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Abstract—Grasping objects is a critical but challenging aspect 

of robotic manipulation. Recent studies have concentrated on 

complex architectures and large, well-labeled data sets that need 

extensive computing resources and time to achieve generalization 

capability. This paper proposes an effective grasp-to-place 

strategy for manipulating objects in sparse and chaotic 

environments. A deep Q-network, a model-free deep 

reinforcement learning method for robotic grasping, is employed 

in this paper. The proposed approach is remarkable in that it 

executes both fundamental object pickup and placement actions 

by utilizing raw RGB-D images through an explicit architecture. 

Therefore, it needs fewer computing processes, takes less time to 

complete simulation training, and generalizes effectively across 

different object types and scenarios. Our approach learns the 

policies to experience the optimal grasp point via trial-and-error. 

The fully conventional network is utilized to map the visual input 

into pixel-wise Q-value, a motion agnostic representation that 

reflects the grasp's orientation and pose. In a simulation 

experiment, a UR5 robotic arm equipped with a Parallel-jaw 

gripper is used to assess the proposed approach by 

demonstrating its effectiveness. The experimental outcomes 

indicate that our approach successfully grasps objects with 

consuming minimal time and computer resources. 

Keywords—Self-supervised; pick-to-place; robotics; deep q-

network 

I. INTRODUCTION 

Dexterous grasping is a crucial ability of robots that enables 
them to assist and substitute humans in accomplishing various 
tasks that might be too dangerous or tedious to do. Deep 
learning (DL) allows computational models composing 
multiple processing layers to learn data representation with 
multiple levels of abstraction [1]. On the other hand, 
Reinforcement learning (RL) relates how software agents learn 
to take actions in an environment such that some notion of 
cumulative reward is maximized via a trial-and-error approach 
[2]. A typical deep reinforcement learning (deep-RL) combines 
these two machine learning methods [3], which leverages the 
representation power of deep learning to solve the 
reinforcement learning problem. When applied to robotic 
grasping, the robot observes the environment through RGB-D 
data, and attempts an optimal action the predefined policy. 
Robotics can be used in nearly every circumstance, but 
particularly in cluttered environments, where the need for 
enhanced grasping efficiency demands. Object grasping is a 

typical robotics challenge that has made substantial progress in 
recent years, which is an essential step in many robotic tasks 
[4]. Objects removal task has been extensively researched in 
many studies. yet it is a challenging task in robotic 
manipulation [5]. 

The process by which a robot learns to grab and remove 
objects from its workstation is called object removal. Although 
many studies have focused on learning to grasp a single or 
multiple objects, some of these studies have examined how to 
overcome the difficulty of grasping in crowded surroundings 
where things seem to be stuck together in a pile. The robot 
must be able to detect and interpret objects and their 
environment in this situation, as well as effectively remove the 
objects from the robot's workspace. Recently, a standard Deep-
RL has been used in a variety of robotic applications [6], 
including placement [7], grasping deformable objects [8], and 
grasping in a cluttered environment [5]. Meanwhile, it has 
advanced technology by integrating visual and tactile input, 
particularly in robotic grasping [4]. Additionally, deep-RL has 
offered great solutions for difficult-to-perform and repeat tasks 
via the use of end-to-end training. Since robots are usually 
effective at grabbing a variety of objects, interest in robots with 
warehouse automation skills has steadily increased in recent 
years. RGB-D data is increasingly being used to enhance 
robotic vision-based grasping in cluttered environments. Zeng 
et al. [9] developed a method that utilizes multi-view RGB-D 
data in conjunction with self-supervised and data-driven 
learning. 

In [10], the authors utilised a straightforward view-based 
rendering as a forward-prediction model. To generate reliable 
dense visualizations of objects from RGB-D data for robotic 
manipulation, Florence et al. [11] presented the Dense-Object 
Net using a ResNet architecture. Some studies used only RGB 
data, obviating the necessity of depth images. The use of depth 
images was not required in certain studies. For example, [12] 
proposed GANs that could use a single batch of RGB data to 
predict a hand's form and location for various object grasping. 
Kalashnikov et al. [13] employed RL to generate a grasp pose 
detection dataset from RGB data in cluttered settings. The 
learned policies were optimized utilizing the aforementioned 
methods' experience. However, learning typically takes days to 
acquire enough experience training iterations since it needs 
significant computing resources to calculate the large quantity 
of required data. Using a large dataset [14] (e.g., recognizing 
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graspable poses with RGB-D data [15], point clouds[16], 
semantic segmentation based grasp[17]) necessitates a large 
amount of memory and a powerful graphics processor unit 
(GPU), such as NVidia Drivers, which is currently one of the 
difficulties in Supervised learning. In this paper, we propose an 
explicit pick-to-place framework that is less sophisticated than 
others [18]–[22] and that can be trained with appropriate CPU-
Memory or GPU-Memory while taking into account training 
time and sufficient data for adequate evaluation analysis. 

We propose a pick-to-place approach in self-supervised 
learning, in which RGB-D images are mapped to grasping 
actions through a fully connected network (FCN). The 
executed action is evaluated via trial-and-error by maximizing 
the rewards. The paper's primary contributions are as follows: 

 To create an all-inclusive explicit manipulation 
approach that incorporates both picking and placement 
activities. 

 To minimize the complexity of the model architecture 
to do training with minimal GPU or CPU resources. 

 To increase the chance of robotic grasping in cluttered 
environment. 

The paper is organized as follow: Section 2 discusses 
related studies, while Section 3 discusses the proposed 
approach's methodology in detail, including an overview of the 
strategic approach. The simulation experiment is given in the 
next section. Section 5 summarizes the findings and discusses 
them. The conclusion of the paper is presented in Section 6. 

II. RELATED WORK 

Several studies have focused on robotic grasping, 
especially in dense surroundings, and proposed solutions using 
deep-RL, an efficient method. This area requires further 
investigation and understanding of the problems. Taking 
everything from a robot's workplace is part of cleaning up a 
cluttered environment. The robot must be able to perceive, 
interpret, and act on its surroundings and objects. When objects 
are physically close together, the robot's gripper must locate a 
place for its fingers to grasp. Zeng et al. [9] proposed to train 
Q-learning on FCNs. The vision system takes RGB-D images 
from various angles. The robot's workspace collects RGB-D 
images from 15 to 18 angles. Each RGB image feeds an FCN 
for 2D object segmentation. The final product is 3D. This data 
is then combined with an existing 3D model to get the 6d 
posture. In [13], QT-Opt, an off-policy training technique 
based on Q-continuous learning's action extension, is proposed. 
Closed-loop vision-based control is enabled via dynamic 
manipulation and scalable RL. The robot constantly updates its 
grab tactic to improve long-horizon grasp success probability. 

Florence et. al [11] used the idea of self-supervised 
learning. The Dense-Object Network is employed, which uses 
the ResNet model to learn dense visual representations of 
objects from RGB-D data for robotic grasping in cluttered 
surroundings. However, it only shows a dense descriptor for 
three object classes, but more object classes might complicate 
the descriptor space segregation. Furthermore, mask region-
based convolutional neural network (R-CNN) incorporates 
pixel-wise multi-class instance mask prediction for visible and 

occluded area mask segmentation. The [23] proposed learning 
instances and semantic segmentation for visible and occluded 
regions. Semantic segmentation utilizes Fully convolutional 
instance-aware semantic segmentation (FCIS) architecture to 
estimate position-sensitive masks using multi-class instance 
masks. It requires a dataset including all of the objects' possible 
occlusion states, labels, and masks; the amount of effort 
required to complete this task increases exponentially with the 
number of items. Those studies seem to be a time-consuming 
and complicated approach. 

Active learning trained an RL framework on the intended 
neural network (NN) [24]. The grasp space is explored using a 
set of rules. Weighted retraining reduces the effect of 
measurement mistakes. The pixel-attentive policy gradient 
method proposed in [25] uses a single depth image and 
progressively zooms onto a specific area of the image to 
estimate the optimum grasp. Using Generative models to 
arrange multi-finger grasps is more difficult than using 
parallel-jaw grasps in a cluttered environment. In [26], a real-
time deep convolutional encoder-decoder NN for open-loop 
robotic grasping has been proposed. In their method, UG-Net 
can estimate the quality and posture of a grip using a depth 
image. In [10], rendering or simulating future states concerning 
many possible actions is re-used. As a result, an end-to-end 6-
DoF closed-loop grasping model using RL is shown employing 
a learned value function (Q-value). Also, an RL framework and 
3D vision architectures were proposed [27] using hand-
mounted RGB-D cameras. However, manipulation with more 
task-dependent representations must be learned from limited 
training data. Also, Yang and Shang [28] suggested an 
attention DQN for robotic grasping in clutter. Whereas, 
Assembly task to grasp the objects and place in stacking 
manner has been executed in [29]. 

In [12], generative adversarial networks (GANs) were 
introduced to estimate the hand shape and position for multiple 
item grasping. However, unstable training requires careful 
hyperparameter tuning. For 6-DoF grasping, the generative 
attention learning (GenerAL) method [30] has been provided, 
which uses deep RL to directly output the final position and 
configuration of the fingers. In another study, a generative 
grasping GG-CNN is provided [31] to extract the grip quality 
from a depth image. It also predicts the optimum grip based on 
the location, angle, and grasping breadth. However, an 
inaccurate grasp width estimate causes gripper collisions on 
large and small objects. In cluttered scenes, an end-to-end 
network (Contact-GraspNet) has been presented [32] to 
effectively and automatically distribute 6-DoF parallel-jaw 
grasps using depth data while preventing collisions. The 
limited grip breadth prevents it from grasping heavy objects. 
The discontinuous selection boundary makes predictions less 
trustworthy. Besides, The collision-aware reachability 
predictor (CARP) approach [33] has been proposed to learn to 
estimate the probabilities of a collision-free grasp position, thus 
substantially enhancing the grasping of objects in challenging 
situations. In addition, Generative deep dexterous grasping in 
clutters (DDGC) proposed to generate a set of collision-free 
multi-finger grasps in cluttered scenes. High-quality grasps 
produced by DDGC do not always give a successful grasp [34]. 
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There are some challenges that arise as a consequence of 
the training requirements and the time required to complete 
grasping activities. Certain failure scenarios occur in clutter 
circumstances due to the clutter being so dense that there is no 
space for the robot to place its fingers. Additionally, it needs a 
simulation setup and, in most cases, an extensive parameter 
search to function well. As a result, it is computationally 
intensive, taking between tens of seconds and minutes to 
complete. Similarly, batch training may not be optimal for 
predictions involving dense clutter. Learning often involves 
computing a massive quantity of necessary data, which results 
in a high cost of training setup and a long amount of time 
required to acquire proficiency. As a result, the majority of 
studies used sophisticated architectural frameworks that need a 
powerful graphics processing unit (GPU) to accelerate the 
training process, which not every academic can afford. 
Additionally, they focused on executing grasp movements 
without regard for where the object should be placed after it 
was grasped. To overcome the aforementioned challenges, we 
propose a grasp action with a single FCN of posture estimation 
using an explicit approach that consumes less time while 
performing efficient grasping. The proposed approach's 
purpose is to avoid model architectural complexity to enable 
training to be done with minimal GPU or CPU resources. 
Additionally, it focuses not just on grasping but also on placing 
tasks. Accordingly, a complete manipulation system (pick-to-
place) is developed, which is learned collaboratively via end-
to-end learning. 

III. METHODOLOGY 

This section will explain the system's architecture and 
functions in detail. Then, the grasp and placement actions will 
be described in terms of how they perform and how they grasp 
and place actions' rules-based coordination works. The 
reinforcement learning formula and associated rewards will be 
explained, as well as how this component contributes to the 
robot's task learning. 

A. Approach Overview 

The proposed approach is intended to minimize the 
demands of the computing process, which could have an 
impact on the cost of time used during operation (Figure 1). 
The approach architecture is designed to run in a reasonable 
amount of time on a moderate CPU or GPU. The purpose of 
this paper is also to create a self-supervised learning 

manipulation approach that avoids the inherent complexity of 
approach architecture. 

Firstly, the camera captures the RGB-D images, which then 
projected to generate the color (  ) and depth (  ) heightmaps. 
The    and    will be rotated (   ) before being forwarded 
into the conventional layers (a 2-layer residual networks [35]). 
The residual networks will reduce the input parameters of 
DenseNet-121 to be 1024 instead 2048, which can effectively 
minimize the time-consuming, and run on moderate CPU and 
GPU. Then, the extracted features are then fed to a DenseNet-
121 [36], a pre-trained model on ImageNet [37], to create 
motion agnostic features. Then, the motion agnostic features 
are used as inputs by the grasp net    followed by bilinear 

upsampling, which estimates the grasp Q-maps           )  
   ). A three-layer residual network is used in the   . Finally, 

the robot executes the predicted best grasp, corresponding to 
the highest Q-value. Rewards are then assigned automatically 
depending on the success of grasps. The experience replay [38] 
is employed, which used to store the agent's experiences at 
each time step in a data set                  ) that is pooled 
across many episodes to create a replay memory. Then, like 
with DQN, we randomly sample the memory for a minibatch 
of experience and utilize this to train off-policy. 

B. Q-Learning and Reward Function 

The representation image of the environment is viewed as a 
state    ) in this article, which is the deep network's input. The 
output is the action with the highest action-value, and it results 
in an immediate reward. As a consequence, as demonstrated in 
Eq. (1) [2], the policy ( ) is reinforced by selecting the action 
with the highest state-action value. The agent's goal is to select 
the best action that maximizes the action-value function and 
the sum of future reward expectation returns. Maximization is 
accomplished by selecting the optimal value action (among all 
potential actions). 

    )                )             (1) 

To estimate the optimal grasping action, the approach is 
trained via Q-learning on FCN. The Q-value is learned in 
association with the offline policy, as in Eq. (2). 

          )         )                     )  
       ))              (2) 

 

Fig. 1. The Workflow of Proposed Approach based Picking and Placing of Objects. 
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The         )  parameter represents the current Q-value, 
which is updated during the training, and the ( ) variable 
represents the assigned learning rate, which is between 0 and 1. 
Meanwhile, The discount factor ( ) is set to 0.5. The current 
reward (  ) is received by transitioning from the present state 
(  ) to the future state (        ). The reward is required to 
inform the robot about which state-action pairs are efficient 
and which are not. The initial value of    is 0, but it is increased 
throughout the training process to stimulate the robot to 
perform grasp tasks and reduce the loss value. The grasp 
prediction yields the future reward (e.g.             )). Since 
Q-learning is trained on FCN, the learning rate is used in the 
stochastic gradient descent optimizer's back-propagation, it is 
no longer essential to include it in the Q-learning equation. 
After removing the learning rate, the two terms cancel out (as 
written in Eq. (3)). 

                )             (3) 

Accordingly, we set the reward function as follows: 

           )      for grasp if it fails and gripper never 

come in contact with the objects, 

           )      for grasp if it fails and gripper come 

in contact with the objects. 

            )      for successful grasp and place the 

object. 

C. Grasp and Place Primitive Actions 

Each action (  ) is represented as a primitive motion ( ) at 
3D position  ), which is projected from the pixel (  ) of the 
heightmap image that depicts the state (  ), as shown in Eq. 
(4). 

      )       {     }                       (4) 

A gripping action is presented as primitive motion. In one 
of 16 positions, the grasping motion is executed utilizing the 
center point within the gripper's parallel-jaw of top-down 
grasp. The robot moves its gripper's fingers down 3 cm of the 
expected location before closing its fingers to ensure that it 
reaches the desired object. The difference between the location 
of the gripper before and after gripping attempts is compared to 
its threshold value to detect a grasp action. The distance 
between the gripper's fingers and the workspace, which is 300 
cm, is used as the threshold value. A successful grabbing 
attempt, on the other hand, is recorded when the fingers are not 
entirely closed, indicating that the object stays intact within the 
gripper's fingers until the robot places the object down. 

In the next stage, once the robot has gripped an object, the 
placing operation will be carried out, as shown in Figure 1. The 
robot arrives at the workplace. The gripper's state is then 
verified to make sure the object is still in position. The 
placement process will be interrupted if there is slippage. After 
then, the robot returns to its starting location for a new 
iteration. For example, the robot will then place the object into 
the pre-defined place-workspace if it has been successfully 
grabbed. If the robot's gripper is not fully closed during a 
placement job, it implies that the object is within the gripper's 
fingers, allowing the robot to continue placing the object; 

otherwise, the robot will interrupt and resume grasping instead 
of placing the object. 

IV. SIMULATION EXPERIMENT 

In this paper, V-REP [39] is used to simulate an experiment 
using a UR5 robot equipped with a parallel jaw gripper. The 
robot uses an RGB-D camera to observe its environment. The 
color and depth images are captured at a 640 by 480-pixel 
resolution. A 3.7 GHz Intel Core i7-8700HQ CPU and an 
NVIDIA 1660Ti GPU power the PyTorch-based prediction 
network. 

A. Training Session 

Self-supervised learning using a simulation platform is used 
to train the proposed approach. A similar training procedure to 
that described in [40] is used. For training, a collection of ten 
objects of different shapes is randomly placed into the robot's 
workspace. By trial and error, the robot learns to perform 
picking and a placement action. After clearing the workspace 
of all objects, another set of 10 objects is dropped for 
additional training. Continuous data collection occurs until the 
robot has completed 3K training iterations. 

B. Testing Session 

We conducted a series of experiments to determine if the 
proposed approach is successful at accomplishing the grasping-
to-placing task. We validate our approach using scenarios 
involving randomly cluttered objects with varying degrees of 
clutter, namely spared, medium, and dense clutter levels, as 
shown in Figure 2. 

 

Fig. 2. A Series of Randomly Sparsely, Medium, and Densely Cluttered 

Object Challenge Scenarios. 

 Sparsely cluttered objects scenario (test-cases 1-3): the 
objects are randomly distributed on the workspace in 
groups of 6–7. 

 Medium cluttered objects scenarios (test-cases 4-6): The 
objects disperse in a random order of 9–10 objects that 
are distributed in close contact with one another. They 
are more challenging to perform than the first type of 
scenario. 
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 Densely cluttered objects scenarios (test-cases 20-30): 
Three scenarios, including a random selection of 20–30 
objects, conduct to assess the proposed approach, which 
implies more challenging than the previous two sorts of 
scenarios. 

C. Evaluation Metrics 

The proposed approach is assessed using the test scenarios 
described before. The robot must retrieve and clean all objects 
from the workspace in order to place them into place-
workspace. Five test runs (denoted by n) are conducted for 
each test case. The workspace contains between 6 to 40 
objects. Three assessment metrics are utilized to evaluate the 
models' performance. The greater the value for each of these 
metrics, the better. These are the metrics. 

 The grasp success rate: Ratio of the success grasp 
attempts to the total of executed actions over n test runs 
per each test case, and 

 The place success rate: ratio of the number of successful 
place over the number of successful grasp through 
whole run tests of each case test. 

 The completion rate: It's the average of the total number 
of completed objects divided by the total number of 
objects. It is used to measure the capability of proposed 
approach to grasp all objects in each test case without 
failing for more than five actions consecutively. 

V. RESULT AND DISCUSSION 

This section organizes the findings into training and testing 
sessions. The proposed method's results will be shown 
throughout the training session via graphs of grasp success rate, 
which illustrate how the proposed approach performed during 
the training stage and how fast and effectively it learned. The 
testing session consists of a sequence of test cases, each of 
which is conducted five times. The models' performance is 
assessed using their grasp success, place success and 
completion rates. 

A. Training Session Outcome 

The proposed approach (PA) was trained alongside other 
baselines utilizing a different training procedure. The grasping 
performance is evaluated by the proportion of successful grasp 
attempts made within the last 200 tries (m = 200). The 
percentage is scaled by a factor of     in the earlier training 
trials, i.e., trials     . Figure 3 illustrates the grasp success 
rate graphs for 4000 training iterations. In this section, we 
trained the suggested method using different variables to 
evaluate whether or not these aspects affect the grasping 
performance when taken into account. 

1) PA-nodepth: the proposed approach is trained only on 

color image data, ignoring depth information. It can be shown 

that when depth is not included during training, it affects grasp 

performance, with a grasp rate of almost 73%. Additionally, it 

requires many trials at the beginning of learning to gain 

expertise with the environment to boost its performance. 

2) PA-nopretrain: the proposed approach leverages the use 

of the DenseNet-121 model, which was pre-trained on 

ImageNet. However, we need to evaluate our proposed 

approach's effectiveness in the absence of ImageNet pre-

training. The training session findings show that pre-trained 

models assist the learning process by improving grasping 

performance with a minimum number of iterations, in 

comparison to grasping performance when no pre-training 

model was used, which struggled for the first 200 iterations of 

total training iterations, within the range of 65% to 70% grasp 

success rate. 

3) PA-noER: In this portion, the proposed approach was 

trained without using experience replay (ER), which stores the 

agent's experiences at each time step for use as an off-line 

policy in subsequent training iterations. The success rate graph 

indicates that ER has an effect on learning, gradually 

improving grasping skill in comparison to other factors. The 

first 500 iterations of a training session achieve a success rate 

of almost 50%, indicating that the model could be significantly 

influenced by no experience replay. 

 

Fig. 3. The Proposed Approach's Performance in Comparison to other 

Baseline Models in Terms of Grasp Success Rate throughout Training 
Sessions. 

The proposed approach, when combined with pretrain, ER, 
and RGB-D data, has been demonstrated to significantly 
improve grasping performance with a success rate of almost 83 
% and steady learning throughout the training. In term of time-
consuming, each iteration takes an average 4 second on the 
GeForce GTX-1660Ti (6GB) and GeForce GTX 1650 Ti 
(4GB). We also test the time consuming of the proposed 
approach on the CPU with RAM of DDR4 (16GB) with 30 
seconds. The whole training session for each baseline it takes 
almost 4-4.5 hours. 

B. Testing Session Outcome 

The grasp success, place success, and completion rate are 
the two evaluation metrics used to assess the performance of 
the proposed approach. The proposed approach is tested using 
three scenarios: 1) Sparsely clutter objects, 2) medium clutter 
objects and 3) densely clutter objects (Figure 2). These type of 
scenarios are varied in level of clutter challenge with range of 
objects 6-40 objects. 

In Table 1, the results indicate that our approach performed 
well in more difficult tasks, especially in the first two types of 
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situations, namely sparsely and moderately cluttered objects, 
where it achieved a grasp success rate of 93.2 % and 86.1 %, 
respectively. However, performance degrades as the test 
scenario becomes more cluttered, with a grasp success rate of 
71.7 %. In general, the proposed approach is capable of 
effectively performing grasping tasks, with a completion rate 
of about 95% in all scenarios. It implies that it is capable of 
efficiently moving objects from the robot's workspace to the 
place workspace. 

When we compare our approach to others, many factors 
must be addressed, as shown in Table II. Interestingly, our 
approach is capable of grasping with a minimum of time and 
training resources. In comparison, other approaches need a 
minimum of ten seconds to complete one iteration. Similarly, if 
their approaches are carried out on the CPU, they may take 

multiple minutes to finish a single iteration due to the 
complexity of the computing process. On the other hand, our 
approach is capable of performing grasping tasks on the CPU 
as well, with each iteration averaging 30 seconds. 

TABLE I. ASSESSMENT OF RANDOMLY CLUTTERED OBJECT CHALLENGE 

SCENARIOS 

Metrics 

(average %) 

Test scenarios 

Sparsely 

Clutter 
Medium Clutter 

Densely 

Clutter 

Grasp Success Rate 93.2 86.1 71.7 

Place Success Rate 100 95.7 93.8 

Completion Rate 100 100 86.1 

TABLE II. COMPARISON OF THE PROPOSED APPROACH WITH OTHERS 

Method 

Training Resources 

Time-Consuming Grasp Success % 
Execution action 

CPU GPU 

RAM-16GB 4GB 6GB   8GB Grasp Place 

[9]     8-15 seconds 66.7%   

[18]     10-18 seconds 78%   

[29]     15-20 Seconds 81.2%   

[28]     7-10 seconds 73.5%   

Ours     4-5 seconds 83.7   

VI. CONCLUSION AND FUTURE WORK 

One of the difficulties faced by robots is performing 
grasping tasks in an unstructured environment. In this paper, 
the proposed approach, which is based on DQN, showed 
exceptional grasping performance in a range of test scenarios 
including randomly cluttered objects. The proposed method 
has been proven its capability of removing objects from a 
workspace efficiently. The approach achieves an 83.1 % grasp 
success rate in cluttered object settings, demonstrating that it is 
capable of successfully performing a grasping challenge. 
Additionally, even in challenging circumstances, the proposed 
approach obtains a high completion rate (96.1 % in all cluttered 
environment scenarios). In terms of time required, each 
iteration takes an average of four seconds on the GPU and 30 
seconds on the CPU. Significantly, the proposed learning 
approach proved successful in addressing the aforementioned 
problems, namely the time and training resources requirements. 
On the other hand, the proposed approach becomes inefficient 
as the number of objects increases. This deficiency could well 
be addressed in the future via the potential merging of grasp 
and push. Similarly, simulations have been used to assess the 
proposed approach, which is another possible disadvantage to 
consider. However, the proposed approach has been evaluated 
only via simulations, which is a possible drawback to consider. 
The proposed approach will be implemented on hardware in a 
future study, giving strong validation for those interested in 
doing further research. 
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