograms for features.

Histogram-based algorithms are more efficient in terms of
memory consumption and training speeds. However, for every
feature, all data instances must be scanned to find all possible
split points. So that both pre-sorted and histogram-based
methods become slower as the number of instances or features
increases. The LightGBM algorithm aims to address the
training speed and memory consumption issues associated with
typical implementations of GBDT when working with large
datasets.

First, LightGBM grows the tree in a leaf-wise manner using
a vertical growth strategy. This is different from the horizontal
growth strategy (level-wise growth) tactics of the other
decision tree algorithms. When growing leaf-wise, the
gradient-based method can help the errors minimize and
effectively reduce the loss. The balance of the tree is
maintained via a level-wise growth strategy, whereas the leaf-
wise strategy helps to reduce the loss the most. With the same
number of leaves, a leaf-wise-based tree will be deeper than
other trees. In particular, when necessary leaf-wise growth can
be used to grow a tree into a more balanced tree. Compared to
horizontal growth, vertical planting can provide converge
much more rapidly [14].

Secondly, LightGBM developed two techniques to reduce
memory consumption and speed up the training time [15].
These are gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB). With GOSS, LightGBM
reduces the number of instances by keeping all large instance
gradients and random sampling instances with small gradient
instances. The complexity of constructing the histogram for all
features is O(#data *#features) and the complexity of
subsequently finding the optimal split points is proportional to
O(#bins * #features). Generally, #bins << #data. Therefore,
this approach is computationally much more efficient than
earlier approaches.

Algorithm 1. Gradient-based One-Side Sampling (GOSS) Technique

Input: I: training data, d: iterations

Input: a: sampling ratio of large gradient data

Input: b: sampling ratio of small gradient data

Input: loss: loss function, L: weak learner

models {}, fact (1-b)/a

topN a × len(I), randN b × len(I)

for i = 1 to d do

preds models.predict(I)

g loss(I, preds), w {1,1,...}

sorted GetSortedIndices(abs(g))

topSet sorted[1:topN]

randSet RandomPick(sorted[topN:len(I)],randN)

usedSet topSet + randSet

w[randSet] × = fact : Assign weight fact to the small gradient
data.

newModel L(I[usedSet], - g[usedSet],w[usedSet])

models.append(newModel)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

141 | P a g e

www.ijacsa.thesai.org

Step 1: Based on the list sorted according to the data
instance gradient values, GOSS selects the top a× 100% largest
gradient instances.

Step 2: Perform random sampling b× 100% on the
remaining instances with small gradients.

Step 3: Recalculate the information gained by amplifying
the sampled data of small gradients with (1-a)/b.

In this way, LightGBM can focus more on larger gradient
(under-trained) instances without altering the original data
distribution much.

EFB is a technique that uses a greedy algorithm to combine
(or bundle) these mutually exclusive features into a single
object (bundle of exclusive objects) and thus reduce the size.
The complexity of feature histogram building is now
proportional to the number of bundles O(#data * #bundle)
rather than the number of features O(#data * # feature). With
EFB, LightGBM can reduce the GBDT training time without
having a great impact on the accuracy.

Algorithm 2. Exclusive Feature Bundling (EFB) Technique

Input: numData: number of data

Input: F: One bundle of exclusive features

binRanges {0}, totalBin 0

for f in F do

totalBin += f.numBin

binRanges.append(totalBin)

newBin new Bin(numData)
for i = 1 to numData do

newBin[i] 0

for j = 1 to len(F) do

if F[j].bin[i] ≠ 0 then

newBin[i] F[j].bin[i] + binRanges[j]

Output: newBin, binRanges

By experimenting on several public datasets, the results
demonstrated that using the LightGBM algorithm increased the
training speed by more than 20 times while maintaining the
same level of accuracy.

In conclusion, LightGBM offers many advantages when
used to address current practical issues:

 Higher efficiency as well as faster training speeds.

 Lower memory consumption.

 Better accuracy.

 Can handle large-scale data well.

 Supports GPU and parallel learning.

B. Proposed Ransomware Detection Method

This approach fully utilizes the advantages of LightGBM
algorithm described above and presented in some previous
studies [16] and [17]. Because the API functions that used in
the each sample (ransomware and benign) are very different, so
that the dataset based on this features is spare. To fill the gap in
current ransomware multiclass classification and to overcome
the disadvantages of previous methods, this research present an

approach based on a dynamic analysis and apply the
LightGBM algorithm to process highly sparse data. By only
using the API call sequence as the primary factor, this
approach is more simple than others.

To recognize a portable executable (PE) file as good
software or ransomware and further to categorize ransomware
into their respective categories, we utilize a machine learning
architecture, as shown in Fig. 1.

Fig. 1. Ransomware Multiple-Classification Proposed Method.

In the first step, “tagged” PE files are analyzed by means of
a dynamic analysis. After which information extraction of the
API call sequence functions of each individual file were
performed and consider them as key features in this proposal.
For the second step, samples with corresponding features and
assigned labels are passed as input to the LightGBM multiclass
classifier to generate learning trees that help to distinguish
between good software and ransomware.

IV. DATASET AND EXPERIMENTAL METHOD

A. Database Gathering and Analysis

Currently, no complete dataset of ransomware on Windows
platforms has been made public in cyberspace. Many authors
have collected ransomware samples from multiple sources and
built datasets for their own research. On the other hand,
samples of ransomware often exist only sporadically in some
test datasets. These dataset all malware marked ransomware,
regardless of ransomware types. Previous researchers have also
actively grouped ransomware types, but in experimental
studies, they still mainly stop at distinguishing ransomware
from normalware. Currently, there are very few researchers
delving into the simultaneous identification and discernment of
benign software and ransomware of various categories.

Towards the above goal, this research attempt to build a
ransomware dataset for research that not only helps to
distinguish between ransomware and benign software but also
improves the accuracy when classifying each type of
ransomware. The dataset was constructed based on a number
of scientific guidelines and best practices suggested by Rossow
[18]. Ransomware samples were collected from two of the
most popular data-sharing sources, VirusTotal

1
 and Virusshare

2

, under academic license and with the administrator's consent.
Research focused on collecting both recent and earlier
ransomware samples (from 2014 to early 2021) and worked to
gather as much of each type of ransomware as possible.
Because malicious samples were collected from two different
sources, this research used a distinctive SHA hash to avoid
duplications in the sample dataset. To be cautious when
choosing the ransomware, we confirmed that an instance of

1 https://www.virustotal.com/
2 https://virusshare.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

142 | P a g e

www.ijacsa.thesai.org

malware is ransomware if at least five antivirus engines
marked it belonging to this category. Research rely on the
naming policy of the Avast engine to determine the family of
each sample before starting the process of analyzing and
collecting data about the behavior of ransomware.

For benign samples, the executable files in the Windows
system directory (…\Windows\System32) with a variety of
functions and features of the files were selected. This could
help to assess and classify malware in a more objective
manner.

While Table I shows information about the benign files and
ransomware samples that were taken from the two main
sources, Table II details the types of ransomware along with
the number of samples collected in each case.

After a dynamic analysis of 5,811 samples, we can realize
that the number of API functions used by a sample ranges from
01 to 172 with approximately 286 different API functions.
Ransomware and benign files both use the same API functions,
but for separate purposes. Moreover, the number of API
function calls in each executable file differs significantly.
There are functions that are only called and used one to two
times in one PE file but are used many times in other
executables. During the dynamic analysis, it was noted that
there are API functions invoked and used by a file during its
execution up to hundreds of thousands of times. At the same
time, the number of APIs used by the each sample also differs
across ransomware and benign files. While 'goodware' files
mostly use 10-20 different API functions, the number of API
functions used by ransomwares typically exceed 100.
Therefore, the dataset is extremely sparse. This is highly
suitable when applying the LightGBM algorithm given its
many advantages when experimenting on this sparse dataset.

B. Experiment

The experimental process is depicted in Fig. 2 and is
divided into five main steps, as follows:

Step 1: Dynamic Analysis

After being collected, the executable files were divided into
categories, in this case benign files and ransomware files of
different types (eight types of malicious codes).

TABLE I. THE NUMBER OF FILE COLLECTED FROM EACH SOURCE

Sample Source Number of sample

Benign Windows system files 4,008

Ransomware
Virusshare.com 1,373

Virustotal.com 430

Total

5,811

TABLE II. RANSOMWARE FAMILIES

No. Ransomware Family Number of sample

1 Reveton 522

2 TeslaCrypt 167

3 Win32:Ransom 204

4 Win32:Cryptor 123

5 Win32:Crypt 146

6 LockScreen 123

7 WannaCry 491

8 Win32:FileCoder 27

Total (Ransomware) 1,803

Fig. 2. Experimental Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

143 | P a g e

www.ijacsa.thesai.org

The PE files are then put into the Cuckoo sandbox
environment for a dynamic analysis. This is necessary and
ensures safety and convenience during the dynamic analysis.
The ransomware is executed in a simulated environment,
during which all behaviors of every sample are collected in
sandbox logs. Fig. 3 explains the Cuckoo architecture.

Fig. 3. The Cuckoo Sandbox’s Architecture.

Step 2: Extract API call sequence

Then information regarding the API calls that were
executed during the dynamic analysis is extracted, including
information about the API functions list in the order of
execution and the number of times each function was executed
for each individual PE file, as displayed in Fig. 4.

Step 3: Feature Engineering and Normalization

The extracted data is then compiled into a summary of
information for the entire sample. The information in the
resulting table includes a list of all sample PE files along with
information regarding the API calls that each file used and the
number of times each function was used. With regard to API
functions that are not called, the corresponding value for that
function for the sample file is set to 0. At the same time, each
executable file pattern is labeled corresponding to the type of
ransomware or benign file, as in Table III. Because LightGBM
works effectively with a sparse dataset, all features will be used
in the training and testing phases.

TABLE III. LIST OF CLASS LABELS

No. Class name Label

1. Benign 0

2. Reveton 1

3. TeslaCrypt 2

4. Win32:Ransom 3

5. Win32:Cryptor 4

6. Win32:Crypt 5

7. LockScreen 6

8. WannaCry 7

9. Win32:FileCoder 8

Data Normalization: Research used the MinMaxScaler of
scikit-learn for data normalization. Given that the scope of the
raw data is very wide, for some machine learning algorithms
their objective functions will not work properly and may
produce bias when the data is not normalized. MinMaxScaler
normalization scales the range of all features to the range of [0,
1].

The transformation is given by Alg.3:

Algorithm 3. The MinMaxScaler nomarlization

 ()

 () ()

 ()

Where: Xmin, Xmax: min, max of one feature

min, max: min, max of overall data.

The following Fig. 4 shows the data normalization process
from after extracting sandbox log file to before feeding them to
LightGBM algorithm.

Fig. 4. The Transformation of the Data.

All data is divided as follows: training set: 80%, test set:
20%. Each dataset is then used for the subsequent training and
test phases.

Step 4: Training phase

In [17], Dongzi et al. illustrated the LightGBM training
process with the model consists M trees in Algorithm 4.

Algorithm 4. The training of LightGBM

Require: Input: Training set *()+

Ensure: Output: LightGBM model ̂
()

1. Initialize the first tree as a constant: ̂
()

2. Train the next tree by minimizing the loss function:

 ()

 ()

 (̂
()

 ())

3. Get the next model in an additive manner:

 ̂
()
 ̂

()
 ()

4. Repeat the Step 2 and Step 3 until the model reaches the stop
condition.

5. Obtain and return the final model:

 ̂
()
 ∑ ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

144 | P a g e

www.ijacsa.thesai.org

Here: () ̂
()

: are correspondingly the learned

function and predictive value of sample i at iteration t.

 () : The loss function represents the error between the
prediction y and the true value y.

The stop condition of the training process occurs when the
process reaches the M-th iteration or when the loss value of the
model is lower than the predefined loss value.

Step 5: Testing phase

The test dataset is classified based on GBDT trees that have
been created during training phase.

V. EXPERIMENTAL RESULT

A. Evaluation Criteria

To evaluate the detection performance of the proposed
method, this paper employed the following metrics: the
accuracy of the entire model, precision, recall, the F1 measure
of each class, and a confusion matrix.

When evaluating each class, the class being evaluated is the
positive class and the remaining eight classes are the negative
class. True positive (TP) refers to the number of positive class
samples that are correctly classified. False positive (FP) refers
to the number of negative class samples that are misclassified
into the class under evaluation. True negative (TN) represents
samples in the negative class are correctly classified into the
negative class. False negative (FN) represents samples in the
consideration class that are misclassified.

Precision is defined as the ratio of true positive scores
among those classified as positive.

Recall is the fraction of the relevant samples that are
successfully classified.

The F1 score is used to evaluate the quality of the model.

Accuracy is determined simply by calculating the ratio
between the number of correctly classified samples and the
total in the test dataset.

For multiclass classification, the overall accuracy is the
ratio of the sum of the true positives of all families divided by
the total sample. It is determined according to the following
formula.

The confusion matrix (CM), M = , - , is used to

evaluate the quality of the classifier's output on the dataset. The
values of the diagonal elements represent the number of
samples and the percentage of correct predictions, while the
other elements represent the samples that have been classified
incorrectly. A confusion matrix with higher diagonal values
represents a higher percentage of correct predictions.

B. Experimental Results

As shown in Table IV, the classification accuracy is very
high, with overall accuracy of about 98.7%. However, the
correct identification rate for all ransomware is close to 96%,
while the lowest rate of identification for TeslaCrypt is 89.5%.

TABLE IV. CLASSIFICATION EVALUATION RESULTS

No. Classes Size Precision Recall F1-Score

1 Reveton 102 0.961 0.961 0.961

2 TeslaCrypt 38 0.971 0.895 0.932

3 Win32:Ransom 38 1.000 0.921 0.959

4 Win32:Cryptor 25 0.885 0.920 0.902

5 Win32:Crypt 21 0.800 0.952 0.870

6 LockScreen 22 1.000 1.000 1.000

7 WannaCry 100 0.980 1.000 0.990

8 Win32:FileCoder 3 1.000 1.000 1.000

9 Benign 814 1.000 0.999 0.999

Total 1163 Overall accuracy = 0.987

Fig. 5 presents the CM of the eight ransomware classes, in
this case Reveton, TeslaCrypt, Win32:Ransom,
Win32:Cryptor, Win32:Crypt, LockScreen, WannaCry, and
Win32:FileCoder, along with the benign files in the
experiments. The CM shows that the proposed method
provides the best classification for three ransomware families,
LockScreen, WannaCry and Win32:FileCoder, in which not a
single sample is misclassified. This is followed by Reveton,
with accuracy of approximately 96.1%.

Fig. 5. Confusion Matrix.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

145 | P a g e

www.ijacsa.thesai.org

Fig. 6 shows feature importance based on the number of
times that a feature is used as split points in all learned trees.
The most important API call function for detection and
classification of the ransomware in this case is “NtOpenKey,”
used more than 1000 times as a split point in a learned tree.
This is followed by the two other API call functions of
“NtAllocateVirtualMemory” and “NtTerminateProcess,” called
995 and 866 times, respectively. The three API call functions
above are also among the API call functions most commonly
used by samples (ranks: “NtTerminateProcess:” 1st,
“NtOpenKey:” 4th, and “NtAllocateVirtualMemory:” 21st).
However, while the "NtAllocateVirtualMemory" and
"NtTerminateProcess" functions were used many times by all
PE files (19,564,674 and 5,182,284 times) and are
correspondingly ranked 3rd and 12th, the “NtOpenKey”
function was only called 86,487 times and is ranked 111th of
286 (as showed in Table V). This shows that the importance of
features in determining split points does not depend much on
the number of times they are called or the number of file that
used them.

Fig. 6. The Top 30 Important Features in the Experiment.

VI. ANALYSIS AND DISCUSSION

The experimental results have shown that the method
proposed here to identify and classify malicious codes based on
API call functions obtained from dynamic analysis results
combined with the GBDT LightGBM algorithm can achieve
high performance.

TABLE V. THE USE OF API CALL BY PE FILES

No. API name Times used

1 RegSetValueExA 26,547,071

2 ShellExecuteExW 26,135,049

3 NtAllocateVirtualMemory 19,564,674

4 NtOpenFile 14,268,859

5 OpenServiceW 9,484,238

… … …

12 NtTerminateProcess 5,182,284

… … …

111 NtOpenKey 86,487

… … …

286 NtShutdownSystem 1

The proposed method identified ransomware samples with
very high accuracy, reaching 100%. When evaluating the
effectiveness of distinguishing between malicious code and
normal software, the experimental results show that the system
did not miss or miscategorized any ransomware sample as
normal software. This promises to bring about a positive effect
with regard to protecting system and user data. At the same
time, the rate of misidentification of benign software was low,
as less than 0.01% of benign samples were misidentified as
malicious samples. Therefore, the proposed method will not
affect system availability and allows the user experience to be
retained.

When evaluating the effectiveness of classifying
ransomware types, out of eight types of malware conducted
experimentally, the proposed method has the ability to identify
sensitively three types of extortion malware. In this case
LockScreen, WannaCry, and Win32:FileCoder, with absolute
precision of 100%. In addition, there were a few small
mistakes between different types of malware, such as
TeslaCrypt, Win32:Ransom, and Win32:Crypt.

The test results here also demonstrated the advantages of
the dynamic analysis in support of ransomware detection. The
method based on dynamic analysis greatly reduced the number
of features in the sample database. According to this study of
the collected dataset, the number of features (API call
functions) that must be analyzed and processed during the
static analysis method is very large at approximately 6,684
different features with ransomware and nearly 28,500 different
features in the benign case. Meanwhile, using the dynamic
method, the number of API call functions to be processed for
all ransomware and benign samples was only 282. This
enhances the efficiency of the data analysis, classification and
processing steps while also minimizing the time required for
the training and detection phases, which are very time-
consuming steps given numerous features. The proposed
method also minimizes interference from an attacker to bypass
static-analysis-based methods, such as by adding normal API
call patterns or by attempting to use an obfuscation technique.

VII. CONCLUSION

This chapter discusses the results of the proposed method,
the advantages of the dynamic analysis technique in supporting
ransomware detection and classification.

In fact, proposal method achieves a 98.7% classification
accuracy rate, with excellent ransomware recognition and a
low error rate during benign software classification. Compared
to previous studies, the experimental results not only dominate
in terms of detection between ransomware samples and
goodware (99.9% accuracy versus 98.65%, 97.74%, and 97.3%
as in [6], [4] and [3] but is also more efficient when classifying
ransom types of malware (between proposal method at 96%
and corresponding rates of 88.9%, 94.2%, and 91.4% as in [2],
[13], [12]. This helps to increase the efficiency of the
identification process of malicious code, thereby accelerating
the response and implementing countermeasures to protect the
system when necessary. In particular, using LightGBM
algorithm significantly shortens the time compared to other
machine learning or GBDT algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

146 | P a g e

www.ijacsa.thesai.org

The study also demonstrated the role of each API function
in identifying and classifying ransomware by assessing the
importance of each API function by determining the split
points during the construction of the learning trees used here.
This makes it possible for us to engage in more research and
evaluations to reducing the number of attributes further when
the number of file samples increases in the future. This helps to
reduce the computational pressure while maintaining the
accuracy of the method, thus enhancing the efficiency of the
system.

The proposed plan has shown very positive results.
Experiments also highlighted the importance of each API
function in the detection and classification process. Therefore,
work to reduce the number of API functions when the numbers
of ransomware samples and types increase in order to reduce
the computational burden while ensuring high accuracy also
represents a promising research direction for future studies.

REFERENCES

[1] Sgandurra D., Muñoz-González L., Mohsen R., Lupu E.C., 2016.
Automated dynamic analysis of ransomware: benefits, limitations and
use for detection. Cryptography and security, arXiv:1609.03020.

[2] Vinayakumar R., Soman K.P., Senthil Velan K.K., Ganorkar S., 2017,
Evaluating shallow and deep networks for ransomware detection and
classification. International conference on advances in computing,
communications and informatics, pp259-265,
doi:10.1109/ICACCI.2017.8125850.

[3] Hwang J., Kim Y., Lee S., Kim K., 2020. Two‑stage ransomware
detection using dynamic analysis and machine learning techniques.
Wireless personal communications volume 112, 2597–2609.
doi:10.1007/s11277-020-07166-9.

[4] Khammas B.M.., 2020, Ransomware detection using random forest
technique, ICT Express,Volume 6, Issue 4, pp325-331.
doi:10.1016/j.icte.2020.11.001.

[5] Sikorski M. and Honig A., 2012. Practical malware analysis: The hands-
on guide to dissecting malicious software, William Pollock Publisher, 38
Ringold Street, San Francisco, CA, 802pp.

[6] Bae S.I., Lee G.B., Im E.G., 2020. Ransomware detection using machine
learning algorithms. Concurrency computat pract exper.
doi:10.1002/cpe.5422.

[7] Kharraz A., William R., Davide B., Leyla B., Engin K., 2015. Cutting
the gordian knot: A look under the hood of ransomware attacks. 12th
International conference: Detection of intrusions and malware, and

vulnerability assessment, Milan, Italy, pp3-24. doi:10.1007/978-3-319-
20550-2 1.

[8] Lee K., Lee S.Y., Yim K.B., 2019. Machine learning based file entropy
analysis for ransomware detection in backup systems. IEEE Access, vol.
7, pp110205-110215. doi:10.1109/ACCESS.2019.2931136.

[9] Cabaj K., Gregorczyk M., Mazurczyk W., 2018. Software-defined
networking-based crypto ransomware detection using HTTP traffic
characteristics. Computers & electrical engineering, vol66, pp353-368.
doi:10.1016/j.compeleceng.2017.10.012.

[10] Almashhadani A.O., Kaiiali M., Sezer S., O’Kane P.,2019. A multi-
classifier network-based crypto ransomware detection system: a case
study of locky ransomware. IEEE Access, vol. 7, pp47053-47067,
doi:10.1109/ACCESS.2019.2907485.

[11] Shaukat S.K., Ribeiro V.J., 2018. RansomWall: A layered defense
system against cryptographic ransomware attacks using machine
learning. 10th International conference on communication systems &
networks (COMSNETS), pp. 356-363.
doi:10.1109/COMSNETS.2018.8328219.

[12] Zhang H., Xiao X., Mercaldo F., Ni S., Martinelli F., Sangaiah A.K.,
2019. Classification of ransomware families with machine learning
based onN-gram of opcodes. Future generation computer systems,
vol90, pp211-221. doi: 10.1016/j.future.2018.07.052.

[13] Baldwin J., Dehghantanha A., 2018. Leveraging support vector machine
for opcode density based detection of crypto-ransomware. In:
Dehghantanha A., Conti M., Dargahi T. Cyber threat intelligence.
advances in information security, vol70. Springer, Cham.
doi:10.1007/978-3-319-73951-9_6.

[14] Haijian Shi, 2007. Best-first decision tree learning. PhD thesis, The
University of Waikato, pp120.

[15] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y.
Liu, 2017. LightGBM: A highly efficient gradient boosting decision
tree. Microsoft, https://www.microsoft.com/en-
us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-
decision-tree/ [accessed 15 January, 2021].

[16] Mohammad A.A., Ahmed M.A., Mouhammd A., 2020. Robust
intelligent malware detection using light gbm algorithm. International
journal of innovative technology and exploring engineering (IJITEE),
doi:10.35940/ijitee.F4043.049620.

[17] Dongzi J., Yiqin L., Jiancheng Q., Zhe C., Zhongshu M., 2020.
SwiftIDS: Real-time intrusion detection system based on LightGBM and
parallel intrusion detection mechanism. Computers & security.
doi:10.1016/j.cose.2020.101984.

[18] C. Rossow , 2012. Prudent practices for designing malware experiments:
status quo and outlook. IEEE symposium on security and privacy, pp65-
79, doi:10.1109/SP.2012.14.

