
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

264 | P a g e

www.ijacsa.thesai.org

Real Time Distributed and Decentralized Peer-to-Peer

Protocol for Swarm Robots

Mahmoud Almostafa RABBAH
1
, Nabila RABBAH

2
, Hicham BELHADAOUI

3
, Mounir RIFI

4

RITM Laboratory, ESTC, Hassan II University, Casablanca, Morocco
1, 3, 4

Laboratory of Complex Cyber Physical Systems, ENSAM, Hassan II University, Casablanca, Morocco
2

Abstract—This contribution proposes an approach to enhance

the capability of robotic agents to join the Internet of Things

(IoT) and act autonomously in extreme and hostile environment.

This capability will help in the development in environments

where the connectivity, availability, and responsivity of the

devices are subject to variations and noises. A real time

distributed and decentralized Peer-to-Peer protocol was designed

to allow Autonomous Unmanned Surface Vessels (AUSV) extend

their context awareness. The developed Middleware allows a real

time communication and is designed to run on top of a Real Time

Operating System (RTOS). Furthermore, the proposed

Middleware will give researchers access to a large amount of

data collected by sensors, and thus solve one of the major

problems encountered while training artificial intelligence

models which is the lack of sufficient data.

Keywords—Autonomous robots; smart objects; peer-to-peer;

real time communication; ROS2; ZeroMQ; middleware

I. INTRODUCTION

In the past, static robots, such as industrial arms, were used
to perform repetitive tasks in a production line where the
environment is well controlled and known in advance, at that
time, collaboration between robots was not a priority.
However, we are increasingly seeing the emergence of
applications involving a swarm robot that share a common
ultimate goal, e.g., The Autonomous Unmanned Surface
Vessels (AUSV) or Unmanned Ground and Aerial Robots that
must achieve missions like first responders, coast guards, area
search, target detection and tracking, formations, rendezvous
[1-3].

From these facts, the research on collaborative robots has
increased considerably, and many researchers have started to
make their focus on the internal design of the robot‟s context
awareness [4-5], and the trend is to use Mobile Robots in
hostile environments where the stability of the surrounding
conditions and the connectivity is limited.

Mobile Robots require collaborative capabilities to achieve
complex missions on hostile environment, e.g., AUSV may
need to collaborate to build a mesh network where each
AUSV serves as a network node. However, most of proposed
AUSV was designed to operate in an already known
environment and are not designed to adapt themselves to the
new changes in the context.

We propose middleware for collaboration, communication,
device hardening for deployments in extreme environments.
We explore Multi Agent Systems (MAS) as a solution to

enhance the collaboration by increasing autonomy, flexibility,
and composability of robotic agents with the IoT devices
available on their surrounding environment to promote the
self-awareness of those agents. Not only the sensing and
actuation are considered, but we also look at the distribution
of decision-making in term of collaboration between the
components of the application.

Our proposed Middleware named Collaborative Open
Platform for Distributed Artificial Intelligence (COPDAI)
allows a real time communication between a community of
robots while supporting link and component degradation. The
community takes distributed decisions that position agents on
strategic locations to mitigate the risk of disconnection.
Position depends also on the capabilities such as sensing and
actuating. Agents are interconnected and they maintain this
interconnection as principal vehicle of communication among
them in a peer-to-peer mode.

Another problem that COPDAI will try to solve is the
difficulty of having access to sufficient data to train artificial
intelligence models, COPDAI will promote the sharing of
sensor data and the trained models within the scientific
community, as well as within the mobile robots.

II. RELATED WORK

In recent study [6] authors presented multiple node
communication mechanisms: Simple message, Ports, Topics,
Events and services, and based on pre-established criteria,
they compared several Robotics Software Framework (RSF)
to evaluate the coverage of each of them to defined criteria. It
is worth mentioning that robotic systems are often designed
over an Ethernet. Field Buses, such as CANBus, I2C,
EtherCAT, Serial lines, FireWire, PROFIBUS, and even PCI
are often used. Unfortunately, most RSFs and MASs use only
the IP protocol.

Generally, the MAS was used for its great flexibility and
the ability to reuse components in different projects. Several
patterns have been proposed for its implementation in Multi-
Robot Systems, proving a gain in development time [7], in this
Work Jade Middleware was used to ensure communication.

Agents distribution can be categorized into three forms [8]:
Embedded agents at the robot level, agents located at a server
level or hybrid distribution: Intelligence and computational
agents are external to the robot, and acquisition and control
agents are embedded.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

265 | P a g e

www.ijacsa.thesai.org

In [9], the authors worked on the control of soccer robots,
three schemes based on the multi-agent system paradigm were
established: the first scheme is based on the control of the
robots from a remote computer, in this configuration the
robots had no embedded intelligence, the second scheme is
based on a distributed architecture where the vision and the
decision are done on a central computer and the control of the
motors is delegated to embedded systems attached to the
robots, the third scheme allows a greater autonomy of the
robots where the acquisition of the sensor data, the decision as
well as the control of the motors are done at the level of the
robot, in addition to an eventual communication between
robots.

In [10] the authors have proposed a distributed knowledge
base, this base is shared between them. The agents are
organized in a hierarchical way and in case of errors that occur
in an agent belonging to the lower level, the agents of the
higher level replan the trajectory of the robot.

In [11], the authors based their middleware on the Real-
time CORBA specification [12] which extends the basic
CORBA model to support real-time constructs. A client/server
model was adopted, and the predictability improvement was
based on Real-time CORBA mechanisms such as: thread-
pooling and priority assignment.

In [13], the authors focused on the support of networking
and middleware of mobile embedded systems, a
communication protocol named TDMA allowed the
transmission of data and manage the uncertainty related to the
communication, in addition a shared memory named RTDB
was defined to allow the agents to share data.

The authors in [14] developed a Humanoid Robot using
XBotCore middleware, for real time communication, the
middleware use EtherCAT protocol, and the software was
built on the top of Xenomai RTOS, the middleware was
designed to satisfy 1 kHz control frequency and implement
four tasks in real time behavior among other: robot kinematic
chain, robot joints, robot Force/Torque sensors. In [15], a
middleware based on the concept of control kernel has been
developed. Different types of nodes have been designed on top
of two protocols namely: CAN bus and Ethernet, the nodes
have different capabilities and can provide different types of
services depending on their computing power. Lightweight
nodes communicate on top of CAN bus and powerful nodes
on top of Ethernet.

Also, in [16] we studied 14 Middlewares which are either
oriented to robotics applications or smart objects applications,
we concluded that most of the Middlewares do not meet the
real time constraint like: UBIWARE [17], LMAARS [18],
ACOSO [19], Voyager [20], JCAF [21], Aura [22],
UBIWARE [23], LMAARS [24] and SOCRADES [25], while
others suffer from a centralized architecture like ROS [26],
ICARS [27], COROS [28].

III. COPDAI COMMUNICATION ARCHITECTURE

This Each sensor, actuator or decision module can be
attached to the robot body or located in its external
environment; we will represent each of these components by a
node.

Due to the constraint of the hostile environment, our
architecture must be robust to the instability of the physical
communication links, thus each node can appear and
disappear at any time, the Middleware must allow each node
to detect the presence of the other nodes and must implement
a recovery mechanism in case of communication failure.

In addition to that, our architecture must not have a Single
Point of Failure (SPOF): the degradation of a node must not
compromise the whole robot‟s mission, or at least we must be
able to switch to a safe position, for that the architecture must
be decentralized, we propose a Peer-to-Peer communication
between the nodes.

Also, we need to allow distributed computing between
nodes: thus, a node that is located on a computer/server with
more resources (CPU, RAM…) can contribute to the
computations that a node located on an embedded board with
limited resources cannot do by itself.

In addition to that, the constraint of real time requires us to
define a priority between the transmitted messages, and thus
allow the node to process these messages with a minimum
level of guarantee and a predictable behavior.

Finally, the middleware must promote collaboration within
the scientific community through the sharing of content and
collected data during experiments (sensor data, actuators
data…) and optionally results or the trained model.

We distinguish four families of possible communication
between these nodes among others (Fig. 1):

 Inter-robot communication:

o Communication between nodes located in the
same embedded card / computer.

o Communication between nodes located in separate
embedded cards / computers.

 Communication between robots.

 Communication between robots and smart objects.

 Content sharing (images, videos…) between
researchers / robots.

During the design of the communication layer of COPDAI
Middleware, we had to provide answers to the following
functional requirements:

 Discovery: How can the nodes recognize each other,
knowing that they can be located on the same
embedded board or on remote embedded boards?

 Presence: How do we track the appearance and
disappearance of nodes? Are we going to use a central
component as advocated by multi-agent systems or are
we going to use a distributed mechanism with partial
knowledge of the topology?

 Connectivity: How do we connect one node to another?
Are we going to use ethernet communication (on the
same segment or on different network segments) or are
we going to use inter-process communication (IPC)?

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

266 | P a g e

www.ijacsa.thesai.org

 Point-to-Point messaging: How to send a message from
one node to another? Using a central system such as a
message broker, or direct communication?

 Group messaging: How we can do group messaging?
Use push/pull pattern or use publish/subscribe pattern?

 Real Time communication: How to prioritize critical
messages and ensure that they are processed in real
time?

 Content distribution: How to send the data collected by
the robot embedded system (sensor data, execution
data or engine logs...)? Are we going to use a
decentralized protocol like (FileMQ [29], IPFS [30]
...)? Or are we going to use server-centric protocols
like (FTP, HTTP...)?

 Bridging: How we can do wide area bridging?

 Security: How nodes protect the information they
carry? And how to secure messages and content during
the exchange operation?

 Test & Simulation: How do we simulate large numbers
of nodes? Are we going use real embedded systems?
Or are we going provide a way to do a software
simulation?

 Distributed logging: What strategy to adopt to trace
communications and collect logs from the nodes in
order to detect possible failures or to debug?

A. Transport Layer

We choose the concurrency framework ZeroMQ [31] as
transport layer, it gives us sockets that carry atomic messages
across various transports, among others: IPC and TCP,
researchers evaluate the performance of OpenDDS, ORTE and
ZeroMQ middleware in terms of latency and scalability, they
choose the publish/subscribe pattern to study those
middleware performances and results show that ZeroMQ has
the best performance with minimal latency [32]. Also,
researchers here [33-34] have found that ZeroMQ scales much
better and can smoothly handle high data loads and even
bursts of requests, which was not the case in their old
middleware version based on CORBA.

Fig. 1. Communication Families between COPDAI Nodes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

267 | P a g e

www.ijacsa.thesai.org

B. Transport Mechanisms

COPDAI will support in its first version the following
transport mechanisms: TCP/IP, UDP/IP, and IPC, other
mechanisms will be supported in the future releases such as
Bluetooth, Serial wire and Acoustic communications.

Nodes within the same embedded card/computer will use
IPC to communicate with each other and nodes located on
different embedded boards/computers will communicate using
IP protocols.

We were inspired by the ZeroMQ Realtime Exchange
Protocol (ZRE) which governs how a group of peers on a
network discover each other, organize into groups, and send
each other events [35]. ZRE runs over the ZeroMQ Message
Transfer Protocol (ZMTP). ZRE has been designed to run in
smart home and can accept a limited number of nodes: each
node establishes a connection to the other ones, which means

if we have N nodes we are going to have
 ()

connections, which can cause the saturation of a network
quickly. Another problem is that ZRE support only IP
communication which represents an unjustifiable overhead in
our case for the nodes that must communicate within the same
embedded card / computer. And finally, ZRE has not
implemented any notion of service.

COPDAI supports 4 Messaging types:

 Node to Node messaging: Nodes that belong to the
same hierarchical group, and that are located on the
same physical medium (embedded card / network
segment) can communicate directly in Peer-to-Peer.

 Topic messaging: it is the case where some nodes want
share message about the same topic.

 Hierarchical messaging: Nodes are organized in groups
that accept a maximum number k of members, each
group contains a leader, communication between

members of the same group is direct, but
communication between two nodes belonging to
different groups must go through the respective leaders
of each group,

 Bridging messaging: Communication between nodes
belonging to two physical boundaries (two embedded
cards or two Network segments) passes through a
dedicated node, this node is elected among the group
leaders.

Fig. 2 shows a use case of communication types with k=3,
if we compare ZRE with COPDAI in this use case, in Network
Segment 1 we have only 3 IP connections instead of 171 using
ZRE, also ZRE does not allow communication between nodes
in segment 1 and 2:

C. Discovery on the Same Machine

In a specific folder location, within the user home
directory, each node creates a file with its UUID as file name.
Each the node modifies its file timestamp.

Each nodes list the files whose last modification date is
less than , and so, they will be able to know the new nodes
that have just appeared or those that have disappeared (Fig. 3).

D. Discovery over IP

We want to keep back compatibility with the ZRE protocol
for discovery over IP Protocol, so we are going to use the
same mechanism: ZRE uses UDP IPv4 beacon broadcasts to
discover nodes. Each ZRE node shall listen to the ZRE
discovery service which is UDP port 5670. Each ZRE node
SHALL broadcast, at regular intervals, on UDP port 5670 a
beacon that identifies itself to any listening nodes on the
network [35].

The header shall consist of the letters „Z‟, „R‟, and „E‟,
followed by the beacon version number, which shall be %x01.

Fig. 2. COPDAI Communication Types with Groups that Accept at Maximum 3 Members.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

268 | P a g e

www.ijacsa.thesai.org

Fig. 3. IPC Discovery Files.

The body shall consist of the sender‟s 16-octet UUID,

followed by a two-byte mailbox port number in network order.

If the port is non-zero this signals that the peer will accept

ZeroMQ TCP connections on that port number. If the port is

zero, this signals that the peer is disconnecting from the

network. The body contains also another two-byte mailbox

port number for real time communication channel, and since

in our case the Bridge node hides behind it several nodes

which should be discoverable to the outside world, we will

extend the ZRE beacon so that the body contains UUIDs of

these nodes (Fig. 4).

Fig. 4. COPDAI Beacon Message.

Node that receives a valid beacon with a non-zero port
number will be considered as a new peer.

Fig. 5. Use Case where we can receive a Message before Receiving Beacon

from Peer.

UDP messages are limited to 1500 bytes on LANs and 512
bytes on Internet, so the bridge node cannot handle more than
92 nodes in LANs and 30 nodes in Internet, if the bridge node
reaches its limit, a new one is elected and handle the rest of
the nodes.

Another problem is that bridge node can get the first
beacon from a peer after it starts to receive messages from it,
so in this situation we got a message from a node that we
don‟t know its IP address and port (Fig. 5).

So, we must consider discovery over TCP: Our first
command to any new peer to which we connect is an “Hello”
command with our IP address and ports. Bellow the steps we
will follow:

 If we receive a UDP beacon from a new peer, we
connect to the peer through a TCP socket.

 Each message must contain the UUID of the sender.

 If it‟s a Hello message, we connect back to that peer if
not already connected to it.

 If it‟s any other message, we must already be
connected to the peer, if it is not the case, we raise an
assertion.

 We send messages to each peer using the per-peer
socket, which must be connected.

 When we connect to a peer, we also tell our Node that
the peer exists.

 Every time we get a message from a peer, we treat that
as a heartbeat.

Fig. 6 shows the message format for the "Hello" command
throw IP.

Fig. 6. COPDAI Hello Message throw IP.

Bellow we explain the signification of each part of the
“Hello” Message:

1) Part 1: It is an Event Type (4 bytes), it is equal to %d1,

2) Part 2: It is the signature which let us control the

received message is a COPDAI Message, must always equal

to %xAAA2,

3) Part 3: It is the protocol version.

4) Part 4: It is a sequence number which will allow our

node to check if there were any lost messages between the

current received message and the last received one, for each

peer.

5) Part 5: It is a string that concatenates the IP address of

the peer and its port, the endpoint is specified as

“tcp://ipaddress:mailbox”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

269 | P a g e

www.ijacsa.thesai.org

6) Part 6: It is a string that concatenates the IP address of

the peer and its real time port, the rtendpoint is specified as

“tcp://ipaddress:rt-mailbox”.

7) Part 7: list of UUIDs nodes under the responsibility of

the sender and for each UUID list of proposed services.

8) Part 8: List of groups to which the peer belongs.

9) Part 9: The “group status sequence” is a one-octet

number that is incremented each time the peer joins or leaves

a group. Each peer may use this to assert the accuracy of its

own group management information.

10) Part 10: List of services offered by the sender.

11) Part 11: A Human friendly peer‟s name.

12) Part 12: Headers is a hash table (Key/Value HashMap)

of additional information that the peer can eventually send.

E. Detecting Disappearances over IP

Several reasons can come into play and distort the decision
that a peer has really disappeared: due to high TCP traffic the
UDP packets can be dropped (which causes a high latency
before getting the beacon) or a high latency before getting a
message on top of the TCP and which is also considered as
heartbeat.

To overcome this problem, if we don‟t get a beacon from
the peer after a while, we switch to TCP heartbeats which
consist of sending a PING command and receiving a
PING_OK response, the PING command is described in ZRE
protocol as follow (Fig. 7).

Fig. 7. PING Command Sent to a Peer if it Disappears [35].

Bellow we explain the signification of the new part of the
“PING” Message:

 Part 1: It is an Event Type (4 bytes), t is equal to %d6.

If the Peer is still alive it must respond with a PING_OK
as described in Fig. 8:

Fig. 8. PING OK Message that a Peer Send to Confirm it is Still Alive [35].

Bellow we explain the signification of the new part of the
“PING OK” Message:

 Part 1: It is an Event Type (4 bytes), it is equal to %d7

F. Greeting Message over IPC

The following (Fig. 9) illustrates the Hello message in case
of IPC Communication:

Fig. 9. COPDAI Hello Message over IPC.

Bellow we explain the signification of the new part of the
“Hello” Message over IPC:

 Part 1: It is an Event Type (4 bytes), it is equal to %d8.

G. Topology Heartbeating

Fig. 10 shows a typical example of the links between
nodes in the COPDAI Middleware, nodes of the same
hierarchical group communicate with each other and with their
leader, leaders communicate with each other and with the
Bridge Node, and finally Bridge Nodes communicate with
each other.

Fig. 10. Typical Communication Topology between COPDAI Nodes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

270 | P a g e

www.ijacsa.thesai.org

Each time the leader detects that there is a change in the
nodes under its responsibility, e.g., a node in the group has
disappeared, a new node has joined its group, it will notify the
other leaders by sending the following message (Fig. 11):

Fig. 11. COPDAI Topology Heartbeating Message.

Bellow we explain the signification of new part of the
“Topology Heartbeating” Message:

 Part 1: It is an Event Type (4 bytes), it is equal to %d9

Bridge Node being itself a Leader, it is responsible for
notifying the other Leaders in the same machine by any
change in its group.

A Bridge Node is elected among the Leaders, so it is
responsible for the propagation of the topology to others
Bridge Nodes once a change has happened at the level of its
group, or at the level of a group of another leader, the message
(Fig. 11) is sent to others Bridge Nodes, with the difference
that it concatenates all the nodes present on the machine with
their respective services and not only the nodes that belong to
its group.

In the opposite direction, once a Bridge Node receives a
topology message from another one, it notifies the Leaders on
its machine using the following message format (Fig. 12), in
the same way the leaders propagate this message to each
member of their group:

Fig. 12. Remote Bridge Node Topology Heartbeating Message.

Bellow we explain the signification of new parts of the
“Remote Bridge Node Topology Heartbeating” Message:

 Part 1: It is an Event Type (4 bytes), it is equal to
%d10.

 Part 5: Remote Bridge Node UUID

 Part 6: List of UUIDs nodes under the responsibility of
the Remote Bridge Node and for each UUID list of
proposed services.

 Part 7: List of groups to which the Remote Bridge
Node belongs.

 Part 9: List of services offered by the Remote Bridge
Node.

H. Communication between Two Peers

One of the problems we have encountered in trying to have
true Peer-to-Peer communication is that ZeroMQ socket is not
symmetric, to overcome this problem, we have adopted the
harmony pattern: For the outgoing messages, we are going to
use a DEALER socket per peer so we can safely send
messages.

For the ingoing messages, we choose the ROUTER socket,
and so, the Harmony pattern comes down to these components
(Fig. 13 and 14):

 One UDP socket where we listen to the broadcasted
beacons (In case of Bridge Node).

 One ROUTER socket that we bind to an ephemeral
port, and where we receive incoming messages from
peers.

 One DEALER socket per peer that we connect to the
peer‟s ROUTER socket.

 One ROUTER socket (named RT-ROUTER) that we
bind to an ephemeral port, and where we receive
incoming messages from peers which must be
processed in real time (we suppose here that the Node
is a type of RTCyclicNode and the listener is decorated
properly to behave in real time (more details in our
recent contribution [36]).

 One DEALER socket (named RT-DEALER) per peer
that we connect to the peer‟s RT-ROUTER socket.

 Reading from our ROUTER/RT-ROUTER socket.

 Writing to the peer‟s DEALER/RT-DEALER socket.

Fig. 13. Sockets used in each COPDAI Bridge Node (IP Communication).

Fig. 14. Sockets used in each COPDAI Local Node (IPC Communication).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

271 | P a g e

www.ijacsa.thesai.org

If the peer disappears and comes back with a different IP
address and/or port, we have to disconnect our DEALER
sockets and reconnect to the new ports.

In the case of IPC communication, a folder hierarchy was
adopted as shown in (Fig. 15), a file is created in a folder
named "dealer" which will be used as a medium for the
DEALER socket, another file will be created in the folder
"dealer/rt" for real time communication, the same tree
structure is adopted for the ROUTER and RT-ROUTER
sockets.

Fig. 15. IPC Sockets Folder Hierarchy.

The exchanged message between peers in the same
hierarchical group is in this format (Fig. 16).

Fig. 16. Format of a Message Exchanged between two Nodes in Same

Hierarchical Group.

Bellow we explain the signification of new parts of the
Message exchanged between two nodes:

 Part 1: It is an Event Type (4 bytes); it is equal to %d2.

 Part 3: the service name to invoke.

 Part 6: the content message which is serialized using
Protocol buffer [37] (it is the serialized object we are
going pass to the service as a parameter).

I. COPDAI Node Topology Knowledge Management

Each node according to its position in the COPDAI
hierarchy (Normal Node, Leader or Bridge), maintains some
knowledge about the current topology:

 All Nodes maintains at least:

o Peers UUIDs.

o For each Peer UUID list of services offered by it.

o For each Peer the list of groups to which it
belongs.

o For each Peer its Manager UUID (can be the
UUID of a Leader or a Bridge Node).

o For each Peer the time when it starts running (used
in election).

o List of Services.

o For each Service list of Peers offering it.

o For each Peer the outgoing message sequence (for
assertion and Quality of Service (QoS)).

o For each Peer the incoming message sequence (for
assertion and QoS).

o For each Peer group status sequence (for assertion
and QoS).

o Timestamp when this node start running (used in
election).

o The last time the node signaled its presence to the
outside world (used in election).

 The Normal Node maintains also:

o The UUID of the Leader Node that is responsible
for it.

 The Leader Node maintains also:

o Same Machine Leaders UUIDs.

o The UUID of the Bridge Node that is responsible
for it.

 Bridge Node maintains also:

o Same Machine Leaders UUIDs.

o Bridges Nodes UUIDs.

o For each Bridge Node: The Endpoint, port, rt-port.

J. Message Routing

When a node wants to send a message to another node
which does not belong to its hierarchical group, it constructs
the message (Fig. 17) and sends it to the leader, if the leader
finds that this node is managed by another leader on the same
machine it sends the message to it, this last one transmits the
message to the target node, if not, it transmits the message to
the Bridge Node on the local Machine, this one will send the
message to the Bridge Node which manages the target node,
and thus the message is routed until it reaches its destination,
an example is illustrated in Fig. 18:

Fig. 17. COPDAI Routing Message Format.

Bellow we explain the signification of new parts of the
routing message:

 Part 1: It is an Event Type (4 bytes), it is equal to
%d11.

 Part 3: The target peer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

272 | P a g e

www.ijacsa.thesai.org

Fig. 18. Example of Routing Message between Nodes that doesn‟t belong to

the same Hierarchical Group.

K. Group Messaging

For group messaging we want to be able to join and leave
groups, discover the existing of nodes in other groups and
send a message at once to several nodes belonging to the same
group. This gives us some new protocol commands:

JOIN - we send this to all peers when we join a group
(Fig. 19):

Fig. 19. Group Join Message Format [35].

 Bellow we explain the signification of new parts of the
join message:

 Part 1: It is an Event Type (4 bytes), it is equal to %d4.

 Part 4: the group the node wants to join.

LEAVE - we send this to all peers when we leave a group
(Fig. 20).

Fig. 20. Leaving Group Message Format [35].

Bellow we explain the signification of new parts of the
leave message:

 Part 1: It is an Event Type (4 bytes), it is equal to %d5,

 Part 4: the group the node wants to leave.

The following Fig. 21 illustrates the format of a message
that will be sent to a group.

Fig. 21. Multi-part Message Format for Group Messaging

Bellow we explain the signification of new parts of the
multi-part message format:

 Part 1: It is an Event Type (4 bytes), if it is equal to
%d3.

 Part 4: the group the node wants to send to it the
message.

 Part 5: the service name to invoke.

 Part 6: Message content.

When a Leader receive a JOIN or LEAVE or a multi-part
message it propagates it to other Leaders, the same for a
Bridge Node if it receives a JOIN or LEAVE or multi-part
message it propagates it to others Bridge Nodes.

Leaders and Bridge Nodes also are responsible for
propagating this message to the Nodes they manage.

L. Election and Membership

1) When a node starts the first time, it sends a request to

find a free group to all nodes in the same machine (Fig. 22).

2) If a leader receives a group search request, and if there

is free space in its group, it reserves a space for the requester

and sends an invitation (Fig. 23).

3) Once an invitation is received, the node sends a request

to join the leader group (it must return the same invitation

code received in the previous step) (Fig. 24).

4) Then the leader sends a confirmation with the name of

the group that the node has just become one of its members

(Fig. 25).

Fig. 22. Search Free Group Message Format.

Fig. 23. Leader Invitation Message Format.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

273 | P a g e

www.ijacsa.thesai.org

Fig. 24. Membership Request Format.

Fig. 25. Membership Confirmation Message Format

5) Once this is done the node sends a "JOIN" message to

notify everyone that it has just joined the group (Fig. 19), and

after that it creates the necessary IPC sockets with other

group‟s members.

Note: All these operations are time-stamped, if it takes
times to receive a response, the operation is cancelled, and the
process is resumed.

6) If the node doesn‟t receive any response from leaders,

or if it has failed to become a member of a group after a

configurable amount of time, the node creates a new group,

joins it, and sends JOIN command to outside world, after that

it becomes the leader of this new group it notifies peers with

the following message (Fig. 26).

7) If Leaders receive a “LEADERSHIP” message, they

send back a congratulation message, and specify which one of

them is the Bridge Node (Fig. 27).

8) Once the Leader receives a congratulation message, it

creates the necessary IPC sockets with the other Leader.

9) If after a while, the Leader doesn‟t receive any

congratulation message, it considers itself as a Bridge Node,

creates the necessary TCP sockets and starts listening on the

UDP port to detect other Bridge Nodes over IP.

10) If a leader disappears, the rest of the nodes in the group

start elections by exchanging between them the following

message containing their start date (Fig. 28): the node that

started first becomes the new leader and continues the process

explained in step 6.

11) Each node saves/updates the last time it signalled its

presence to the outside world, if it was a while since it notifies

peers about its presence (a pre-parameterized value in

COPDAI Middleware), and if it was a Leader, it concludes

that he is no longer the leader and considers itself as a normal

node and starts the process again from step 1.

12) If a Bridge Node disappears, the rest of the Leaders

start elections by exchanging between them the message

shown in (Fig. 28): The Leader that started first becomes the

new Bridge Node and continues the process from step 9. The

new Bridge Node is responsible of propagating the new

topology to the outside world (Fig. 11).

Fig. 26. Leadership Announcement Message.

Fig. 27. Leaders Congratulation Message Format.

Fig. 28. Election Message Format.

M. Content Sharing

We used the InterPlanetary File System (IPFS) [38] which
is a peer-to-peer distributed file system that stores and
retrieves files in a BitTorrent-like way.

So, to allow sharing of data captured by sensors (images,
videos…) or artificial intelligence models between researchers
/ robots, we installed in each machine the ipfs daemon which
connects it to the global distributed network by running the
following commands:

$> ipfs init (1)

$> ipfs daemon (2)

IPFS requires 512MiB of memory and the installation
takes only 12MB, if the machine doesn‟t have the necessary
resources, we just ignore the IPFS installation.

The first time a node starts, it verifies if it has the ipfs
capability by running the following command:

$> ipfs version (3)

If a node wants to add any file to the distributed file
system, it just run:

$> ipfs add filename (4)

To allow nodes located on machines that do not have
sufficient resources to share files, we run a dedicated COPDAI
nodes (named IPFS Nodes) in servers that have enough
resources, these nodes offer the “ipfs” service, and each node
can send files to them using the “SEND MESSAGE”
command (Fig. 16). The IPFS nodes persist the message
content in file and after that, add it to the distributed file
system (command 4).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

274 | P a g e

www.ijacsa.thesai.org

After adding a file to ipfs, the command 4, returns a hash
code, IPFS already offers the possibility to retrieve files via
browser or command line interface (CLI) but it requires that
we know already the hash code, to overcome this limitation,
an event is fired associating each hash code with the UUID of
the node that generated it and the file creation time, the event
is sent to the distributed tracing system. In the future we plan
to add an interface to brows the files by agents UUIDs /
Names.

Researchers can share their content by just sharing the
hash code.

N. Distributed Logging

In such a complex distributed system, tracing message
between nodes is paramount, we have chosen Jeager [39] for
distributed transaction and monitoring. The tracing is based on
the OpenTracing Semantic Specification [40].

IV. TESTS AND IMPLEMENTATION

A first version of COPDAI Middleware is already
developed in python [41], as well as in java [42], also an
Android version of the COPDAI agent has been developed
[43] to allow any robot to benefit from the existing sensors on
a smartphone (Accelerometer, GPS, GYROSCOPE,
Magnetometer…) and this allowed us to validate our
communication architecture as well as to extend the
capabilities of the robot used in our contribution [44] (Fig. 29)
after attaching the smartphone to its body.

To challenge our middleware, we compared its
performance with ROS2 [45] which is the upgrade of ROS1
by utilizing the Data Distribution Service, the main goal of
ROS2 is to provide the real time capability, it is under heavy
development, it supports communication over IP, ROS2
doesn‟t support ARM board even though most mobile robots
use embedded cards based on ARM architecture like (Jetson
TX2, Raspberry Pi, BeagleBone, Orange Pi, …), because they
are energy efficient.

For each type of communication: COPDAI communication
over IPC, COPDAI Real Time communication over IPC, Real
Time communication over IP and communication using
ROS2, we measured the latency that a message takes to pass
from one node to another, we studied the following three
scenarios: a node communicates only with one other node, a
node communicates with 10 nodes and a node communicates
with 100 nodes at the same time, for each scenario we sent
10k messages, to limit network noise, all nodes were deployed
on the same machine (Asus Zephyrus ROG, CPU Pentium i7
2. 3GHz, RAM 16 GB) the RTOS used: Ubuntu 20.04
Patched to PREMPT_RT.

Table I illustrates the average latencies in each scenario,
we notice that for the scenario of the real time communication
using the COPDAI middleware on top of IPC the average
latency did not change greatly by increasing from 10 nodes to
100 nodes, which shows a great stability of the system, on the
other hand we notice that the average latency climbed in an
exponential way in the case of ROS2, same for the case of the
communication using COPDAI RT over IP or COPDAI over
IPC the average latency is stable and robust to the scaling up.

Table II illustrates the maximum latencies obtained in each
scenario, the highest latency was obtained when
communicating between 100 nodes using ROS2 with more
than 6 minutes of delay between sending and receiving the
message, while we notice that the maximum latency in the
case of using COPDAI RT over IP did not exceed 9 seconds
and 7 seconds over IPC.

Table III illustrates the minimum latencies obtained in
each scenario, communication between two nodes using
COPDAI RT over IPC give the best result we also notice that
in the case of 100 nodes for the same protocol we obtain a
good result.

Fig. 29. COPDAI Android Agent which Enhance Robot‟s Capabilities by

Sharing Sensors Data.

TABLE I. AVERAGE LATENCIES IN (MS)

 One Node 10 Nodes 100 Nodes

COPDAI RT Over IPC 164.853 182.592 183.27

COPDAI RT Over IP 180.98 169.352 179.751

COPDAI Over IPC 200.878 201.494 198.819

ROS 2 306.636 415.334 1381.091

TABLE II. MAXIMUM LATENCIES IN (MS)

 One Node 10 Nodes 100 Nodes

COPDAI RT Over IPC 305.277 840.438 6865.242

COPDAI RT Over IP 389.717 1120.752 8817.04

COPDAI Over IPC 379.308 562.39 2322.554

ROS 2 51170.058 90730.255 412285.491

TABLE III. MINIMUM LATENCIES IN (MS)

 One Node 10 Nodes 100 Nodes

COPDAI RT Over IPC 58.415 93.261 77.486

COPDAI RT Over IP 58.754 80.507 78.305

COPDAI Over IPC 103.863 109.328 111.111

ROS 2 181.098 163.54 273.133

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

275 | P a g e

www.ijacsa.thesai.org

Fig. 30. Average Latency in Proportion with the Number of Nodes and the

Communication Mechanism used.

As shown in Fig. 30, our middleware shows a very good
performance, it scales efficiently, the real-time communication
on IPC is the most optimized, which justifies our choice of
such a mechanism for a communication within the same
machine, and in general the real-time communication shows a
great stability.

V. CONCLUSION

In this paper, a distributed, decentralized, real-time Peer-
to-Peer protocol has been designed to allow robots and smart
objects to act autonomously and improve their capabilities,
COPDAI Middleware allows so, the Autonomous Unmanned
Surface Vessels share their knowledge in extreme and hostile
environments where links and components are subject to
degradation. The designed protocol allows COPDAI nodes to
build a mesh network and be aware of their environment. In
addition, COPDAI solves the problem of the difficulty to have
access to enough data and effectively train artificial
intelligence models, by easily enabling the sharing of
collected sensor data among the members of the scientific
community. A first version of this Middleware has been
developed in python, java and Android. We were also able to
increase the perception capabilities of a mobile robot by
attaching to its body an Android smartphone where COPDAI
nodes are deployed, nodes collect mobile sensor data
(Accelerometer, GPS, GYROSCOPE, Magnetometer...) and
push them to the node deployed on the robot's embedded card.
We compared the performance of COPDAI and the ROS2
Middleware. we found that COPDAI has a lower latency and
better response time, in addition to a more stable
communication when scaling the number of deployed nodes.

In our next work, we will look at the security of
communication between nodes, and we will detail discovery
and communication for nodes that are behind Firewalls or
Routers.

REFERENCES

[1] Vander Hook, J., Seto, W., Nguyen, V., Hasnain, Z., Gallagher, L.,
Halpin-Chan, T., Varahamurthy, V., & Angulo, M. (2019). Autonomous
swarms of high speed maneuvering surface vessels for the central test
evaluation improvement program. In Unmanned Systems Technology
XXI (pp. 110210M). https://doi.org/10.1117/12.2518554.

[2] Esposito, J., Feemster, M., & Smith, E. (2008). Cooperative
manipulation on the water using a swarm of autonomous tugboats. In
2008 IEEE International Conference on Robotics and Automation (pp.
1501–1506). https://doi.org/10.1109/ROBOT.2008.4543414.

[3] Langerwisch, M., Wittmann, T., Thamke, S., Remmersmann, T.,
Tiderko, A., & Wagner, B. (2013). Heterogeneous teams of unmanned
ground and aerial robots for reconnaissance and surveillance-a field
experiment. In 2013 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR) (pp. 1–6).
https://doi.org/10.1109/SSRR.2013.6719320.

[4] Patil, D., Upadhye, M., Kazi, F., & Singh, N. (2015). Multi robot
communication and target tracking system with controller design and
implementation of swarm robot using arduino. In 2015 International
Conference on Industrial Instrumentation and Control (ICIC) (pp. 412–
416). https://doi.org/10.1109/IIC.2015.7150777.

[5] Broberg, J., Hede, S., Mikkelsen, S., Pedersen, J., S\orensen, C.,
Madsen, P., & Borch, O. (2009). Collaboration Layer for Robots in
Mobile Ad-hoc Networks. IFAC Proceedings Volumes, 42(22), 103–
110. https://doi.org/10.3182/20091006-3-US-4006.00018.

[6] Iñigo-Blasco, P., Diaz-del-Rio, F., Romero-Ternero, M., Cagigas-
Muñiz, D., & Vicente-Diaz, S. (2012). Robotics software frameworks
for multi-agent robotic systems development. Robotics and Autonomous
Systems, 60(6), 803–821. https://doi.org/10.1016/j.robot.2012.02.004.

[7] Chella, A., Cossentino, M., Gaglio, S., Sabatucci, L., & Seidita, V.
(2010). Agent-oriented software patterns for rapid and affordable robot
programming. Journal of systems and software, 83(4), 557–573.
https://doi.org/10.1016/j.jss.2009.10.035.

[8] Kim, J.H., & Vadakkepat, P. (2000). Multi-agent systems: a survey from
the robot-soccer perspective. Intelligent Automation & Soft Computing,
6(1), 3–17. https://doi.org/10.1080/10798587.2000.10768155.

[9] Kim, J.H., Shim, H.S., Kim, H.S., Jung, M.J., Choi, I.H., & Kim, J.O.
(1997). A cooperative multi-agent system and its real time application to
robot soccer. In Proceedings of International Conference on Robotics
and Automation (pp. 638–643).
https://doi.org/10.1109/ROBOT.1997.620108.

[10] KKalkhoff, W. (1995). Agent-Oriented Robot Task Transformation. In
Proceedings of Tenth International Symposium on Intelligent Control
(pp. 242–247). https://doi.org/10.1109/ISIC.1995.525066.

[11] Kuo, Y.h., & MacDonald, B. (2004). Designing a distributed real-time
software framework for robotics. In Australasian Conference on
Robotics and Automation (ACRA). Canberra.

[12] Schmidt, D. G., and Fred Kuhns. "An overview of the real-time CORBA
specification." Computer 33.6 (2000): 56-63.

[13] Almeida, L., Santos, F., & Oliveira, L. (2016). Structuring
communications for mobile cyber-physical systems. In Management of
Cyber Physical Objects in the Future Internet of Things (pp. 51-76).
Springer, Cham. https://doi.org/10.1007/978-3-319-26869-9_3.

[14] Muratore, L., Laurenzi, A., Hoffman, E., Rocchi, A., Caldwell, D., &
Tsagarakis, N. (2017). Xbotcore: A real-time cross-robot software
platform. In 2017 First IEEE International Conference on Robotic
Computing (IRC) (pp. 77–80). https://doi.org/10.1109/IRC.2017.45.

[15] Munoz, M., Munera, E., Blanes, J., Simo, J., & Benet, G. (2013). Event
driven middleware for distributed system control. XXXIV Jornadas de
Automatica, 8.

[16] [16] Rabbah, M., Rabbah, N., Belhadaoui, H., & Rifi, M. (2016).
Challenges facing middleware for mobile robots in smart environment.
Int. J. Sci. Eng. Res, 7(11), 33–40.

[17] Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., & Terziyan, V.
(2008). Smart semantic middleware for the internet of things. In
International Conference on Informatics in Control, Automation and
Robotics (pp. 169–178).

[18] Choi, J., Cho, Y., Choi, J., & Choi, J. (2014). A layered middleware
architecture for automated robot services. International Journal of
Distributed Sensor Networks, 10(5), 201063.
https://doi.org/10.1155/2014/201063.

[19] Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., & Russo, W. (2013).
An agent-based middleware for cooperating smart objects. In
International Conference on Practical Applications of Agents and Multi-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

276 | P a g e

www.ijacsa.thesai.org

Agent Systems (pp. 387–398). https://doi.org/10.1007/978-3-642-38061-
7_36.

[20] Savidis, A., & Stephanidis, C. (2003). Dynamic environment-adapted
mobile interfaces: the Voyager Toolkit. Stephanidis, C.(Ed.), 4, 489–
493.

[21] Dey, A., Abowd, G., & Salber, D. (2001). A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware
applications. Human–Computer Interaction, 16(2-4), 97–166.
https://doi.org/10.1207/S15327051HCI16234_02.

[22] Brooks, R. (1997). The intelligent room project. In Proceedings Second
International Conference on Cognitive Technology Humanizing the
Information Age (pp. 271–278).
https://doi.org/10.1109/CT.1997.617707.

[23] Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., & Terziyan, V.
(2008). Smart semantic middleware for the internet of things. In
International Conference on Informatics in Control, Automation and
Robotics (pp. 169–178).

[24] Choi, J., Cho, Y., Choi, J., & Choi, J. (2014). A layered middleware
architecture for automated robot services. International Journal of
Distributed Sensor Networks, 10(5), 201063.
https://doi.org/10.1155/2014/201063.

[25] Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., De
Souza, L., & Trifa, V. (2009). SOA-based integration of the internet of
things in enterprise services. In 2009 IEEE international conference on
web services (pp. 968–975). https://doi.org/10.1109/ICWS.2009.98.

[26] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., Ng, A., & others (2009). ROS: an open-source Robot
Operating System. In ICRA workshop on open source software (pp. 5).

[27] Suh, Y.H., Lee, K.W., & Cho, E.S. (2013). A device abstraction
framework for the robotic mediator collaborating with smart
environments. In 2013 IEEE 16th International Conference on
Computational Science and Engineering (pp. 460–467).
https://doi.org/10.1109/CSE.2013.75.

[28] Koubâa, A., Sriti, M. F., Bennaceur, H., Ammar, A., Javed, Y., Alajlan,
M., ... & Shakshuki, E. (2015). Coros: A multi-agent software
architecture for cooperative and autonomous service robots. In
Cooperative Robots and Sensor Networks 2015 (pp. 3-30). Springer,
Cham. https://doi.org/10.1007/978-3-319-18299-5_1.

[29] https://rfc.zeromq.org/spec/19/ (2021).

[30] Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system.
arXiv preprint arXiv:1407.3561.

[31] ZeroMQ, https://zeromq.org/ (2021).

[32] Rizano, T., Abeni, L., & Palopoli, L. (2013). Experimental evaluation of
the real-time performance of publish-subscribe middlewares.

[33] Lauener, J., & Sliwinski, W. (2017, October). How to design &
implement a modern communication middleware based on ZeroMQ. In
Proc of ICALEPCS (Vol. 17, pp. 45-51).

[34] Chang, H. J. (2015). A multi-agent message transfer architecture based
on the messaging middleware zeromq. KIISE Transactions on
Computing Practices, 21(4), 290-298.
https://doi.org/10.5626/KTCP.2015.21.4.290.

[35] https://rfc.zeromq.org/spec/36/ (2021).

[36] Mahmoud Almostafa, R., Nabila, R., Hicham, B., & Mounir, R. (2018).
Python in Real Time Application for Mobile Robot. Smart Application
and Data Analysis for Smart Cities (SADASC'18).
http://dx.doi.org/10.2139/ssrn.3179445.

[37] https://developers.google.com/protocol-buffers/ (2021).

[38] https://ipfs.io (2021).

[39] https://www.jaegertracing.io (2021).

[40] https://github.com/opentracing/specification/blob/master/specification.m
d (2021).

[41] https://github.com/mrabbah/copdaipythonagent (2021).

[42] https://github.com/mrabbah/jyre (2021).

[43] https://github.com/mrabbah/copdaiandroidagent (2021).

[44] Rabbah, M. A., Rabbah, N., Belhadaoui, H., & Rifi, M. (2017, October).
Designing middleware over real time operating system for mobile robot.
In First International Conference on Real Time Intelligent Systems (pp.
419-425). Springer, Cham. https://doi.org/10.1007/978-3-319-91337-
7_37.

[45] Maruyama, Y., Kato, S., & Azumi, T. (2016, October). Exploring the
performance of ROS2. In Proceedings of the 13th International
Conference on Embedded Software (pp. 1-10).
https://doi.org/10.1145/2968478.2968502.

