
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

Performance Evaluation of SNMPv1/2c/3 using
Different Security Models on Raspberry Pi

Eric Gamess1

MCIS Department
Jacksonville State University
Jacksonville, Alabama, USA

Sergio Hernandez2

Information Security
Citibank, New York

New York, USA

Abstract—The Simple Network Management Protocol
(SNMP) is one of the dominant protocols for network monitoring
and configuration. The first two versions of SNMP (v1 and v2c)
use the Community-based Security Model (CSM), where the
community is transferred in clear text, resulting in a low level of
security. With the release of SNMPv3, the User-based Security
Model (USM) and Transport Security Model (TSM) were
proposed, with strong authentication and privacy at different
levels. The Raspberry Pi family of Single-Board Computers
(SBCs) is widely used for many applications. To help their
integration into network management systems, it is essential to
study the impact of the different versions and security models of
SNMP on these SBCs. In this work, we carried out a
performance analysis of SNMP agents running in three different
Raspberry Pis (Pi Zero W, Pi 3 Model B, and Pi 3 Model B+).
Our comparisons are based on the response time, defined as the
time required to complete a request/response exchange between a
manager and an agent. Since we did not find an adequate tool for
our assessments, we developed our own benchmarking tool. We
did numerous experiments, varying different parameters such as
the type of requests, the number of objects involved per request,
the security levels of SNMPv3/USM, the authentication and
privacy protocols of SNMPv3/USM, the transport protocols, and
the versions and security models of SNMP. Our experiments
were executed with Net-SNMP, an open-source and
comprehensive distribution of SNMP. Our tests indicate that
SNMPv1 and SNMPv2c have similar performance. SNMPv3 has
a longer response time, due to the overhead caused by the
security services (authentication and privacy). The Pi 3 Model B
and Pi 3 Model B+ have comparable performance, and
significantly outperform the Pi Zero W.

Keywords—Simple network management protocol; SNMP;
performance evaluation; benchmarks; raspberry pi

I. INTRODUCTION
The Simple Network Management Protocol (SNMP) is

widely utilized for network monitoring and management.
SNMPv1 and SNMPv2c use the Community-based Security
Model (CSM), where the community (that can be seen as a
password) is exchanged in cleartext between SNMP entities.
This basic model of security opens many simple attacks against
the protocol. Hence, a new version of SNMP was released and
uses the User-based Security Model (SNMPv3/USM). The
USM model brings strong authentication and privacy to
SNMP. It was designed to work independently of other
existing security infrastructures, and utilizes a separate user
and key management infrastructure. Unfortunately, the

operational cost for deploying another user and key
management infrastructure is significant, and network
operators have been reluctant in its adoption [1]. To address
this issue, the Transport Security Model (TSM) was later added
to SNMPv3, and relies on well-accepted secure transport layers
such as Secure Shell [2] (SSH), Transport Layer Security [3]
(TLS), and Datagram Transport Layer Security [4] (DTLS).

The Raspberry Pi Foundation, a non-profit organization,
has released a series of Single Board Computers (SBCs) that
have been well-accepted by the community [5][6]. Due to its
low cost (for approximately US$10), the Raspberry Pi Zero W
(RPi Zero W) is one of the best-selling SBCs of the foundation,
and has a 32-bit single-core processor and a WiFi adapter.
When more CPU power is required, users might consider the
Raspberry Pi 3 Model B (RPi 3B) or the Raspberry Pi 3 Model
B+ (RPi 3B+), both with a 64-bit quad-core processor,
Ethernet, and WiFi, for approximately US$35.

To facilitate the integration of Raspberry Pi SBCs into
network management systems, we carried out an analytical
performance analysis of different SNMP versions and security
models for three different boards of the Raspberry Pi
Foundation: (1) RPi Zero W, (2) RPi 3B, and RPi 3B+. To do
so, we installed the agent of Net-SNMP [7], a well-known and
comprehensive implementation of the SNMP protocol, on the
three SBCs and ran some tests using a benchmarking tool that
we developed. For better flexibility, the tool has numerous
parameters and reports the “Response Time” defined as the
required time to complete an SNMP request/response exchange
between a manager and an agent. We performed intensive tests
where we varied parameters such as the type of requests, the
number of objects involved per request, the security levels of
SNMPv3/USM, the authentication and privacy protocols of
SNMPv3/USM, the transport protocols, and the versions and
security models of SNMP. We think this study might be
helpful for network administrators when integrating Raspberry
Pis into SNMP-based network management systems.

The rest of the paper is structured as follows. Section II
discusses the related work. An introduction to the SNMP
protocol and its different versions and security models is made
in Section III. We present the benchmark developed and used
for the experiments in Section IV. The description of the test
environment is done in Section V. Section VI reports and
discusses the results of our evaluation of the SNMP protocol in
many different scenarios. Finally, Section VII concludes the
paper and gives directions for future work.

1 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

II. RELATED WORK
Some work has been done to evaluate the performance of

SNMP. Andrey, Festor, Lahmadi, Pras, and Schönwälder [8]
studied papers related to the evaluation of SNMP, in major
research databases such as the IEEE Xplore and the ACM
Digital Library. Their goal was to retrieve and classify
techniques, approaches, and metrics employed by these studies,
to propose a common framework for SNMP performance
analysis. Hidalgo and Gamess [9] developed one of the first
SNMP agents for Android smartphones with support for
SNMPv1 and SNMPv2c. To validate the possibility of
integrating them into network management systems, the
authors did some performance evaluations of the maximum
SNMP traffic that Android smartphones can support in a
determined period of time. In their work, Corrente and Tura
[10] analyzed the impact of security on SNMP, by considering
SNMPv1, SNMPv2c, and SNMPv3/USM. They did
experiments in a testbed and reported metrics such as the
processing time, number of transactions per minute, CPU
usage, and protocol overhead. To more efficiently use SNMP
in mobile environments, the study in [11] proposed to add a
superimposition model to its architecture. With simulations, the
authors supported how the proposed superimposition
architecture can improve the performance of SNMPv3/USM.
Several studies are focused on comparing the performance of
different network management solutions [12-16]. For example,
the authors of [12] assessed the performance of SNMP-based
and web services-based network monitoring systems. Their
analysis was centered around SNMPv1 and SNMPv2c, and
they reported results such as bandwidth usage, memory
consumption, and roundtrip delay. Another work in this
direction was done in [13], where Santos, Esteves, and
Granville evaluated the performance of SNMP, NETCONF
[17], and RESTful web services for router virtualization
management. At the level of SNMP, the authors assessed
SNMPv2c and SNMPv3/USM.

The previously mentioned efforts did not consider the new
TSM model of SNMPv3. In the specialized literature, just a
few projects have included this emerging standard. One of the
first evaluations was done by Du, Shayman, and Rozenblit
[18], before the publication of the RFCs that introduced the
TSM model [19–21]. The authors modified the source code of
Net-SNMP [7] and integrated the support of TLS [3] over TCP,
for both SNMPv1 and SNMPv3. To demonstrate the viability
of such a new development at the level of performance, the
research team did some experiments in a testbed environment,
and analyzed the performance of SNMPv1, SNMPv3/USM,
and their non-standard SNMPv1 and SNMPv3 over TCP with
TLS. A few years later, the work in [22] used a similar
approach for SNMP over SSH. The authors did a non-standard
modification of Net-SNMP [7] to carry SNMPv2c over SSH
[2]. In a controlled environment, they assessed the performance
of SNMPv2c and SNMPv3/USM, against their non-standard
modified version of SNMPv2c over SSH. More recently,
Schönwälder and Marinov [1] evaluated SNMPv3/USM and
SNMPv3/TSM (with SSH, TLS, and DTLS) in a test
environment. The testbed was made of computers connected
through Ethernet. They reported metrics such as the response
time to execute snmpget and snmpwalk (retrieving the

ifTable table [23]) commands, and the bandwidth utilization
for snmpwalk (retrieving the ifTable table [23]). It is worth
clarifying that snmpget and snmpwalk are basic applications
shipped with Net-SNMP [7].

According to our search, the unique assessment work that
covers SNMPv3/TSM and standard implementations of the
protocols is described in [1]. Our paper not only includes
SNMPv3/TSM, but we also believe that it will be of interest in
the growing community of the Raspberry Pi [5][6].

III. INTRODUCTION TO SNMP AND ITS DIFFERENT
VERSIONS AND SECURITY MODELS

The Simple Network Management Protocol (SNMP) was
initially defined in August 1988 by RFC 1067 [24] as a
protocol to monitor and control network devices, and it has
been used extensively for over three decades now. SNMP
allows configuring network devices remotely, collecting
management data, and supporting the dissemination of event
notifications [1]. Approved in 1990, SNMP became one of the
main network protocols widely used as a de-facto standard by
the industry to carry out the monitoring of assets for IP-based
networks [25]. Nevertheless, the first version of SNMP, known
as SNMPv1, is limited to meet all network management
requirements that arise as a consequence of the interconnection
complexity among systems, and is exposed to several security
threats.

The architectural model of SNMP is straightforward and
consists of network management stations, agents, and managed
devices. Network management stations execute the
applications which monitor and control network elements or
managed devices. Agents are responsible for performing the
network management functions requested by the network
management stations, whereas managed devices may be hosts,
gateways, terminal servers, switches, routers, among others.

The second version of SNMP, known as SNMPv2c, is an
improvement of SNMPv1 without implementing security
features. Neither SNMPv1 nor SNMPv2c can provide
authentication, confidentiality, and integrity; therefore, they are
exposed to multiple security threats, particularly those
associated with authentication and privacy [26].

The third version of SNMP, known as SNMPv3, provides
security features to the previous versions by introducing the
User-based Security Model (USM), which is used to
authenticate entities and provides encryption to secure the
communication channel [10]. The authentication is performed
using Hashed Message Authentication Code (HMAC) based on
techniques such as Message Digest 5 (MD5) as well as Secure
Hash Algorithm (SHA), while encryption for privacy is
performed using Data Encryption Standard (DES) and
Advanced Encryption Standard (AES), which are symmetric
algorithms [27]. Also, SNMPv3 introduced a substantial
complexity to SNMP architecture, since it implements its own
user and key management infrastructure.

A. SNMPv1 and SNMPv2c
Both versions, SNMPv1 and SNMPv2c, rely on the

Community-based Security Model (CSM) by which the
community’s name acts as a password and is transmitted over

2 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

the network in cleartext with the message. If the community’s
name is recognized, then the message should be processed. The
use of the community’s name without any encryption to verify
that the message was sent by a trusted source is inherently
insecure since it allows unauthorized individuals to capture it
by using a packet analyzer or sniffer, and execute privileged
actions. Hence, the security of the SNMP messages is
dependent on the security of the channels over which the
messages are sent.

SNMPv1 introduced five main Protocol Data Units: (1)
GetRequest, (2) GetNextRequest, (3) SetRequest, (4)
GetResponse, and (5) Trap. GetRequest is used by the
manager to collect the value of one or more objects managed
by the agent. The manager uses GetNextRequest message to
request a series of consecutive variables managed by the agent.
SetRequest is used by the manager to modify the value of
one or more objects in a managed device. GetResponse is
sent by agents to respond with data to get (GetRequest and
GetNextRequest) and set (SetRequest) requests. Trap is
used by the agent to notify that an event has occurred or that a
condition is present. SNMPv1 does not allow manager-to-
manager interactions [28].

Three new PDUs were added in SNMPv2c: (1)
GetBulkRequest, (2) InformRequest, and (3) Report.
The purpose of GetBulkRequest is the optimization of
GetNextRequest, allowing to request the transfer of a large
amount of data and reducing the number of requests and
responses. InformRequest is used by a manager to send
management information to other remote managers. Usage and
precise semantics of Report are not specified; therefore, any
SNMP administrative framework making use of this PDU must
define it. SNMPv2c improved error-handling by including
expanded error codes to differentiate types of error conditions
reported through a single error code in SNMPv1 [29].

B. SNMPv3/USM
The User-based Security Model (USM) provides

authentication and privacy capabilities at the SNMP message
level. It defines three security levels that can be summarized as
follows:

• Communication without authentication and privacy
(noAuthNoPriv): From a security point of view, it is
comparable to the CSM used by previous versions of
SNMP. Neither authentication, nor encryption for
privacy capabilities, are provided.

• Communication with authentication but without privacy
(authNoPriv): It provides authentication. However,
encryption for privacy is not provided by this level.

• Communication with authentication and privacy
(authPriv): It provides both authentication and
encryption for privacy capabilities.

The USM model implements its own user and key
management infrastructure, making it unpractical to be
implemented [1]. It relies on the existence of pre-shared keys
between two communicating SNMP engines.

C. SNMPv3/TSM
The Transport Security Model (TSM) was designed to fit

into the SNMP architecture as a Security Model that utilizes
the services of a secure Transport Model. The TSM model does
not provide security mechanisms such as authentication and
encryption itself [19]. Instead, it was implemented to work
with a variety of secure transport protocols, including Secure
Shell [2] (SSH), Transport Layer Security [3] (TLS), and
Datagram Transport Layer Security [4] (DTLS).

1) SNMPv3/SSH: The Secure Shell (SSH) protocol [2] is
used for secure remote login and other secure network
services over an insecure network. It comprises of three
components:

• Transport Layer Protocol: it provides server authentica-
tion, confidentiality, integrity, and compression. It
operates over a TCP connection, however, other reliable
data streams can be used. Public-key cryptography is
used to authenticate the server to the client and to
establish a secure connection, which then uses a session
key and a symmetric encryption algorithm to protect the
connection.

• User Authentication Protocol: it authenticates the client-
side user to the server and runs over the transport layer
protocol. SSH can support multiple user authentication
mechanisms including, but not limited to, password
authentication, public-key authentication, and
keyboard-interactive authentication (which supports
challenge-response authentication mechanisms).
Through the Generic Security Service Application
Program Interface (GSS-API), SSH can also interact
with the Kerberos protocol to authenticate users.

• Connection Protocol: it multiplexes the encrypted
tunnel into several logical channels. It runs over the
transport layer protocol and starts once the user
authentication protocol has finished.

2) SNMPv3/TLS: The Transport Layer Security (TLS)
protocol [3] provides authentication, integrity, and privacy at
the transport layer. The TLS Transport Model (TLSTM) for
SNMP consists of a model instantiation in the transport
subsystem and details the elements of procedure for sending
and receiving SNMP messages over TLS. TLSTM makes use
of the X.509 public key infrastructure to provide
authentication.

3) SNMPv3/DTLS: The Datagram Transport Layer
Security (DTLS) protocol [4] is based on the TLS protocol
and provides similar security capabilities. The main difference
in comparison with TLS is that DTLS provides secure
communication over unreliable datagram transports (e.g.,
UDP).

IV. METRICS AND BENCHMARKS
Let us define the “response time” as the time required for

an SNMP manager to send a request and receive the associated
response from the agent. We could not find a software tool on
the Internet that fulfilled our need in computing the response

3 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

time with precision. Hence, we wrote our own benchmarking
tool in the C programming language, using the Net-SNMP
library [7]. Basically, a request/response exchange is done
several times between our benchmarking tool and the agent.
The benchmarking tool takes a timestamp before and after the
interchange. The difference in timestamps is divided by the
number of exchanges to get the average response time.
Repeating the request/response exchange several times
minimizes the error on the response time, due to low-precision
clocks and any other processes that could be started by the
operating systems and load the devices during the benchmark
execution.

The benchmark has several parameters, including the
version of SNMP, the community (only for SNMPv1 and
SNMPv2c), the security name, security level (noAuthNoPriv,
authNoPriv, and authPriv), the authentication protocol and
passphrase, the privacy protocol and passphrase (only for
SNMPv3/USM), the digital certificates for the benchmarking
tool and the agent (only for SNMPv3/DTLS and
SNMPv3/TLS), the number of sessions (numSessions), the
number of requests/responses per session (sessionSize), the
transport protocol (UDP, TCP, DTLS, and TLS), the IP address
of the agent, and a list of parameters related to Object
Identifiers (OIDs). The latter list will depend on the petitions.
For example, for GetRequest and GetNextRequest
petitions, it should be the list of OIDs to be resolved into
values. For SetRequest petitions, it should be a list of triplets
(OID to be altered, its type, and its new value). Fig. 1 gives the
skeleton of the benchmark for computing the response time for
a GetRequest petition. The line numbers have been added
just for reference. Line 01 gets the starting timestamp. The
external for-loop controls the number of sessions
(numSessions). For each session, the internal for-loop
controls the number of requests/responses per session
(sessionSize). Each session consists of opening the session
with the agent (Line 05), repeating the creation of the request
(Line 07), exchanging the request and response with the agent
(Line 09), and destroying the response once processed (Line
11), before closing the session (Line 13). Finally, Line 16 gets
the ending timestamp, and the results are displayed.
01: gettimeofday(&timerStart, (struct timezone *) 0);
02: // Get the starting timestamp
03:
04: for(int i=0; i<numSessions; i++) {
05: ss = snmp_open(&session); // Open an SNMP session
06: for(int j=0; j<sessionSize; j++) {
07: pdu = snmp_pdu_create(SNMP_MSG_GET); // Create request
08: // Add pairs of (OIDs, null) to the request
09: status = snmp_synch_response(ss, pdu, &response);
10: // Process the response
11: snmp_free_pdu(response);
12: }
13: snmp_close(ss); Close the SNMP session
14: }
15:
16: gettimeofday(&timerEnd, (struct timezone *) 0);
17: // Get the ending timestamp before showing the results

Fig. 1. Skeleton of the Code of the Benchmark to Compute the Response
Time for a GetRequest.

V. DESCRIPTION OF THE TEST ENVIRONMENT
The testbed of Fig. 2 was used for the experiments. It

consisted of a laptop, a wireless router, and SBCs from the
Raspberry Pi Foundation. The laptop and SBCs were placed 4
meters from the wireless router, with no obstacles between
them. Section V.A gives more details about the different
models of SBCs (RPi Zero W, RPi 3B, and RPi 3B+) that were
used. The laptop had the following specifications: Microsoft
Surface Book with an Intel Core i7-6600U CPU at 2.81 GHz,
16 GB of RAM, a 512 GB SSD, an NVIDIA GeForce GPU,
and a Marvell AVASTAR Wireless-AC Network Adapter
(dual-band wireless adapter with support to IEEE 802.11
a/b/n/g/ac). Debian amd64 10.11.0 was installed as the
operating system. For the wireless network interconnection, a
NETGEAR AC1200 Smart WiFi Router R6220 was employed.
It had the following characteristics: an 880 MHz MediaTek
processor width two radio bands (IEEE 802.11b/g/n in the 2.4
GHz band and IEEE 802.11a/n/ac in the 5 GHz band), 128 MB
of flash, 128 MB of RAM, and five 10/100/1000 Mbps
Ethernet ports (1 WAN and 4 LAN). In the 2.4 GHz band, the
bandwidth can be set up to a maximum of 54, 145, or 300
Mbps. At the level of the 5 GHz band, a maximum of 173, 400,
and 867 Mbps can be configured.

Fig. 2. Testbed for the Experiments.

A. Models of Raspberry Pi used in the Experiments
The Raspberry Pi Zero W (RPi Zero W) is based on a 32-

bit Broadcom BCM2835 single-core ARM1176JZF-S SoC @
1.0 GHz, 512 MB of RAM, one 2.4 GHz IEEE 802.11b/g/n
WiFi interface, one micro USB On-The-Go port, one mini
HDMI connector, and one microSD card slot. The Raspberry
Pi 3 Model B (RPi 3B) is based on a 64-bit Broadcom
BCM2837 quad-core Cortex-A53 SoC @ 1.2 GHz, 1 GB of
RAM, one 10/100 Mbps Ethernet interface, one 2.4 GHz IEEE
802.11b/g/n WiFi interface, four USB 2.0 ports, one full-size
HDMI connector, and one microSD card slot. The Raspberry
Pi 3 Model B+ (RPi 3B+) is based on a 64-bit Broadcom
BCM2837B0 quad-core Cortex-A53 SoC @ 1.4 GHz, 1 GB of
RAM, one Gigabit Ethernet interface over USB 2.0 (maximum
throughput 300 Mbps), one dual-band 2.4 GHz and 5 GHz
IEEE 802.11a/b/g/n/ac WiFi interface, four USB 2.0 ports, one
full-size HDMI connector, and one microSD card slot.

B. Operating Systems for Raspberry Pi
Many operating systems are available for Raspberry Pi

(e.g., Raspberry Pi OS, Debian, Ubuntu, RaspBSD, Kali Linux,
OpenSUSE, RetroPie, LibreELEC, RISC OS). We opted for
Raspberry Pi OS (32-bit), released in May 2021, which is the
continuity of Raspbian (one of the most accepted OS for
Raspberry Pi, worldwide). The Raspberry Pi Foundation offers
three versions of this operating system that are compatible with
all Raspberry Pi models: (1) Raspberry Pi OS Lite, (2)
Raspberry Pi OS with Desktop, and (3) Raspberry Pi OS with
Desktop and Recommended Software. The “Lite” version does

NETGEAR R6220

Laptop that
runs the benchmark

Raspberry Pi

4 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

not have a GUI, and therefore it is faster since it does not have
the full overload of a desktop environment. It is totally based
on the command-line interface (terminal) and consists of 483
packages. The “Desktop” version has all the features of the
“Lite” version, but also includes software such as Openbox as
the window manager and LXDE (Lightweight X11 Desktop
Environment) as the desktop environment. It consists of 1384
packages. The “Desktop and Recommended Software” version
has all the “Desktop” version features, but also includes
additional software such as LibreOffice, Firebird, Apache Ant,
BlueJ, Greenfoot, OpenJDK Java Runtime Environment,
OpenJDK Java Development Kit, Node.js, and Ruby. It
consists of 2021 packages. We chose the “Lite” version since
an SBC that is running an SNMP agent will most likely be
headless, without the need of a GUI.

The Raspberry Pi Foundation also has a 64-bit version of
its operating system that can be run only in 64-bit based
hardware like the RPi 3B, RPi 3B+, RPi 4B, and RPi 400. That
is, it is not suitable for the RPi Zero W. It is worth mentioning
that it is still in the beta stage, and not directly advertised on
the website of the Raspberry Pi Foundation, since they are still
working on fixing issues that does not have the 32-bit version.

The performance of a Raspberry Pi will be noticeably
affected by its microSD card. In the three SBCs, the original
microSD card was replaced by a 64 GB SanDisk Extreme
microSDXC UHS-I Memory Card (SDSQXA2-064G-
GN6MA). It is considered as one of the fastest microSD cards
of the market, with up to 160 MB/s and 60 MB/s for the
reading and writing speeds, respectively.

C. Compiling Net-SNMP
Net-SNMP [7] is a widely used open-source,

comprehensive implementation of the SNMP protocol. It has
support for all the versions of SNMP and consists of an agent
(snmpd) and several client applications (snmpget,
snmpgetnext, snmpset, snmpbulkget, snmpwalk, etc).
Precompiled packets for Net-SNMP v5.7.3 are available in the
repositories of Raspberry Pi OS. However, at the level of
SNMPv3, they were compiled to support the USM model, but
not the TSM model. Hence, a newer version of Net-SNMP
(v5.8) was compiled and installed in all the Raspberry Pis. To
this end, the commands of Fig. 3 were executed. The required
libraries were first installed from the repositories. At the
configuration level, the security models (both USM and TSM)
and the transport protocols (UDP, TCP, UDPIPv6, TCPIPv6,
DTLSUDP, TLSTCP, and SSH) were specified.

Table I shows the necessary time for each phase of the
compilation and installation process (configuration,
compilation, and installation) for the different Raspberry Pis
that were used in this work. These results can be beneficial,
since they shed light on the power of each SBC.
apt-get install libssl-dev libperl-dev libssh2-1-dev
tar zxvf net-snmp-5.8.tar.gz
cd net-snmp-5.8
./configure --with-security-modules=usm,tsm \
 --with-transports=UDP,TCP,UDPIPv6,TCPIPv6,DTLSUDP,TLSTCP,SSH
make
make install

Fig. 3. Commands to Compile and Install Net-SNMP.

TABLE I. COMPILATION TIMES OF NET-SNMP

Command RPi Zero W RPi 3B RPi 3B+

./configure 15m42s 4m31s 4m3s

make 62m26s 14m14s 12m28s

make install 4m8s 1m18s 1m7s

It is worth clarifying that the recent versions of Net-SNMP
[7] have experimental support for SNMPv3/SSH. Despite
many efforts, this research team could not successfully install
and use it. There is little documentation on setting the
environment of SNMPv3/SSH. Hence, we did not report
results related to this specific security model in this paper.

VI. PERFORMANCE RESULTS AND ANALYSIS
Here, we describe the common parameters selected for all

our experiments:

• We configured the radios of the equipment in the 2.4
GHz band. The wireless router was set up to a
maximum of 54 Mbps.

• Recent versions of SNMP can use UDP or TCP as the
transport protocol. SNMP was initially designed for
UDP, and will most likely be used with UDP since most
SNMP agents are developed to use this protocol (it
requires less computing power than TCP). Hence,
otherwise stated, our experiments were done using UDP
as the transport protocol.

• SNMPv3/USM has two authentication protocols (MD5
and SHA-1) and two privacy protocols (DES and AES).
Unless otherwise specified, in our experiments with
SNMPv3/USM, we selected SHA-1 as the
authentication protocol and AES as the privacy
protocol, when used. SHA-1 was preferred due to the
attack on MD5 [30]. AES was selected since DES has a
relatively short 56-bit key that is easily breakable with
modern computers [31][32]. In January 1999,
distributed.net and the Electronic Frontier Foundation
were the first to collaborate and publicly broke a DES
key in less than 23 hours.

• The OIDs retrieved and modified in our experiments
were strings of 32 characters.

• For the experiments with SNMPv3/DTLS, self-signed
certificates were generated, using the RSA algorithm
with 2048-bit keys.

They are many parameters that can be varied to analyze
their effects on the performance of SNMP. In this study, we
considered parameters such as the type of requests, the number
of objects involved per request, the security levels of
SNMPv3/USM, the authentication and privacy protocols of
SNMPv3/USM, the transport protocols, and the versions and
security models of SNMP. Also, to get consistent results, it is
worth mentioning that we repeated each experiment at least
fiftheen times, and the results presented in the study is an
avarege of them.

5 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

A. Type of Requests Variation
This experiment aims to study how varying the type of

requests can affect the performance of SNMP on a Raspberry
Pi. The PDUs available in SNMP are version-specific.
However, GetRequest, GetNextRequest, and
SetRequest are present in all the versions, and therefore are
the most commonly used requests. In this first experiment, we
compared the response time of these three requests for
SNMPv1, SNMPv2c, SNMPv3/USM, and SNMPv3/DTLS.
The experiment is focused on sessions with a single
request/response exchange. Table II shows the results for the
RPi Zero W, RPi 3B, and RPi 3B+ as an agent. The differences
between GetRequest and GetNextRequest petitions are not
noticeable. However, the response time for a SetRequest is
much longer, due to the reading and writing speed in the
microSD card (maximum 160 MB/s and 60 MB/s for reading
and writing speed, respectively).

At the level of the SNMP versions, SNMPv1 and
SNMPv2c have very similar performances. SNMPv3/USM and
SNMPv3/DTLS have much longer response times due to the
overhead of the authentication and privacy mechanisms. It is
also worth mentioning that in this experiment, SNMPv3/USM
outperforms SNMPv3/DTLS, with minor differences.

In all the subsequent experiments, we focused on
GetRequest petitions, since they are the most common
petitions, and the majority of deployments of SNMP are
focused on monitoring (not configuring), which requires
massive GetRequest and GetNextRequest petitions, rather than
SetRequest.

B. Number of OIDs Variation
In this experiment, the impact of the number of OIDs in the

response time of a GetRequest petition is studied, and it was
varied from 1 to 32. The experiment is focused on sessions
with a single request/response exchange.

Fig. 4 and Fig. 5 depict the results obtained for SNMPv1
and SNMPv2c, respectively. Our study seems to indicate that
both have a very similar performance.

TABLE II. RESPONSE TIME OF DIFFERENT REQUESTS (MILLISECONDS)

Type of Request Version RPi Zero W RPi 3B RPi 3B+

GetRequest

v1 2.97 2.02 1.71

v2c 2.99 2.01 1.73

v3/USM 3.51 2.24 2.15

v3/DTLS 3.95 2.44 2.36

GetNextRequest

v1 2.98 2.08 1.74

v2c 2.96 2.05 1.72

v3/USM 3.53 2.31 2.20

v3/DTLS 4.02 2.47 2.33

SetRequest

v1 151.27 127.44 122.35

v2c 151.35 127.50 122.37

v3/USM 155.32 131.74 126.92

v3/DTLS 157.21 135.87 131.56

Fig. 4. Response Time for a GetRequest when Varying the Number of OIDs

for SNMPv1.

Fig. 5. Response Time for a GetRequest when Varying the Number of OIDs

for SNMPv2c.

Fig. 6 and Fig. 7 show the results obtained for SNMPv3/
USM with authPriv (SHA-1 and AES) and SNMPv3/DTLS,
respectively. The response time for SNMPv3/USM is slightly
longer than for SNMPv1 and SNMPv2c. SNMPv3/DTLS has
the longest response time.

Fig. 6. Response Time for a GetRequest when Varying the Number of OIDs

for SNMPv3/USM.

Fig. 7. Response Time for a GetRequest when Varying the Number of OIDs

for SNMPv3/DTLS.

0

1

2

3

4

5

6

1 2 4 8 16 32R
es

po
ns

e
Ti

m
e

(M
ill

is
ec

on
ds

)

Number of OIDs

RPi Zero W RPi 3B RPi 3B+

0

1

2

3

4

5

6

1 2 4 8 16 32R
es

po
ns

e
Ti

m
e

(M
illi

se
co

nd
s)

Number of OIDs

RPi Zero W RPi 3B RPi 3B+

0

1

2

3

4

5

6

1 2 4 8 16 32R
es

po
ns

e
Ti

m
e

(M
illi

se
co

nd
s)

Number of OIDs

RPi Zero W RPi 3B RPi 3B+

0

1

2

3

4

5

6

1 2 4 8 16 32R
es

po
ns

e
Ti

m
e

(M
illi

se
co

nd
s)

Number of OIDs

RPi Zero W RPi 3B RPi 3B+

6 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

The tendency of this experiment indicates that the response
time for a GetRequest will be linearly proportional to the
number of OIDs. It is also noticeable that both the RPi 3B and
the RPi 3B+ have similar results, which are much better than
the RPi Zero W.

C. Security Level Variation for SNMPv3/USM using UDP
and TCP as Transport Protocols for the RPi Zero W
The objective of this experiment is to analyze the impact of

the security levels (noAuthNoPriv, authNoPriv, and authPriv)
when using SNMPv3/USM on an RPi Zero W. The experiment
is also aimed at understanding how the transport protocol
(UDP or TCP) can affect the performance. To simplify the
notation, let us abbreviate noAuthNoPriv as “nn”, authNoPriv
as “an”, and authPriv as “ap”.

Fig. 8 depicts the total response time for our experiments
for different numbers of requests/responses in a session (from
50 to 400 requests/responses). For each size of the session, six
total response times are reported: (1) noAuthNoPriv with UDP,
(2) noAuthNoPriv with TCP, (3) authNoPriv with UDP, (4)
authNoPriv with TCP, (5) authPriv with UDP, and (6) authPriv
with TCP. We selected SHA-1 and AES as the authentication
and privacy protocols, respectively.

As indicated by our experiments, TCP has a slightly longer
response time, but the differences with UDP are not significant.
The variations due to the different privacy levels are more
noticeable. As expected, noAuthNoPriv is the shortest response
time, while authPriv is the longest.

D. Authentication and Privacy Protocols Variation for
SNMPv3/USM using UDP as the Transport Protocol for
the RPi Zero W
This experiment aims to assess the impact of the

authentication protocols (MD5 and SHA-1) and the privacy
protocols (DES and AES) when using SNMPv3/USM on an
RPi Zero W.

Fig. 9 depicts the total response time of our experiments for
different numbers of requests/responses in a session (from 50
to 400 requests/responses). For each size of the session, seven
total response times are reported: (1) noAuthNoPriv, (2)
authNoPriv with MD5, (3) authNoPriv with SHA-1, (4)
authPriv with MD5 and DES, (5) authPriv with MD5 and AES,
(6) authPriv with SHA-1 and DES, and (7) authPriv with SHA-
1 and AES.

Fig. 8. Total Response Time for a Session of GetRequest for SNMPv3/USM

when Varying the Security Level and the Transport Protocol.

Fig. 9. Total Response Time for a Session of GetRequest for SNMPv3/USM

when Varying the Authentication and Privacy Protocols.

Our results seem to indicate that MD5 is faster than SHA-1
as an authentication protocol. However, it is worth reminding
that MD5 is now considered insecure [30]. Also, at the level of
the privacy protocol, DES appears to be faster.

E. SNMPv3/USM vs SNMPv3/DTLS
In this experiment, we investigate the performance of

SNMPv3/USM (SHA-1 and AES) vs. SNMPv3/DTLS on the
RPi Zero W, RPi 3B, and RPi 3B+.

Fig. 10 depicts the total response time of our experiments
for different numbers of requests/responses in a session (from
50 to 400 requests/responses). For each size of the session, six
total response times are reported: (1) SNMPv3/USM (SHA-1
and AES) for RPi Zero W, (2) SNMPv3/DTLS for RPi Zero
W, (3) SNMPv3/USM (SHA-1 and AES) for RPi 3B, (4)
SNMPv3/DTLS for RPi 3B, (5) SNMPv3/USM (SHA-1 and
AES) for RPi 3B+, and (6) SNMPv3/DTLS for RPi 3B+.

The best results are obtained by the RPi 3B+, while the
worst correspond to the RPi Zero W. Also, this experiment
confirmed that SNMPv3/USM has a better performance than
SNMPv3/DTLS, as already mentioned in Section VI.A.

Notice that we also did experiments with SNMPv3/TLS.
However, the obtained results were not stable at all, and we
had significant variations of the response time from one test to
another. Hence, we decided not to report them in this paper.

Fig. 10. Total Response Time for a Session of GetRequest for SNMPv3/USM

and SNMPv3/DTLS.

0

200

400

600

800

1000

1200

1400

1600

50 100 150 200 250 300 350 400

R
es

po
ns

e
Ti

m
e

(M
illi

se
co

ng
s)

Number of Requests/Responses per Session

nn/UDP nn/TCP an/UDP an/TCP ap/UDP ap/TCP

0
200
400
600
800

1000
1200
1400
1600

50 100 150 200 250 300 350 400

R
es

po
ns

e
Ti

m
e

(M
illi

se
co

nd
s)

Number of Requests/Responses per Session

nn an/MD5 an/SHA ap/MD5/DES
ap/MD5/AES ap/SHA/DES ap/SHA/AES

0

200

400

600

800

1000

1200

1400

1600

50 100 150 200 250 300 350 400

R
es

po
ns

e
Ti

m
e

(M
illi

se
co

nd
s)

Number of Requests/Responses per Session

RPi Zero W/USM RPi Zero W/DTLS RPi 3B/USM
RPi 3B/DTLS RPi 3B+/USM RPi 3B+/DTLS

7 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

F. Retrieving the Interface Table with snmpwalk when
Varying the Number of Interfaces
As mentioned previously, Net-SNMP [7] has several client

applications (snmpget, snmpgetnext, snmpset, snmpbulkget,
snmpwalk, etc). In this experiment, we investigated the
performance of snmpwalk by retrieving the interface table
(ifTable [23]), when varying the numbers of interfaces, for
SNMPv1, SNMPv3/USM (SHA-1 and AES), and
SNMPv3/DTLS, on the RPi Zero W, RPi 3B, and RPi 3B+.
snmpwalk uses GetNextRequest requests to query an agent for
a portion of the object identifier space (e.g., a table). All
objects in the subtree below a given OID are queried and their
values are presented to the user. We varied the number of
interfaces from 2 to 64, by creating additional dummy
interfaces on the SBCs as specified in Fig. 11. The output of
the application was discarded by redirecting it to /dev/null.
modprobe dummy
for i in $(seq $startValue $endValue)
do
 echo "Creating interface eth${i} with address 10.0.0.${i}/32"
 ip link add eth${i} type dummy
 ip address add 10.0.0.${i}/32 dev eth${i}
 ip link set up dev eth${i}
done

Fig. 11. Creation of Dummy Interfaces in the Agents.

Fig. 12. Time to Retrieve the ifTable using Snmpwalk when Varying the

Number of Interfaces for the RPi Zero W.

Fig. 13. Time to Retrieve the ifTable using Snmpwalk when Varying the

Number of Interfaces for the RPi 3B.

Fig. 14. Time to Retrieve the ifTable using Snmpwalk when Varying the

Number of Interfaces for the RPi 3B+.

Fig. 12, 13, and 14 depict the time to retrieve the interface
table (ifTable) through the snmpwalk application for the
RPi Zero W, RPi 3B, and RPi 3B+, respectively. For small
numbers of interfaces, SNMPv1 has results that are similar to
the ones of SNMPv3/USM (SHA-1 and AES) and
SNMPv3/DTLS. However, as the number of interfaces
increases, the processing time becomes predominant over the
transmission time, resulting in bigger differences between
SNMPv1 and the other two versions of SNMP.

VII. CONCLUSION AND FUTURE WORK
Our experiments seem to indicate that SNMPv1 and

SNMPv2c have similar performances. The assessment results
of SNMPv3/USM and SNMPv3/DTLS are close to each other,
with a slight advantage for the former. At the level of the
SBCs, the RPi 3B and RPi 3B+ performed mostly equally, with
the latter slightly outperforming the former. We found
significant differences in the response time of GetRequest
and SetRequest. We believe that these differences are due to
the reading and writing access to the microSD cards (up to 160
MB/s and 60 MB/s for the reading and writing speeds,
respectively).

Unfortunately, and despite all our efforts, we could not
succeed in using SNMPv3/SSH with Net-SNMP. Also,
SNMPv3/TLS gave inconsistent results from test to test, so we
decided not to report them in this study.

As future work, we plan to evaluate SNMP, RESTCONF
[17], and NETCONF [17] as management solutions in different
scenarios. Also, with the growing adoption of IPv6, we are
interested in analyzing the influence of the network protocol
(i.e., IPv4 and IPv6) over the SNMP performance.

ACKNOWLEDGMENT
We are grateful to “Faculty Commons” and the “College of

Science & Mathematics” at Jacksonville State University for
partially funding this project.

REFERENCES
[1] J. Schönwälder and V. Marinov, “On the Impact of Security Protocols

on the Performance of SNMP,” IEEE Transactions on Network and
Service Management, vol. 8, no. 1, March 2011, pp. 52–64.

[2] M. Lucas, SSH Mastery: OpenSSH, PuTTY, Tunnels and Keys, Tilted
Windmill Press; 2nd edition, February 2018.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2 4 8 16 32 64

Ti
m

e
fo

r a
n

sn
m

pw
al

k
(S

ec
on

ds
)

Number of Interfaces

SNMPv1 SNMPv3/USM SNMPv3/DTLS

0.0

0.5

1.0

1.5

2.0

2.5

2 4 8 16 32 64

Ti
m

e
fo

r a
n

sn
m

pw
al

k
(S

ec
on

ds
)

Number of Interfaces

SNMPv1 SNMPv3/USM SNMPv3/DTLS

0.0

0.5

1.0

1.5

2.0

2.5

2 4 8 16 32 64

Ti
m

e
fo

r a
n

sn
m

pw
al

k
(S

ec
on

ds
)

Number of Interfaces

SNMPv1 SNMPv3/USM SNMPv3/DTLS

8 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

[3] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
RFC 8446, August 2018.

[4] E. Rescorla, H. Tschofenig, and N. Modadugu, The Datagram Transport
Layer Security (DTLS) Protocol Version 1.3, Draft IETF, April 2021.

[5] S. Monk, Programming the Raspberry Pi: Getting Started with Python,
McGraw-Hill Education TAB, 3rd edition, June 2021.

[6] L. Clark, Raspberry Pi 4: The Ultimate Step-by-Step Guide to Using
Raspbian to Create Incredible Projects and Expand Your Programming
Skills with the Latest Version of Raspberry Pi, independently published,
February 2021.

[7] Net-SNMP Home Page, http://www.net-snmp.org.
[8] L. Andrey, O. Festor, A. Lahmadi, A. Pras, and J. Schönwälder, “Survey

of SNMP Performance Analysis Studies,” International Journal of
Network Management, vol. 19, 2009, pp. 527–548.

[9] F. Hidalgo and E. Gamess, “Integrating Android Devices into Network
Management Systems based on SNMP,” International Journal of
Advanced Computer Science and Applications, vol. 5, no. 5, 2014, pp.
1–8.

[10] A. Corrente and L. Tura, Security Performance Analysis of SNMPv3
with Respect to SNMPv2c, in Proceedings of the 2004 IEEE/IFIP
Network Operations and Management Symposium (NOMS 2004),
Seoul, South Korea, April 2004.

[11] F. Duarte and A. Loureiro, “Performance Evaluation and Scalability
Analysis of SNMPv3 with Superimposition in a Mobile Environment,”
Concurrent Engineering Research and Applications, vol. 9, no. 2, June
2001, pp 139–145.

[12] A. Pras, T. Drevers, R. van de Meent, and D. Quartel, “Comparing the
Performance of SNMP and Web Services-Based Management,” IEEE
Transactions on Network and Service Management, vol. 1, no. 2,
December 2004.

[13] P. Santos, R. Esteves, and L. Granville, Evaluating SNMP, NETCONF,
and RESTful Web Services for Router Virtualization Management, in
Proceedings of the 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2015), Ottawa, ON, Canada, May
2015.

[14] M. Słabicki and K. Grochla, Performance Evaluation of SNMP,
NETCONF and CWMP Management Protocols in Wireless Network, in
Proceedings of the 4th International Conference on Electronics,
Communications and Networks, Beijing, China, December 2014.

[15] M. Słabicki and K. Grochla, Performance Evaluation of CoAP, SNMP
and NETCONF Protocols in Fog Computing Architecture, in
Proceedings of the 2016 IEEE/IFIP Network Operations and
Management Symposium (NOMS 2016), Istanbul, Turkey, April 2016.

[16] Q. Gu and A. Marshall, Network Management Performance Analysis
and Scalability Tests: SNMP vs CORBA, in Proceedings of the 2004

IEEE/IFIP Network Operations and Management Symposium (NOMS
2004), Seoul, South Korea, April 2004.

[17] B. Claise, J. Clarke, and J. Lindblad, Network Programmability with
YANG: The Structure of Network Automation with YANG,
NETCONF, RESTCONF, and gNMI, Addison-Wesley Professional, 1st
edition, May 2019.

[18] X. Du, M. Shayman, and M. Rozenblit, Implementation and
Performance Analysis of SNMP on a TLS/TCP Base, in Proceedings of
the 2001 IEEE/IFIP International Symposium on Integrated Network
Management, Seattle, WA, USA, May 2001.

[19] D. Harrington and W. Hardaker, Transport Security Model for the
Simple Network Management Protocol (SNMP), RFC 5591, June 2009.

[20] D. Harrington, J. Salowey, and W. Hardaker, Secure Shell Transport
Model for the Simple Network Management Protocol (SNMP), RFC
5592, June 2009.

[21] W. Hardaker, Transport Layer Security (TLS) Transport Model for the
Simple Network Management Protocol (SNMP), RFC 6353, July 2011.

[22] V. Marinov and J. Schönwälder, “Performance Analysis of SNMP over
SSH,” Lecture Notes in Computer Science, vol. 4269. Springer, Berlin,
Heidelberg, 2006. https://doi.org/10.1007/11907466_3

[23] K. McCloghrie and M. Rose, Management Information Base for
Network Management of TCP/IP-based Internets: MIB-II, RFC 1112,
March 1991.

[24] J. Case, M. Fedor, M. Schoffstall, and J. Davin, A Simple Network
Management Protocol, RFC 1067, August 1988.

[25] M. Julian, Practical Monitoring: Effective Strategies for the Real World.
O’Reilly, 1st edition, November 2017.

[26] D. Harrington, R. Presuhn, and B. Wijnen, An Architecture for
Describing Simple Network Management Protocol (SNMP)
Management Frameworks, RFC 3411, December 2002.

[27] U. Blumenthal and B. Wijnen, User-based Security Model (USM) for
version 3 of the Simple Network Management Protocol (SNMPv3), RFC
3414, December 2002.

[28] R. Presuhn, J. Case, K. McCloghrie, M. Rose, and S. Waldbusser,
Version 2 of the Protocol Operations for the Simple Network
Management Protocol (SNMP), RFC 3416, December 2002.

[29] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, Protocol
Operations for version 2 of the Simple Network Management Protocol
(SNMPv2), RFC 1448, April 1993.

[30] T. Xie, F. Liu, and D. Feng, “Fast Collision Attack on MD5,” IACR
Cryptology ePrint Archive, vol. 2013, 2013.

[31] M. Curtin, Brute Force: Cracking the Data Encryption Standard,
Copernicus; 2005th edition, February 2005.

[32] E. Biham and A. Biryukov, “An Improvement of Davies’ Attack on
DES,” Joumol of Cryptology, vol. 10, June 1997, pp. 195-205.

9 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Introduction to SNMP and its Different Versions and Security Models
	A. SNMPv1 and SNMPv2c
	B. SNMPv3/USM
	C. SNMPv3/TSM
	1) SNMPv3/SSH: The Secure Shell (SSH) protocol [2] is used for secure remote login and other secure network services over an insecure network. It comprises of three components:
	2) SNMPv3/TLS: The Transport Layer Security (TLS) protocol [3] provides authentication, integrity, and privacy at the transport layer. The TLS Transport Model (TLSTM) for SNMP consists of a model instantiation in the transport subsystem and details the ele�
	3) SNMPv3/DTLS: The Datagram Transport Layer Security (DTLS) protocol [4] is based on the TLS protocol and provides similar security capabilities. The main difference in comparison with TLS is that DTLS provides secure communication over unreliable datagra�

	IV. Metrics and Benchmarks
	V. Description of the Test Environment
	A. Models of Raspberry Pi used in the Experiments
	B. Operating Systems for Raspberry Pi
	C. Compiling Net-SNMP

	VI. Performance Results and Analysis
	A. Type of Requests Variation
	B. Number of OIDs Variation
	C. Security Level Variation for SNMPv3/USM using UDP and TCP as Transport Protocols for the RPi Zero W
	D. Authentication and Privacy Protocols Variation for SNMPv3/USM using UDP as the Transport Protocol for the RPi Zero W
	E. SNMPv3/USM vs SNMPv3/DTLS
	F. Retrieving the Interface Table with snmpwalk when Varying the Number of Interfaces

	VII. Conclusion and Future Work
	Acknowledgment
	References

