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Abstract—This contribution proposes an approach to enhance 

the capability of robotic agents to join the Internet of Things 

(IoT) and act autonomously in extreme and hostile environment. 

This capability will help in the development in environments 

where the connectivity, availability, and responsivity of the 

devices are subject to variations and noises. A real time 

distributed and decentralized Peer-to-Peer protocol was designed 

to allow Autonomous Unmanned Surface Vessels (AUSV) extend 

their context awareness. The developed Middleware allows a real 

time communication and is designed to run on top of a Real Time 

Operating System (RTOS). Furthermore, the proposed 

Middleware will give researchers access to a large amount of 

data collected by sensors, and thus solve one of the major 

problems encountered while training artificial intelligence 

models which is the lack of sufficient data. 
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I. INTRODUCTION 

In the past, static robots, such as industrial arms, were used 
to perform repetitive tasks in a production line where the 
environment is well controlled and known in advance, at that 
time, collaboration between robots was not a priority. 
However, we are increasingly seeing the emergence of 
applications involving a swarm robot that share a common 
ultimate goal, e.g., The Autonomous Unmanned Surface 
Vessels (AUSV) or Unmanned Ground and Aerial Robots that 
must achieve missions like first responders, coast guards, area 
search, target detection and tracking, formations, rendezvous 
[1-3]. 

From these facts, the research on collaborative robots has 
increased considerably, and many researchers have started to 
make their focus on the internal design of the robot‟s context 
awareness [4-5], and the trend is to use Mobile Robots in 
hostile environments where the stability of the surrounding 
conditions and the connectivity is limited. 

Mobile Robots require collaborative capabilities to achieve 
complex missions on hostile environment, e.g., AUSV may 
need to collaborate to build a mesh network where each 
AUSV serves as a network node. However, most of proposed 
AUSV was designed to operate in an already known 
environment and are not designed to adapt themselves to the 
new changes in the context. 

We propose middleware for collaboration, communication, 
device hardening for deployments in extreme environments. 
We explore Multi Agent Systems (MAS) as a solution to 

enhance the collaboration by increasing autonomy, flexibility, 
and composability of robotic agents with the IoT devices 
available on their surrounding environment to promote the 
self-awareness of those agents. Not only the sensing and 
actuation are considered, but we also look at the distribution 
of decision-making in term of collaboration between the 
components of the application. 

Our proposed Middleware named Collaborative Open 
Platform for Distributed Artificial Intelligence (COPDAI) 
allows a real time communication between a community of 
robots while supporting link and component degradation. The 
community takes distributed decisions that position agents on 
strategic locations to mitigate the risk of disconnection. 
Position depends also on the capabilities such as sensing and 
actuating. Agents are interconnected and they maintain this 
interconnection as principal vehicle of communication among 
them in a peer-to-peer mode. 

Another problem that COPDAI will try to solve is the 
difficulty of having access to sufficient data to train artificial 
intelligence models, COPDAI will promote the sharing of 
sensor data and the trained models within the scientific 
community, as well as within the mobile robots. 

II. RELATED WORK 

In recent study [6] authors presented multiple node 
communication mechanisms: Simple message, Ports, Topics, 
Events and services, and based on pre-established criteria, 
they compared several Robotics Software Framework (RSF) 
to evaluate the coverage of each of them to defined criteria. It 
is worth mentioning that robotic systems are often designed 
over an Ethernet. Field Buses, such as CANBus, I2C, 
EtherCAT, Serial lines, FireWire, PROFIBUS, and even PCI 
are often used. Unfortunately, most RSFs and MASs use only 
the IP protocol. 

Generally, the MAS was used for its great flexibility and 
the ability to reuse components in different projects. Several 
patterns have been proposed for its implementation in Multi-
Robot Systems, proving a gain in development time [7], in this 
Work Jade Middleware was used to ensure communication. 

Agents distribution can be categorized into three forms [8]: 
Embedded agents at the robot level, agents located at a server 
level or hybrid distribution: Intelligence and computational 
agents are external to the robot, and acquisition and control 
agents are embedded. 
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In [9], the authors worked on the control of soccer robots, 
three schemes based on the multi-agent system paradigm were 
established: the first scheme is based on the control of the 
robots from a remote computer, in this configuration the 
robots had no embedded intelligence, the second scheme is 
based on a distributed architecture where the vision and the 
decision are done on a central computer and the control of the 
motors is delegated to embedded systems attached to the 
robots, the third scheme allows a greater autonomy of the 
robots where the acquisition of the sensor data, the decision as 
well as the control of the motors are done at the level of the 
robot, in addition to an eventual communication between 
robots. 

In [10] the authors have proposed a distributed knowledge 
base, this base is shared between them. The agents are 
organized in a hierarchical way and in case of errors that occur 
in an agent belonging to the lower level, the agents of the 
higher level replan the trajectory of the robot. 

In [11], the authors based their middleware on the Real-
time CORBA specification [12] which extends the basic 
CORBA model to support real-time constructs. A client/server 
model was adopted, and the predictability improvement was 
based on Real-time CORBA mechanisms such as: thread-
pooling and priority assignment. 

In [13], the authors focused on the support of networking 
and middleware of mobile embedded systems, a 
communication protocol named TDMA allowed the 
transmission of data and manage the uncertainty related to the 
communication, in addition a shared memory named RTDB 
was defined to allow the agents to share data. 

The authors in [14] developed a Humanoid Robot using 
XBotCore middleware, for real time communication, the 
middleware use EtherCAT protocol, and the software was 
built on the top of Xenomai RTOS, the middleware was 
designed to satisfy 1 kHz control frequency and implement 
four tasks in real time behavior among other: robot kinematic 
chain, robot joints, robot Force/Torque sensors. In [15], a 
middleware based on the concept of control kernel has been 
developed. Different types of nodes have been designed on top 
of two protocols namely: CAN bus and Ethernet, the nodes 
have different capabilities and can provide different types of 
services depending on their computing power. Lightweight 
nodes communicate on top of CAN bus and powerful nodes 
on top of Ethernet. 

Also, in [16] we studied 14 Middlewares which are either 
oriented to robotics applications or smart objects applications, 
we concluded that most of the Middlewares do not meet the 
real time constraint like: UBIWARE [17], LMAARS [18], 
ACOSO [19], Voyager [20], JCAF [21], Aura [22], 
UBIWARE [23], LMAARS [24] and SOCRADES [25], while 
others suffer from a centralized architecture like ROS [26], 
ICARS [27], COROS [28]. 

III. COPDAI COMMUNICATION ARCHITECTURE 

This Each sensor, actuator or decision module can be 
attached to the robot body or located in its external 
environment; we will represent each of these components by a 
node. 

Due to the constraint of the hostile environment, our 
architecture must be robust to the instability of the physical 
communication links, thus each node can appear and 
disappear at any time, the Middleware must allow each node 
to detect the presence of the other nodes and must implement 
a recovery mechanism in case of communication failure. 

In addition to that, our architecture must not have a Single 
Point of Failure (SPOF): the degradation of a node must not 
compromise the whole robot‟s mission, or at least we must be 
able to switch to a safe position, for that the architecture must 
be decentralized, we propose a Peer-to-Peer communication 
between the nodes. 

Also, we need to allow distributed computing between 
nodes: thus, a node that is located on a computer/server with 
more resources (CPU, RAM…) can contribute to the 
computations that a node located on an embedded board with 
limited resources cannot do by itself. 

In addition to that, the constraint of real time requires us to 
define a priority between the transmitted messages, and thus 
allow the node to process these messages with a minimum 
level of guarantee and a predictable behavior. 

Finally, the middleware must promote collaboration within 
the scientific community through the sharing of content and 
collected data during experiments (sensor data, actuators 
data…) and optionally results or the trained model. 

We distinguish four families of possible communication 
between these nodes among others (Fig. 1): 

 Inter-robot communication: 

o Communication between nodes located in the 
same embedded card / computer. 

o Communication between nodes located in separate 
embedded cards / computers. 

 Communication between robots. 

 Communication between robots and smart objects. 

 Content sharing (images, videos…) between 
researchers / robots. 

During the design of the communication layer of COPDAI 
Middleware, we had to provide answers to the following 
functional requirements: 

 Discovery: How can the nodes recognize each other, 
knowing that they can be located on the same 
embedded board or on remote embedded boards? 

 Presence: How do we track the appearance and 
disappearance of nodes? Are we going to use a central 
component as advocated by multi-agent systems or are 
we going to use a distributed mechanism with partial 
knowledge of the topology? 

 Connectivity: How do we connect one node to another? 
Are we going to use ethernet communication (on the 
same segment or on different network segments) or are 
we going to use inter-process communication (IPC)? 
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 Point-to-Point messaging: How to send a message from 
one node to another? Using a central system such as a 
message broker, or direct communication? 

 Group messaging: How we can do group messaging? 
Use push/pull pattern or use publish/subscribe pattern? 

 Real Time communication: How to prioritize critical 
messages and ensure that they are processed in real 
time? 

 Content distribution: How to send the data collected by 
the robot embedded system (sensor data, execution 
data or engine logs...)? Are we going to use a 
decentralized protocol like (FileMQ [29], IPFS [30] 
...)? Or are we going to use server-centric protocols 
like (FTP, HTTP...)? 

 Bridging: How we can do wide area bridging? 

 Security: How nodes protect the information they 
carry? And how to secure messages and content during 
the exchange operation? 

 Test & Simulation: How do we simulate large numbers 
of nodes? Are we going use real embedded systems? 
Or are we going provide a way to do a software 
simulation? 

 Distributed logging: What strategy to adopt to trace 
communications and collect logs from the nodes in 
order to detect possible failures or to debug? 

A. Transport Layer 

We choose the concurrency framework ZeroMQ [31] as 
transport layer, it gives us sockets that carry atomic messages 
across various transports, among others: IPC and TCP, 
researchers evaluate the performance of OpenDDS, ORTE and 
ZeroMQ middleware in terms of latency and scalability, they 
choose the publish/subscribe pattern to study those 
middleware performances and results show that ZeroMQ has 
the best performance with minimal latency [32]. Also, 
researchers here [33-34] have found that ZeroMQ scales much 
better and can smoothly handle high data loads and even 
bursts of requests, which was not the case in their old 
middleware version based on CORBA. 

 

Fig. 1. Communication Families between COPDAI Nodes.
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B. Transport Mechanisms 

COPDAI will support in its first version the following 
transport mechanisms: TCP/IP, UDP/IP, and IPC, other 
mechanisms will be supported in the future releases such as 
Bluetooth, Serial wire and Acoustic communications. 

Nodes within the same embedded card/computer will use 
IPC to communicate with each other and nodes located on 
different embedded boards/computers will communicate using 
IP protocols. 

We were inspired by the ZeroMQ Realtime Exchange 
Protocol (ZRE) which governs how a group of peers on a 
network discover each other, organize into groups, and send 
each other events [35]. ZRE runs over the ZeroMQ Message 
Transfer Protocol (ZMTP). ZRE has been designed to run in 
smart home and can accept a limited number of nodes: each 
node establishes a connection to the other ones, which means 

if we have N nodes we are going to have 
    (   )

 
 

connections, which can cause the saturation of a network 
quickly. Another problem is that ZRE support only IP 
communication which represents an unjustifiable overhead in 
our case for the nodes that must communicate within the same 
embedded card / computer. And finally, ZRE has not 
implemented any notion of service. 

COPDAI supports 4 Messaging types: 

 Node to Node messaging: Nodes that belong to the 
same hierarchical group, and that are located on the 
same physical medium (embedded card / network 
segment) can communicate directly in Peer-to-Peer. 

 Topic messaging: it is the case where some nodes want 
share message about the same topic. 

 Hierarchical messaging: Nodes are organized in groups 
that accept a maximum number k of members, each 
group contains a leader, communication between 

members of the same group is direct, but 
communication between two nodes belonging to 
different groups must go through the respective leaders 
of each group, 

 Bridging messaging: Communication between nodes 
belonging to two physical boundaries (two embedded 
cards or two Network segments) passes through a 
dedicated node, this node is elected among the group 
leaders. 

Fig. 2 shows a use case of communication types with k=3, 
if we compare ZRE with COPDAI in this use case, in Network 
Segment 1 we have only 3 IP connections instead of 171 using 
ZRE, also ZRE does not allow communication between nodes 
in segment 1 and 2: 

C. Discovery on the Same Machine 

In a specific folder location, within the user home 
directory, each node creates a file with its UUID as file name. 
Each       the node modifies its file timestamp. 

Each    nodes list the files whose last modification date is 
less than   , and so, they will be able to know the new nodes 
that have just appeared or those that have disappeared (Fig. 3). 

D. Discovery over IP 

We want to keep back compatibility with the ZRE protocol 
for discovery over IP Protocol, so we are going to use the 
same mechanism: ZRE uses UDP IPv4 beacon broadcasts to 
discover nodes. Each ZRE node shall listen to the ZRE 
discovery service which is UDP port 5670. Each ZRE node 
SHALL broadcast, at regular intervals, on UDP port 5670 a 
beacon that identifies itself to any listening nodes on the 
network [35]. 

The header shall consist of the letters „Z‟, „R‟, and „E‟, 
followed by the beacon version number, which shall be %x01. 

 

Fig. 2. COPDAI Communication Types with Groups that Accept at Maximum 3 Members. 
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Fig. 3. IPC Discovery Files. 

The body shall consist of the sender‟s 16-octet UUID, 

followed by a two-byte mailbox port number in network order. 

If the port is non-zero this signals that the peer will accept 

ZeroMQ TCP connections on that port number. If the port is 

zero, this signals that the peer is disconnecting from the 

network. The body contains also another two-byte mailbox 

port number for real time communication channel, and since 

in our case the Bridge node hides behind it several nodes 

which should be discoverable to the outside world, we will 

extend the ZRE beacon so that the body contains UUIDs of 

these nodes (Fig. 4). 

 

Fig. 4. COPDAI Beacon Message. 

Node that receives a valid beacon with a non-zero port 
number will be considered as a new peer. 

 

Fig. 5. Use Case where we can receive a Message before Receiving Beacon 

from Peer. 

UDP messages are limited to 1500 bytes on LANs and 512 
bytes on Internet, so the bridge node cannot handle more than 
92 nodes in LANs and 30 nodes in Internet, if the bridge node 
reaches its limit, a new one is elected and handle the rest of 
the nodes. 

Another problem is that bridge node can get the first 
beacon from a peer after it starts to receive messages from it, 
so in this situation we got a message from a node that we 
don‟t know its IP address and port (Fig. 5). 

So, we must consider discovery over TCP: Our first 
command to any new peer to which we connect is an “Hello” 
command with our IP address and ports. Bellow the steps we 
will follow: 

 If we receive a UDP beacon from a new peer, we 
connect to the peer through a TCP socket. 

 Each message must contain the UUID of the sender. 

 If it‟s a Hello message, we connect back to that peer if 
not already connected to it. 

 If it‟s any other message, we must already be 
connected to the peer, if it is not the case, we raise an 
assertion. 

 We send messages to each peer using the per-peer 
socket, which must be connected. 

 When we connect to a peer, we also tell our Node that 
the peer exists. 

 Every time we get a message from a peer, we treat that 
as a heartbeat. 

Fig. 6 shows the message format for the "Hello" command 
throw IP. 

 

Fig. 6. COPDAI Hello Message throw IP. 

Bellow we explain the signification of each part of the 
“Hello” Message: 

1) Part 1: It is an Event Type (4 bytes), it is equal to %d1, 

2) Part 2: It is the signature which let us control the 

received message is a COPDAI Message, must always equal 

to %xAAA2, 

3) Part 3: It is the protocol version. 

4) Part 4: It is a sequence number which will allow our 

node to check if there were any lost messages between the 

current received message and the last received one, for each 

peer. 

5) Part 5: It is a string that concatenates the IP address of 

the peer and its port, the endpoint is specified as 

“tcp://ipaddress:mailbox”. 
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6) Part 6: It is a string that concatenates the IP address of 

the peer and its real time port, the rtendpoint is specified as 

“tcp://ipaddress:rt-mailbox”. 

7) Part 7: list of UUIDs nodes under the responsibility of 

the sender and for each UUID list of proposed services. 

8) Part 8: List of groups to which the peer belongs. 

9) Part 9: The “group status sequence” is a one-octet 

number that is incremented each time the peer joins or leaves 

a group. Each peer may use this to assert the accuracy of its 

own group management information. 

10) Part 10: List of services offered by the sender. 

11) Part 11: A Human friendly peer‟s name. 

12) Part 12: Headers is a hash table (Key/Value HashMap) 

of additional information that the peer can eventually send. 

E. Detecting Disappearances over IP 

Several reasons can come into play and distort the decision 
that a peer has really disappeared: due to high TCP traffic the 
UDP packets can be dropped (which causes a high latency 
before getting the beacon) or a high latency before getting a 
message on top of the TCP and which is also considered as 
heartbeat. 

To overcome this problem, if we don‟t get a beacon from 
the peer after a while, we switch to TCP heartbeats which 
consist of sending a PING command and receiving a 
PING_OK response, the PING command is described in ZRE 
protocol as follow (Fig. 7). 

 

Fig. 7. PING Command Sent to a Peer if it Disappears [35]. 

Bellow we explain the signification of the new part of the 
“PING” Message: 

 Part 1: It is an Event Type (4 bytes), t is equal to %d6. 

If the Peer is still alive it must respond with a PING_OK 
as described in Fig. 8: 

 

Fig. 8. PING OK Message that a Peer Send to Confirm it is Still Alive [35]. 

Bellow we explain the signification of the new part of the 
“PING OK” Message: 

 Part 1: It is an Event Type (4 bytes), it is equal to %d7 

F. Greeting Message over IPC 

The following (Fig. 9) illustrates the Hello message in case 
of IPC Communication: 

 

Fig. 9. COPDAI Hello Message over IPC. 

Bellow we explain the signification of the new part of the 
“Hello” Message over IPC: 

 Part 1: It is an Event Type (4 bytes), it is equal to %d8. 

G. Topology Heartbeating 

Fig. 10 shows a typical example of the links between 
nodes in the COPDAI Middleware, nodes of the same 
hierarchical group communicate with each other and with their 
leader, leaders communicate with each other and with the 
Bridge Node, and finally Bridge Nodes communicate with 
each other. 

 

Fig. 10. Typical Communication Topology between COPDAI Nodes. 
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Each time the leader detects that there is a change in the 
nodes under its responsibility, e.g., a node in the group has 
disappeared, a new node has joined its group, it will notify the 
other leaders by sending the following message (Fig. 11): 

 

Fig. 11. COPDAI Topology Heartbeating Message. 

Bellow we explain the signification of new part of the 
“Topology Heartbeating” Message: 

 Part 1: It is an Event Type (4 bytes), it is equal to %d9 

Bridge Node being itself a Leader, it is responsible for 
notifying the other Leaders in the same machine by any 
change in its group. 

A Bridge Node is elected among the Leaders, so it is 
responsible for the propagation of the topology to others 
Bridge Nodes once a change has happened at the level of its 
group, or at the level of a group of another leader, the message 
(Fig. 11) is sent to others Bridge Nodes, with the difference 
that it concatenates all the nodes present on the machine with 
their respective services and not only the nodes that belong to 
its group. 

In the opposite direction, once a Bridge Node receives a 
topology message from another one, it notifies the Leaders on 
its machine using the following message format (Fig. 12), in 
the same way the leaders propagate this message to each 
member of their group: 

 

Fig. 12. Remote Bridge Node Topology Heartbeating Message. 

Bellow we explain the signification of new parts of the 
“Remote Bridge Node Topology Heartbeating” Message: 

 Part 1: It is an Event Type (4 bytes), it is equal to 
%d10. 

 Part 5: Remote Bridge Node UUID 

 Part 6: List of UUIDs nodes under the responsibility of 
the Remote Bridge Node and for each UUID list of 
proposed services. 

 Part 7: List of groups to which the Remote Bridge 
Node belongs. 

 Part 9: List of services offered by the Remote Bridge 
Node. 

H. Communication between Two Peers 

One of the problems we have encountered in trying to have 
true Peer-to-Peer communication is that ZeroMQ socket is not 
symmetric, to overcome this problem, we have adopted the 
harmony pattern: For the outgoing messages, we are going to 
use a DEALER socket per peer so we can safely send 
messages. 

For the ingoing messages, we choose the ROUTER socket, 
and so, the Harmony pattern comes down to these components 
(Fig. 13 and 14): 

 One UDP socket where we listen to the broadcasted 
beacons (In case of Bridge Node). 

 One ROUTER socket that we bind to an ephemeral 
port, and where we receive incoming messages from 
peers. 

 One DEALER socket per peer that we connect to the 
peer‟s ROUTER socket. 

 One ROUTER socket (named RT-ROUTER) that we 
bind to an ephemeral port, and where we receive 
incoming messages from peers which must be 
processed in real time (we suppose here that the Node 
is a type of RTCyclicNode and the listener is decorated 
properly to behave in real time (more details in our 
recent contribution [36]). 

 One DEALER socket (named RT-DEALER) per peer 
that we connect to the peer‟s RT-ROUTER socket. 

 Reading from our ROUTER/RT-ROUTER socket. 

 Writing to the peer‟s DEALER/RT-DEALER socket. 

 

Fig. 13. Sockets used in each COPDAI Bridge Node (IP Communication). 

 

Fig. 14. Sockets used in each COPDAI Local Node (IPC Communication). 
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If the peer disappears and comes back with a different IP 
address and/or port, we have to disconnect our DEALER 
sockets and reconnect to the new ports. 

In the case of IPC communication, a folder hierarchy was 
adopted as shown in (Fig. 15), a file is created in a folder 
named "dealer" which will be used as a medium for the 
DEALER socket, another file will be created in the folder 
"dealer/rt" for real time communication, the same tree 
structure is adopted for the ROUTER and RT-ROUTER 
sockets. 

 

Fig. 15. IPC Sockets Folder Hierarchy. 

The exchanged message between peers in the same 
hierarchical group is in this format (Fig. 16). 

 

Fig. 16. Format of a Message Exchanged between two Nodes in Same 

Hierarchical Group. 

Bellow we explain the signification of new parts of the 
Message exchanged between two nodes: 

 Part 1: It is an Event Type (4 bytes); it is equal to %d2. 

 Part 3: the service name to invoke. 

 Part 6: the content message which is serialized using 
Protocol buffer [37] (it is the serialized object we are 
going pass to the service as a parameter). 

I. COPDAI Node Topology Knowledge Management 

Each node according to its position in the COPDAI 
hierarchy (Normal Node, Leader or Bridge), maintains some 
knowledge about the current topology: 

 All Nodes maintains at least: 

o Peers UUIDs. 

o For each Peer UUID list of services offered by it. 

o For each Peer the list of groups to which it 
belongs. 

o For each Peer its Manager UUID (can be the 
UUID of a Leader or a Bridge Node). 

o For each Peer the time when it starts running (used 
in election). 

o List of Services. 

o For each Service list of Peers offering it. 

o For each Peer the outgoing message sequence (for 
assertion and Quality of Service (QoS)). 

o For each Peer the incoming message sequence (for 
assertion and QoS). 

o For each Peer group status sequence (for assertion 
and QoS). 

o Timestamp when this node start running (used in 
election). 

o The last time the node signaled its presence to the 
outside world (used in election). 

 The Normal Node maintains also: 

o The UUID of the Leader Node that is responsible 
for it. 

 The Leader Node maintains also: 

o Same Machine Leaders UUIDs. 

o The UUID of the Bridge Node that is responsible 
for it. 

 Bridge Node maintains also: 

o Same Machine Leaders UUIDs. 

o Bridges Nodes UUIDs. 

o For each Bridge Node: The Endpoint, port, rt-port. 

J. Message Routing 

When a node wants to send a message to another node 
which does not belong to its hierarchical group, it constructs 
the message (Fig. 17) and sends it to the leader, if the leader 
finds that this node is managed by another leader on the same 
machine it sends the message to it, this last one transmits the 
message to the target node, if not, it transmits the message to 
the Bridge Node on the local Machine, this one will send the 
message to the Bridge Node which manages the target node, 
and thus the message is routed until it reaches its destination, 
an example is illustrated in Fig. 18: 

 

Fig. 17. COPDAI Routing Message Format. 

Bellow we explain the signification of new parts of the 
routing message: 

 Part 1: It is an Event Type (4 bytes), it is equal to 
%d11. 

 Part 3: The target peer. 
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Fig. 18. Example of Routing Message between Nodes that doesn‟t belong to 

the same Hierarchical Group. 

K. Group Messaging 

For group messaging we want to be able to join and leave 
groups, discover the existing of nodes in other groups and 
send a message at once to several nodes belonging to the same 
group. This gives us some new protocol commands: 

JOIN - we send this to all peers when we join a group 
(Fig. 19): 

 

Fig. 19. Group Join Message Format [35]. 

 Bellow we explain the signification of new parts of the 
join message: 

 Part 1: It is an Event Type (4 bytes), it is equal to %d4.  

 Part 4: the group the node wants to join. 

LEAVE - we send this to all peers when we leave a group 
(Fig. 20). 

 

Fig. 20. Leaving Group Message Format [35]. 

Bellow we explain the signification of new parts of the 
leave message: 

 Part 1: It is an Event Type (4 bytes), it is equal to %d5, 

 Part 4: the group the node wants to leave. 

The following Fig. 21 illustrates the format of a message 
that will be sent to a group. 

 

Fig. 21. Multi-part Message Format for Group Messaging 

Bellow we explain the signification of new parts of the 
multi-part message format: 

 Part 1: It is an Event Type (4 bytes), if it is equal to 
%d3. 

 Part 4: the group the node wants to send to it the 
message. 

 Part 5: the service name to invoke. 

 Part 6: Message content. 

When a Leader receive a JOIN or LEAVE or a multi-part 
message it propagates it to other Leaders, the same for a 
Bridge Node if it receives a JOIN or LEAVE or multi-part 
message it propagates it to others Bridge Nodes. 

Leaders and Bridge Nodes also are responsible for 
propagating this message to the Nodes they manage. 

L. Election and Membership 

1) When a node starts the first time, it sends a request to 

find a free group to all nodes in the same machine (Fig. 22). 

2) If a leader receives a group search request, and if there 

is free space in its group, it reserves a space for the requester 

and sends an invitation (Fig. 23). 

3) Once an invitation is received, the node sends a request 

to join the leader group (it must return the same invitation 

code received in the previous step) (Fig. 24). 

4) Then the leader sends a confirmation with the name of 

the group that the node has just become one of its members 

(Fig. 25). 

 

Fig. 22. Search Free Group Message Format. 

 

Fig. 23. Leader Invitation Message Format. 
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Fig. 24. Membership Request Format. 

 

Fig. 25. Membership Confirmation Message Format 

5) Once this is done the node sends a "JOIN" message to 

notify everyone that it has just joined the group (Fig. 19), and 

after that it creates the necessary IPC sockets with other 

group‟s members. 

Note: All these operations are time-stamped, if it takes 
times to receive a response, the operation is cancelled, and the 
process is resumed. 

6) If the node doesn‟t receive any response from leaders, 

or if it has failed to become a member of a group after a 

configurable amount of time, the node creates a new group, 

joins it, and sends JOIN command to outside world, after that 

it becomes the leader of this new group it notifies peers with 

the following message (Fig. 26). 

7) If Leaders receive a “LEADERSHIP” message, they 

send back a congratulation message, and specify which one of 

them is the Bridge Node (Fig. 27). 

8) Once the Leader receives a congratulation message, it 

creates the necessary IPC sockets with the other Leader. 

9) If after a while, the Leader doesn‟t receive any 

congratulation message, it considers itself as a Bridge Node, 

creates the necessary TCP sockets and starts listening on the 

UDP port to detect other Bridge Nodes over IP. 

10) If a leader disappears, the rest of the nodes in the group 

start elections by exchanging between them the following 

message containing their start date (Fig. 28): the node that 

started first becomes the new leader and continues the process 

explained in step 6. 

11) Each node saves/updates the last time it signalled its 

presence to the outside world, if it was a while since it notifies 

peers about its presence (a pre-parameterized value in 

COPDAI Middleware), and if it was a Leader, it concludes 

that he is no longer the leader and considers itself as a normal 

node and starts the process again from step 1. 

12) If a Bridge Node disappears, the rest of the Leaders 

start elections by exchanging between them the message 

shown in (Fig. 28): The Leader that started first becomes the 

new Bridge Node and continues the process from step 9. The 

new Bridge Node is responsible of propagating the new 

topology to the outside world (Fig. 11). 

 

Fig. 26. Leadership Announcement Message. 

 

Fig. 27. Leaders Congratulation Message Format. 

 

Fig. 28. Election Message Format. 

M. Content Sharing 

We used the InterPlanetary File System (IPFS) [38] which 
is a peer-to-peer distributed file system that stores and 
retrieves files in a BitTorrent-like way. 

So, to allow sharing of data captured by sensors (images, 
videos…) or artificial intelligence models between researchers 
/ robots, we installed in each machine the ipfs daemon which 
connects it to the global distributed network by running the 
following commands: 

$> ipfs init              (1) 

$> ipfs daemon              (2) 

IPFS requires 512MiB of memory and the installation 
takes only 12MB, if the machine doesn‟t have the necessary 
resources, we just ignore the IPFS installation. 

The first time a node starts, it verifies if it has the ipfs 
capability by running the following command: 

$> ipfs version              (3) 

If a node wants to add any file to the distributed file 
system, it just run: 

$> ipfs add filename             (4) 

To allow nodes located on machines that do not have 
sufficient resources to share files, we run a dedicated COPDAI 
nodes (named IPFS Nodes) in servers that have enough 
resources, these nodes offer the “ipfs” service, and each node 
can send files to them using the “SEND MESSAGE” 
command (Fig. 16). The IPFS nodes persist the message 
content in file and after that, add it to the distributed file 
system (command 4). 
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After adding a file to ipfs, the command 4, returns a hash 
code, IPFS already offers the possibility to retrieve files via 
browser or command line interface (CLI) but it requires that 
we know already the hash code, to overcome this limitation, 
an event is fired associating each hash code with the UUID of 
the node that generated it and the file creation time, the event 
is sent to the distributed tracing system. In the future we plan 
to add an interface to brows the files by agents UUIDs / 
Names. 

Researchers can share their content by just sharing the 
hash code. 

N. Distributed Logging 

In such a complex distributed system, tracing message 
between nodes is paramount, we have chosen Jeager [39] for 
distributed transaction and monitoring. The tracing is based on 
the OpenTracing Semantic Specification [40]. 

IV. TESTS AND IMPLEMENTATION 

A first version of COPDAI Middleware is already 
developed in python [41], as well as in java [42], also an 
Android version of the COPDAI agent has been developed 
[43] to allow any robot to benefit from the existing sensors on 
a smartphone (Accelerometer, GPS, GYROSCOPE, 
Magnetometer…) and this allowed us to validate our 
communication architecture as well as to extend the 
capabilities of the robot used in our contribution [44] (Fig. 29) 
after attaching the smartphone to its body. 

To challenge our middleware, we compared its 
performance with ROS2 [45] which is the upgrade of ROS1 
by utilizing the Data Distribution Service, the main goal of 
ROS2 is to provide the real time capability, it is under heavy 
development, it supports communication over IP, ROS2 
doesn‟t support ARM board even though most mobile robots 
use embedded cards based on ARM architecture like (Jetson 
TX2, Raspberry Pi, BeagleBone, Orange Pi, …), because they 
are energy efficient. 

For each type of communication: COPDAI communication 
over IPC, COPDAI Real Time communication over IPC, Real 
Time communication over IP and communication using 
ROS2, we measured the latency that a message takes to pass 
from one node to another, we studied the following three 
scenarios: a node communicates only with one other node, a 
node communicates with 10 nodes and a node communicates 
with 100 nodes at the same time, for each scenario we sent 
10k messages, to limit network noise, all nodes were deployed 
on the same machine (Asus Zephyrus ROG, CPU Pentium i7 
2. 3GHz, RAM 16 GB) the RTOS used: Ubuntu 20.04 
Patched to PREMPT_RT. 

Table I illustrates the average latencies in each scenario, 
we notice that for the scenario of the real time communication 
using the COPDAI middleware on top of IPC the average 
latency did not change greatly by increasing from 10 nodes to 
100 nodes, which shows a great stability of the system, on the 
other hand we notice that the average latency climbed in an 
exponential way in the case of ROS2, same for the case of the 
communication using COPDAI RT over IP or COPDAI over 
IPC the average latency is stable and robust to the scaling up. 

Table II illustrates the maximum latencies obtained in each 
scenario, the highest latency was obtained when 
communicating between 100 nodes using ROS2 with more 
than 6 minutes of delay between sending and receiving the 
message, while we notice that the maximum latency in the 
case of using COPDAI RT over IP did not exceed 9 seconds 
and 7 seconds over IPC. 

Table III illustrates the minimum latencies obtained in 
each scenario, communication between two nodes using 
COPDAI RT over IPC give the best result we also notice that 
in the case of 100 nodes for the same protocol we obtain a 
good result. 

 

Fig. 29. COPDAI Android Agent which Enhance Robot‟s Capabilities by 

Sharing Sensors Data. 

TABLE I. AVERAGE LATENCIES IN (MS) 

 One Node 10 Nodes 100 Nodes 

COPDAI RT Over IPC 164.853 182.592 183.27 

COPDAI RT Over IP 180.98 169.352 179.751 

COPDAI Over IPC 200.878 201.494 198.819 

ROS 2 306.636 415.334 1381.091 

TABLE II. MAXIMUM LATENCIES IN (MS) 

 One Node 10 Nodes 100 Nodes 

COPDAI RT Over IPC 305.277 840.438 6865.242 

COPDAI RT Over IP 389.717 1120.752 8817.04 

COPDAI Over IPC 379.308 562.39 2322.554 

ROS 2 51170.058 90730.255 412285.491 

TABLE III. MINIMUM LATENCIES IN (MS) 

 One Node 10 Nodes 100 Nodes 

COPDAI RT Over IPC 58.415 93.261 77.486 

COPDAI RT Over IP 58.754 80.507 78.305 

COPDAI Over IPC 103.863 109.328 111.111 

ROS 2 181.098 163.54 273.133 
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Fig. 30. Average Latency in Proportion with the Number of Nodes and the 

Communication Mechanism used. 

As shown in Fig. 30, our middleware shows a very good 
performance, it scales efficiently, the real-time communication 
on IPC is the most optimized, which justifies our choice of 
such a mechanism for a communication within the same 
machine, and in general the real-time communication shows a 
great stability. 

V. CONCLUSION 

In this paper, a distributed, decentralized, real-time Peer-
to-Peer protocol has been designed to allow robots and smart 
objects to act autonomously and improve their capabilities, 
COPDAI Middleware allows so, the Autonomous Unmanned 
Surface Vessels share their knowledge in extreme and hostile 
environments where links and components are subject to 
degradation. The designed protocol allows COPDAI nodes to 
build a mesh network and be aware of their environment. In 
addition, COPDAI solves the problem of the difficulty to have 
access to enough data and effectively train artificial 
intelligence models, by easily enabling the sharing of 
collected sensor data among the members of the scientific 
community. A first version of this Middleware has been 
developed in python, java and Android. We were also able to 
increase the perception capabilities of a mobile robot by 
attaching to its body an Android smartphone where COPDAI 
nodes are deployed, nodes collect mobile sensor data 
(Accelerometer, GPS, GYROSCOPE, Magnetometer...) and 
push them to the node deployed on the robot's embedded card. 
We compared the performance of COPDAI and the ROS2 
Middleware. we found that COPDAI has a lower latency and 
better response time, in addition to a more stable 
communication when scaling the number of deployed nodes. 

In our next work, we will look at the security of 
communication between nodes, and we will detail discovery 
and communication for nodes that are behind Firewalls or 
Routers. 
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