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Abstract—The application of artificial intelligence techniques 

in computer aided detection and diagnosis problems has been 

among the most promising areas with interest from the scientific 

community and healthcare industry. Recently, deep learning has 

become the prime tool for such application with many studies 

focusing on developing variants that optimize diagnostic 

performance. Despite the widely accepted success of this class of 

techniques in this application by the scientific community, it is 

not prudent to consider it as the only tool available for such 

purpose. In particular, statistical machine learning offers a 

variety of techniques that can also be applied at a much lower 

computational cost. Unfortunately, the results from both 

strategies cannot be directly compared due to the differences in 

experimental setups and datasets used in available research 

studies. Therefore, we focus in this study on this direct 

comparison using the same dataset and similar data 

preprocessing as the input to both. We compare statistical 

machine learning to deep learning in the context of computer-

aided detection of breast cancer from mammographic images. 

The results are compared using diagnostic performance metrics 

and suggest that simpler statistical machine learning techniques 

may provide better performance with simpler architectures that 

allow explanation of results. 

Keywords—Computer-aided detection; computer-aided 

diagnosis; statistical machine learning; deep learning 

I. INTRODUCTION 

Breast cancer is the most frequently diagnosed cancer and 
accounts for a significant portion of the total cancer related 
deaths among women[1]. The early detection of cancer in 
general, and particularly in breast cancer, is crucial to patient 
survival. Therefore, periodic screening was recommended for 
women above a certain age or before that for those women 
with a family history of the disease. The primary imaging 
modality for such screening is x-ray mammography where two 
images in craniocaudal and mediolateral oblique directions are 
taken and examined carefully by a radiologist for early signs of 
abnormalities including microcalcifications [2]. The resultant 
images in their digital form have very high resolution and 
quantization level (for example, 5k resolution is common at 

12-16 bits of grayscale). As a result, the process for reading 
such images is tiring, lengthy, costly, and prone to errors. 
Moreover, the shortage of radiologists compounded by 
increase in volume of image data due to better awareness and 
introduction of 3D techniques such as tomosynthesis poses a 
challenge for healthcare services in this area. Therefore, 
computer-aided diagnosis is now pursued as a possible solution 
to this problem. Even though many such systems were 
proposed early on as applications of the growing artificial 
intelligent systems, the digital transition of radiology 
departments made the utilization of such assisting tools more 
readily available in many applications including 
mammography. 

Computer-aided diagnosis (CAD) is generally defined as a 
diagnosis made by a radiologist who uses the output of a 
computer analysis of the images when making his/her 
interpretation. CAD systems can play different roles in the 
diagnostic process. For example, it can be used for as pre-
screening where the CAD system is utilized as the first reader 
then the radiologist verifies such reading and makes the final 
diagnosis. Alternatively, concurrent reading of images between 
the radiologist and the CAD system, which in this case serves 
as a second independent reader. Also, another approach is to 
make the diagnosis interactively using the CAD system where 
the radiologist marks suspicious areas on image and uses 
analysis from the CAD system to confirm the likely diagnosis. 
Therefore, this approach improves diagnostic performance, 
reduces performance intra- and inter-observer variability of 
radiologists, improves radiologist productivity and hence 
serves as a mitigation of global shortage of radiologists. 

The early CAD systems relied on statistical machine 
learning techniques (e.g., [3]), while most recent scientific 
studies targeting this field were overwhelmingly using deep 
learning techniques (e.g., [4] [5] [6]). This is a natural 
consequence of the usual technology hype cycle (sometimes 
called Gartner hype curve) of deep learning technologies where 
this area is within the peak of inflated expectations. In order to 
speed up the process of reaching the plateau of productivity of 
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such curve with its associated wide adoption of the technology, 
it is important to consider comparisons with earlier 
technologies in order to better assess potential and realize 
limitations. 

In this study, we address the direct comparison of statistical 
machine learning and deep learning techniques in the context 
of computer-aided detection of breast cancer from 
mammographic images. The same dataset and similar data 
preprocessing are used as the input to several techniques that 
represent both categories. The details of all steps of 
implementation are provided to allow reproducibility of results 
and the performance is compared using statistical diagnostic 
performance metrics to allow objective comparison. 

Performance evaluation rests at the heart of any machine 
learning model[7]. It is necessary in selecting the input features 
and it decides which model is appropriate for each data set. 
This is a fact that should be considered when we select an 
algorithm for cancer detection, classical or deep learning-based 
method, for a CAD system. Currently, there are a huge number 
of researches[5] [8] [9] that have utilized the deep learning 
approaches and recommending them as they have yielded 
higher accuracies, above 97%. However, a comparable 
accuracy, 96%, has been attained using the conventional 
machine learning paradigms as surveyed in [10]. Therefore, a 
comparison of deep learning techniques with the earlier 
artificial intelligence techniques based on statistical machine 
learning would provide a valuable insight in this regard. 
Unfortunately, there are no studies that targeted such direct 
comparison with common datasets and classification tasks and 
hence, addressing this comparison would be a useful addition 
to guide researchers in this field. 

This paper is organized as follows. Section II includes the 
literature review. Section III gives detailed description about 
the data set employed in this work. The methodologies used in 
statistical machine learning models and deep learning 
techniques are presented in Section IV. Sections V and VI 
presents the results and discussion of both statistical and deep 
learning methods and the comparison between them. Finally, 
the conclusions in Section VII summarize this work and its 
significant results. 

II. RELATED WORK 

Pretrained CNN models such as Alex net [11], VGG[12], 
and Googlenet[13] are the most popular pre-trained models for 
image classification. A survey of 83 research studies is 
presented by Abdelhafiz et al. [14] which demonstrate the 
significant results gained by CNN models in breast cancer 
detection and classification. They discuss the datasets used and 
all limitations and challenges that affect the results. They show 
the significant results in the latest research of breast cancer 
classification and emphasize on the significant effects of image 
preprocessing techniques. They also highlighted the effects of 
some important customized parameters such as validation 
techniques, activation function, and learning rates. They found 
that many studies depend on pretrained models, data 
augmentation, batch normalization, and dropout techniques to 
improve their results. Shen et al. [15] designed CAD system 
based on VGG and ResNet pretrained CNN networks. The 
datasets used to train their machine were DDSM and INbreast 

datasets. They designed batch classifier and whole image 
classifier to detect and classify breast cancer. The networks 
have been adapted by adjusting the number of layers, learning 
rate and number of epochs. Different techniques such as batch 
normalization, and data augmentation have been employed to 
improve the model. The achieved results surpassed the results 
of previous studies. Also, the CAD system that proposed by 
Al-antari et. al.[16] based on Deep belief network (DBN) to 
automatically detect and classify breast cancer. They used two 
techniques for mass diagnosis, the whole mass ROIs, and 
Randomly extracted ROI with size 32x32, then they classify 
the detected masses using their proposed DBN system. The 
results of their proposed system outperformed other 
conventional classifiers. Al-masni et al. [17] CAD system 
based on CNN model that is called You Only Look Once 
(YOLO) technique [18] for automatic detection and 
classification of breast cancer. In their system, DDSM dataset 
is used to train and test their system, in addition to the 
augmented data produced by different techniques such as 
rotation, translation, and scaling to avoid overfitting. They also 
utilized number of preprocessing techniques to eliminate 
irrelevant characteristics of the mammograms. Their CAD 
system achieved 99.7% for mass detection and 97% for 
classification. Several studies show that the pretrained CNN 
models such as Resnet [19], Alexnet [20], [21] and GoogleNet 
[30] demonstrate higher results using unaugmented patches and 
more enhanced results with augmented ones. Different CNN 
models [22][23] show different detection and classification 
accuracies and performance depending on the application, 
techniques and datasets used. On other hand, the state-of-the 
art methods in building CAD system have been compared to 
the deep learning-based methods in few studies such as the 
work done in [24] that have evaluated some of the classical 
methods against the CNN based system. However, the 
complexity of the incredible performance of the pretrained 
CNN networks has not been yet fairly assessed and compared 
to the simple conventional machine learning methods. 

III. DATA PREPARATION 

In The data used in this work were obtained from the 
popular Mammography Image Analysis Society (MIAS) 
database [25]. This database was prepared from x-ray films 
carefully selected from the United Kingdom National Breast 
Screening Program and digitized with to a resolution of 50 
microns using a device with a linear optical density mapping 
range from 0 to 3.2 and quantization of 8-bits per pixel. Then, 
the images were reduced to 200-micron resolution and 
clipped/padded to maintain size of all images at 1024×1024 
pixels in the mini-MIAS version of this database, which was 
used in this study [26]. The database contains left and right 
breast images for 161 patients with a total of 322 images. The 
images represent samples from normal, benign and malignant 
cases with 208, 63 and 51 images respectively. The database 
provided the ground truth diagnoses for all images and exact 
locations of abnormalities that may be present within each 
image given as the center and radius of the surrounding circle 
for each lesion. A square region of interest (ROI) of size 32×32 
was selected inside the lesion. The size of the ROI was selected 
this way to ensure adequate statistical representation of the 
lesion while keeping the size as small as possible to 
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subsequently allow better lesion localization ability for the 
developed system [3]. A database of 144 ROIs was built with 
equal number of normal and abnormal regions (72 each). The 
abnormal regions were selected from the available lesions with 
41 benign and 31 malignant samples such that each of them 
was obtained from a different case to avoid bias in testing. 
Also, the samples represented the various abnormality 
subclasses having lesion or cluster sizes that are large enough 
to contain the selected ROI size. The database of labelled ROIs 
was then used as the input to both statistical machine learning 
and deep learning techniques. 

IV. METHODS 

A. Statistical Machine Learning Methods 

In this study, several statistical machine learning techniques 
representing the spectrum of methods in this area are 
implemented and their parameters are optimized to allow 
proper performance comparison to be conducted. The general 
block diagram for all statistical machine learning systems is 
shown in Fig. 1. 

 

Fig. 1. Block Diagram of the Statistical Machine Learning System. 

The learning system in this class of techniques is based on 
multiple-fold cross-validation to obtain reliable results and 
minimize the problem of overfitting. In particular, the data for 
normal and abnormal cases are randomly divided into training 

and validation sets where the validation set is equal to the 
number of cases divided by the number of folds and the rest are 
assigned to the training set. In our system, the number of folds 
was selected to be 5 such that in each fold, 14 images from 
each of the normal and abnormal data are used for validation 
while 58 images from each are used to train the classifier. This 
is repeated 5 times (same as number of folds) and the results 
from all folds are averaged together to provide the overall 
system performance. 

A critical part of all statistical machine learning systems is 
feature extraction. This is the main difference between 
statistical machine learning and deep learning techniques 
where features are implicitly learned from the data in the 
training process. Here, a set of 175 statistical textural features 
were calculated including 25 first-order features (e.g., mean, 
standard deviation, percentiles) [27] and 150 higher-order 
statistical textural features utilizing different textural analysis 
methods with different attributes including features from the 
gray-level co-occurrence matrix (GLCM) (also known as 
spatial gray level dependence method or SGLDM) [28], 
neighborhood gray tone difference matrix (NGTDM) [29] [30], 
spatial frequency-based method (SFM) [31], texture energy 
transform [32][33], fractal analysis [34], and Fourier power 
spectrum [35]. 

In order to select the best features that show statistically 
significant changes between normal and abnormal cases, two-
sample t-test was performed between the normal and abnormal 
training samples in the first fold of the cross-validation process. 
This avoids any bias from including the validation samples in 
this process directly in the first fold or indirectly through their 
inclusion in other folds. The significance level was set at a p-
value of 0.05 whereby features showing p-values lower than 
that are indicated as good features, while the others are deemed 
indiscriminate and discarded in subsequent steps. This resulted 
in a total of 43 selected features with 17 first-order and 26 
higher-order features. 

The next step in the processing pipeline is responsible for 
dimensionality reduction to minimize the feature space by 
combining features into major directions that are orthogonal to 
each other and spanning the directions of most variance in the 
data. This is done using principal component analysis (PCA) 
where the features are reduced to only 7 combined features or 
principal components that explain 95% of the variance of the 
data. This helps remove redundancies from multiple correlated 
features. Since the subsequent classification step may include 
techniques that rely on distance measurements, the 
dimensionality reduction may not always be needed. In fact, 
the small amount of variance that was not explained by the 
output of PCA may contribute to the accuracy of the 
classification. Therefore, the optimization of different 
classifiers was allowed to enable or disable such 
dimensionality reduction in its search for the best performance 
for each classifier. 

The statistical machine learning system of this study 
included the implementation of six different families of 
traditional classifiers that included parametric and 
nonparametric classification methods. Such methods are 
decision trees, discriminant analysis, ensemble, k-nearest 
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neighbor (KNN), naïve Bayes, and support vector machines 
(SVM) [36]. The different parameters and variants for each 
classifier were optimized to reach the best performance using 
5-fold cross-validation to obtain reliable estimation of the 
performance. The performance was measured using the 
accuracy (Acc), sensitivity (Sens), specificity (Spec), positive 
predictive value (PPV), and negative predictive value (NPV) 
[36]. While the accuracy is an important performance metric 
since it gives the percentage of correct outcomes to the total 
number of cases, it does not differentiate between false-
positive and false-negative errors. This is problematic in the 
context of a computer-aided detection system where a false-
negative diagnosis could have much more severe consequences 
than a false-positive one. The sensitivity metric addresses that 
where it gives the percentage of abnormal cases that were 
correctly diagnosed. On the other hand, the specificity gives 
the percentage of normal cases that were correctly diagnosed. 
Together they give the complete picture that allows an observer 
to compare different systems. For example, if two systems 
have the same accuracy, a system with a better sensitivity is 
preferred in a computer-aided detection system. The two other 
metrics of PPV and NPV address the post examination 
questions of the reliability of the results. For example, given a 
particular positive diagnosis outcome from a classifier, a 
question can be posed as how reliable such result is. Such 
metrics depend on disease prevalence in the patient population, 
unlike the sensitivity and specificity metrics. 

Given the higher risk of false-negative outcomes of 
classification, a custom cost function that makes the cost of 
such errors twice that of false-positives was included in the 
optimization process. That is, for each classifier, the 
optimization process that searches through different parameter 
values and classifier variants is also allowed to add such 
custom cost function to compare the outcomes of different 
selections and choose the technique that minimizes this new 
cost function rather than the one with uniform cost for all types 
of error. 

The results from different classifiers are reported as the 
cross-validation performance metrics for the best variant of 
optimal parameters for each classier family. Also, to 
investigate the effects of dimensionality reduction and custom 
cost function, the best results are reported for three cases 
including using no dimensionality reduction or custom cost 
function, using custom cost function, and using both 
dimensionality reduction and custom cost function. 

B. Deep Learning Methods 

Three deep learning networks were considered in this 
study. These networks are AlexNet [11][37], GoogLeNet [38] , 
and VGG-16 [12] networks that represent different 
architectures with different levels of complexity as represented 
by the number of parameters (weights and biases). In 
particular, the numbers of parameters for these networks are 
approximately 61 million for AlexNet, 7 million for 
GoogLeNet, and 138 million for VGG-16. Even with the least 
complex of them, the huge number of parameters suggests that 
it is not possible to properly train such networks with the 
limited data set available in this study. In fact, it is difficult to 
collect sufficiently large data sets for such purpose for most 

medical diagnosis problems given the difficulty of such 
collection in a standardized manner, privacy issues that prevent 
access without consent, as well as the severe data imbalance 
usually encountered in medical data with much less abnormal 
cases than normal cases. Therefore, two strategies are 
commonly utilized to mitigate this problem. The first is to use 
data augmentation whereby each image in the original dataset 
is used to generate multiple images that include the same 
diagnostic characteristics as the original [39]. The idea behind 
this approach is that changing the orientation of the 
abnormality in the image does not affect the diagnosis by a 
doctor. Therefore, using rotated or flipped versions of the 
image would present the network with different images that 
still represent the diagnostic classification of the original one. 
In this work, 8-fold data augmentation is used whereby each 
ROI in the dataset is augmented using flipping (left-right and 
up-down), rotation (90 and 270 degrees), image matrix 
transposition, in addition to their combinations of flipping left-
right of 90 degrees rotated images and flipping left-right of up-
down flipped images. This augmentation results in increasing 
the size of the dataset to 1152 samples representing 576 normal 
and 576 abnormal ROIs. An illustration of such augmentation 
is shown in Fig. 2. 

Although the size of the dataset is significantly larger after 
augmentation, this size is still much smaller than the number of 
network parameters, which means that it cannot be used as is 
for training the network without compromising the 
performance due to the certain overfitting problem. Therefore, 
the second strategy relies on transfer learning to start from pre-
trained networks and fine tune such networks to address the 
classification task at hand. The idea behind this strategy is that 
the early stages of deep learning networks are trained to extract 
low-level image features, which is common and similar 
between different image classification problems, while the rest 
of the network are intended to learn the specific classes for 
each application. Therefore, keeping such early stages intact 
and replacing only the application-specific final stages would 
make the training requirements much less demanding without 
sacrificing the overall performance. This is the essence of 
network-based transfer learning [40]. In this study, this strategy 
is applied using the selected networks pre-trained using 
ImageNet database with more than 14 million images [41]. A 
block diagram of the transfer learning process is shown in 
Fig. 3. 

 

Fig. 2. Illustration of Augmentation Applied to a Sample Abnormal ROI. 

The Original Image is shown at the Top Left Corner with its Seven 

Orthogonal Transformations. 
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Fig. 3. Illustration of Network-based Transfer Learning. 

Given that the input layer must not be altered as a part of 
the transfer learning strategy, the s ROIs in the dataset were 
resized to the respective size of each network (227×227 for 
AlexNet and 224×224 for the others) using bilinear 
interpolation with an anti-aliasing filter to meet network 
requirements and maintain the quality of the images and keep 
them free of aliasing artifacts. All networks require color 
images rather than grayscale images. This was dealt with by 
using the same grayscale image for each of the three color 
components of the network input. Then, the available resized 
dataset was divided into 3 independent sets at the beginning of 
the process with 60% designated as training, 20% for 
validation and 20% for testing. The training data are used to 
train the parameters of the trainable part of the network to 
minimize the error in the diagnostic task classification outcome 
using a suitable optimization technique. On the other hand, the 
validation data can be used to optimize the hyperparameters of 
the network including the optimization technique selection and 
parameters to optimize the performance metrics. Therefore, 
given that they are both utilized, even in different ways, in the 
optimization process, it is important to keep an independent set 
for testing to avoid bias and to be able to assess the presence of 
overfitting. 

 

Fig. 4. Block Diagram of the Deep Learning System. 

The process of estimating the optimal parameters for each 
network to give the best performance is a challenging 
optimization problem because of its high dimensionality and 
non-convex objective function. Therefore, stochastic 
optimization techniques are conventionally utilized. In this 
study, stochastic gradient descent with momentum (SGDM) 
optimizer is used with a learning rate: 0.0001, momentum term 
factor of 0.9, L2-Regularization: 0.0005, and gradient threshold 
method of L2-norm. The selected mini-batch size was 16 
images, and the maximum number of training epochs was set 
to 100. Such settings were selected by observing validation 
results through experimentation and were used for all networks 
in order to allow direct comparison of their results and 
computational costs. A diagram representing the deep learning 
systems used is shown in Fig. 4. 

V. RESULTS 

The statistical machine learning and deep learning systems 
were implemented on an academic license of Matlab 2020b 
(Mathworks, Inc.) with Statistics and Machine Learning and 
Deep Learning toolboxes. The computer system uses a quad-
core Intel® Core™ i7-6700HQ CPU running at 2.60GHz and 
16 GB of RAM and NVIDIA GeForce GTX 950M graphics 
card with 4 GB of memory and CUDA-supported graphics 
processing units (GPUs). The operating system is Windows 10 
Home Edition (version 20H2). Due to the differences in 
machine configurations and software development 
environments, the reported computational time measurements 
of the conducted experiments may be specific to the machine 
and environment used but the findings derived from their 
relative values can still be useful to compare different 
techniques. 

The results for the statistical machine learning techniques 
are presented in Table I. As can be observed, the best accuracy 
of 99.3% was obtained using a support vector machine 
classifier with a linear kernel with no feature standardization, 
uniform cost function, and no PCA feature dimensionality 
reduction. The second-best accuracy of 98.6% was obtained 
from a KNN classifier with a Minkowski distance metric, an 
exponent of 3, a number of neighbors (K) of 5, an inverse 
distance weight, standardized features, custom cost function 
that penalizes false negatives double that of false positives, and 
no PCA feature dimensionality reduction. From the point of 
view of computer-aided detection, the most important 
performance metric is the sensitivity. The best sensitivity of 
100% was obtained from multiple classifiers including both 
classifiers with best accuracy, in addition to the other variants 
of the support vector machine classifier with custom cost 
function and PCA feature dimensionality reduction. The best 
specificity of 98.6%, best positive predictive value of 98.6% 
and best negative predictive value of 100% were also obtained 
by the same support vector machine classifier variant that 
provided the best accuracy and sensitivity results. This 
indicates that this particular classifier has the best overall 
performance among statistical classification techniques. 

The results for the deep learning techniques from pretrained 
networks using transfer learning are shown in Table II. The 
results from AlexNet and GoogLeNet networks showed similar 
results that are consistent in all performance metrics with a 
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value of 98.3% each. On the other hand, the best results were 
obtained from the VGG-16 network with an accuracy of 
98.7%, sensitivity of 99.1%, specificity of 98.3%, positive 
predictive value of 98.3%, and a negative predictive value of 
99.1%. The training hyperparameters for all networks were the 
same where the optimization algorithm was stochastic gradient 
descent with momentum with a rate of 0.0001 and L2-
regularrization of 0.0005, and 8x data augmentation (total of 

1152 images) divided as 60% for training, 20% for validation 
and 20 for testing. The training was done only to the fully-
connected layers of all networks whereby the convolutional 
layers were kept the same as a part of the transfer learning 
strategy used. The training was performed on GPU with 100 
training epochs and a mini-batch size of 16 with a total time of 
25 minutes for AlexNet, 53 minutes for GoogLeNet, and 279 
minutes for VGG-16 networks. 

TABLE I. PERFORMANCE METRICS OF STATISTICAL LEARNING TECHNIQUES 

Method PCA Cost Accuracy Sensitivity Specificity PPV NPV 

Decision Tree1 - Custom 97.20% 97.22% 97.22% 97.22% 97.22% 

Decision Tree2 - Equal 94.40% 97.22% 91.67% 92.11% 97.06% 

Decision Tree3 95% Custom 94.40% 95.83% 93.06% 93.24% 95.71% 

Discriminant Analysis4 - Custom 96.50% 95.83% 97.22% 97.18% 95.89% 

Discriminant Analysis4 - Equal 95.10% 93.06% 97.22% 97.10% 93.33% 

Discriminant Analysis4 95% Custom 97.90% 98.61% 97.22% 97.26% 98.59% 

Ensemble5 - Custom 96.50% 97.22% 95.83% 95.89% 97.18% 

Ensemble6 - Equal 95.10% 97.22% 93.06% 93.33% 97.10% 

Ensemble7 95% Custom 95.10% 97.22% 93.06% 93.33% 97.10% 

KNN8 - Custom 98.60% 100.00% 97.22% 97.30% 100.00% 

KNN9 - Equal 97.90% 97.22% 98.61% 98.59% 97.26% 

KNN10 95% Custom 97.20% 98.61% 95.83% 95.95% 98.57% 

Naïve Bayes11 - Custom 92.40% 90.28% 94.44% 94.20% 90.67% 

Naïve Bayes11 - Equal 93.10% 88.89% 97.22% 96.97% 89.74% 

Naïve Bayes12 95% Custom 96.50% 98.61% 94.44% 94.67% 98.55% 

SVM13 - Custom 97.20% 100.00% 94.44% 94.74% 100.00% 

SVM14 - Equal 99.30% 100.00% 98.61% 98.63% 100.00% 

SVM14 95% Custom 97.90% 100.00% 95.83% 96.00% 100.00% 

1Maximum number of splits: 4 

2Maximum number of splits: 13 

3Maximum number of splits: 12 

4Linear discriminant 

5Method: Bag, Number of learning cycles: 13 

6Method: Bag, Number of learning cycles:119 

7Method: LogitBoost, Number of learning cycles: 11 

8Minkowski distance, Number of neighbors: 5, Distance weight: Inverse, Standardized data 

9Cosine distance, Number of neighbors: 3, Distance weight: Inverse, Standardized data 

10City block distance, Number of neighbors: 5, Distance weight: Squared inverse 

11Normal kernel 

12Triangle kernel 

13Linear kernel, Standardized data 

14Linear kernel 

TABLE II. PERFORMANCE METRICS OF DEEP LEARNING TECHNIQUES* 

Network Training Time (minutes) Accuracy Sensitivity Specificity PPV NPV 

AlexNet 25 98.26% 98.26% 98.26% 98.26% 98.26% 

GoogLeNet 53 98.26% 98.26% 98.26% 98.26% 98.26% 

VGG-16 279 98.70% 99.13% 98.26% 98.28% 99.12% 

*Training options: Stochastic Gradient Descent with Momentum (SGDM) optimizer, Mini-Batch Size: 16, Maximum number of training epochs: 100, Learning rate: 0.0001, Data shuffling: every epoch', Validation 

frequency: 10 steps, Validation Patience: infinity, L2-Regularization: 0.0005, Execution environment: GPU. 
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In order to better visualize the results and allow direct 
comparison between all techniques from both statistical and 
deep learning approaches, the results from all methods are 
shown in a graphical form in Fig. 5 and Fig. 6. In Fig. 5, the 
accuracy for all methods is shown as a square marker that 
varies in color for different variants. On the other hand, to 
distinguish the sensitivity and specificity values on the plot, the 
sensitivity is marked with an upward-pointing triangle, while 
the specificity is marked as a downward-pointing triangle. This 
provides an easy visual comparison of the accuracy, sensitivity 
and specificity values from all techniques. This also allows 

direct visualization of those techniques where specificity 
values are higher than those of the sensitivity. In Fig. 6, a 
similar strategy was used to mark the results of positive 
predictive values as circles, while those of negative predictive 
values as asterisks. It is clear that deep learning techniques 
provide better results than several statistical learning 
techniques, but they are comparable to several other 
techniques. Furthermore, the results indicate that deep learning 
techniques are outperformed by a support vector machine 
classifier variant in all performance metrics and by several 
classifiers when the sensitivity metric is emphasized. 

 

Fig. 5. Comparison of the Results of all Techniques with respect to Accuracy, Sensitivity, and Specificity (or Pretest) Performance Metrics. 

 

Fig. 6. Comparison of the Results of all Techniques with respect to Positive Predictive Value and Negative Predictive Value (or Post-Test) Performance Metrics. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 10, 2021 

311 | P a g e  

www.ijacsa.thesai.org 

VI. DISCUSSION 

The results suggest that the performance of statistical 
classification and deep learning methods are both generally 
acceptable with performance metrics mostly well above 90%. 
The best result was obtained with a statistical classification 
technique, which is clearly a simpler, faster alternative to the 
deep learning methods. While all statistical learning techniques 
took less than a minute to train, the computational 
requirements of training deep learning networks were much 
more demanding with training times up to 279 minutes even 
though transfer learning was used to keep the convolutional 
weights the same. Even though deep learning has been heavily 
emphasized in most recent research studies in the field of 
computer-aided diagnosis, the results of this work provide an 
objective comparison that suggests that simpler traditional 
approaches may yield comparable if not better results. 

The results of all techniques showed sensitivity and 
specificity values that are generally close as they should be in 
clinical practice. Given that the data used were balanced with 
equal numbers of normal and abnormal cases, the accuracy 
values are the average of those of the sensitivity and specificity 
where the accuracy is exactly in the middle. It should be noted 
that the results for several classifiers showed higher values for 
specificity than sensitivity such as all variants of discriminant 
analysis, one variant of KNN, and two variants of Naïve Bayes 
classifiers. Even though some of these classifiers provide good 
overall accuracy, they are not suitable for computer-aided 
detection especially in screening studies. 

The results of statistical classifier variants indicate that 
effect of using a custom cost function varied across different 
variants, but the sensitivity was improved or remained the 
same in all variants after applying such customization. This 
was particularly evident in the KNN classifier where the 
application of such customization provided significant 
improvement becoming the second-best statistical classifier 
and showing better accuracy than two deep learning networks 
with a sensitivity that is better than all of them. Therefore, it is 
suggested that this customization is considered in experimental 
evaluation of different statistical classification techniques. On 
the other hand, the results of using PCA for dimensionality 
reduction along with custom cost function showed a desirable 
effect of making the sensitivity values go above those of the 
specificity for the same classifier. This is evident in 
discriminant analysis and Naïve Bayes classifiers in particular. 
This allows the use of such classifier variants in computer-
aided detection rather than discarding them as suggested above. 
Therefore, it is suggested that such dimensionality reduction is 
considered in such cases when sensitivity is lower than 
specificity. It should be noted that the explicability of the 
results of the system given that the features used and their 
weights are explicitly defined in the eigenvectors (principal 
components) of PCA outcomes. 

As a part of the ongoing efforts to develop regulatory 
standards to govern the artificial intelligence solutions, an 
emphasis on explicability, or the ability to explain the 
outcomes, is a requirement that clinical systems must be able to 

meet. This is clearly an advantage for such traditional methods 
where simpler equations can be used to do that. On the other 
hand, this is largely not possible with deep learning methods 
due to the complexity of the networks structure and its huge 
number of parameters that make it difficult to understand the 
decision-making process inside the network and also render 
such networks prone to such issues as data gaps and 
overfitting. This is particularly evident in medical systems 
because of the much less data sizes available and also the data 
imbalance where several abnormal classes can be significantly 
underrepresented in the training and testing processes. 

The yielded results in this research using the AlexNet have 
surpassed the recent results achieved in the literature. The 
overall accuracy of the AlexNet, GoogLeNet on the MIAS 
Dataset achieved in [42], and [9] was 95.70%, 91.58% 
respectively. And as depicted in Table I, the conventional 
machine learning approached has yielded an extraordinary 
result that is greater than the results achieved the pretrained 
CNN networks. It also surpasses the current results achieved in 
the literature. The retrieved accuracy in the work done in [43] 
using SVM, and KNN on the MIAS database was 87.69%, and 
88.54% respectively. The higher performance of the state-of-
art classification methods retrieved here in this work has been 
achieved by the employed image augmentation paradigm. The 
data augmentation has helped in increasing the size of the 
training and testing data. The augmented images have been 
shuffled before being submitted to the classification models. In 
addition, the data has been split into three totally independent 
subsets for training, validation, and testing subset to minimize 
the problem of overfitting. For statistical machine learning 
methods, the use of K-fold cross-validation explained in the 
Methods section also addresses the overfitting problem. The 
variations across different experiments were found to be less 
than 1% indicating that the proposed framework does not 
suffer from overfitting. 

VII. CONCLUSION 

In this study, direct comparison between the performances 
of statistical machine learning to deep learning in the context of 
computer-aided detection of breast cancer from 
mammographic images was performed. The results are 
compared using diagnostic performance metrics and suggest 
that simpler statistical machine learning techniques may 
provide better performance with simpler architectures that 
require much fewer demanding computations while allowing 
explanation of results. In particular, a support vector machine 
classifier variant provided a better performance overall, while 
other statistical machine learning techniques such as KNN 
classifier variants provided comparable results to those of three 
widely used deep learning networks. The obtained accuracies 
above 98% using both classical and deep learning models 
surpassed reported results in the literature. Furthermore, the 
present study suggests that statistical machine learning based 
methods might be closer to meeting regulatory approval 
requirements for clinical use. This also emphasizes the 
importance of addressing such issues as data gaps and 
explicability of outcomes in deep learning techniques to boost 
their transition to clinical use. 
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