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Abstract—Face recognition is of pronounced significance to 

real-world applications such as video surveillance systems, 

human computing interaction, and security systems. This 

biometric authenticating system encompasses rich real human 

face characteristics. As such, it has been one of the important 

research topics in computer vision. Face recognition systems 

based on deep learning approaches suffer from internal covariate 

shift problems that cause gradients to explode or gradient 

disappearance, which leads to improper network training. 

Improper network training causes network overfitting and 

computational load. This reduces recognition accuracy and slows 

down network speed. This paper proposes a modified pre-

activation batch normalization convolutional neural network by 

adding a batch normalization layer after each convolutional layer 

within each of the four convolutional units of the proposed 

model. The performance of the proposed model is validated with 

a new dataset, AS-Darmaset, which is built out of two publicly 

available databases. This paper compared the convergence 

behavior of four different CNN models: the Pre-activation Batch 

Normalization CNN model, the Traditional CNN without Batch 

Normalization, the Post-Activation Batch Normalization CNN 

model, and the Sparse Batch Normalization CNN Architecture. 

The evaluation results show that the recognition performance of 

Pre-activation BN CNN has training and validation accuracies of 

100.00% and 99.87%, the Post activation Batch normalization 

has 100.00% and 99.81%, and the traditional CNN without BN 

has 96.50% and 98.93%. The sparse batch normalization CNN 

has 96.25% and 97.60% success rate, respectively. The result 

shows that the Pre-activation BN CNN model is more effective 

than the other three deep learning models. 

Keywords—Face recognition; pre-active batch normalization; 

convolutional neural network 

I. INTRODUCTION 

Face recognition systems have witnessed a lot of recent 
advancements in terms of selective human-machine interfaces, 
such as the future ATM authentication and authorization 
system, driving licenses identification and verification, and so 
on [1]. Although face biometric authentication systems have 
made significant progress and are now widely used in a variety 
of applications such as criminal investigation, lie detection 
systems, clinical medicine, distance education, security 
systems, access control, video surveillance, commercial areas, 

and even use in social networks such as Facebook [2, 3]. The 
standard tradition machine learning for face recognition are 
still plagued by a slew of issues and are only effective in a 
limited number of scenarios. In terms of major intrapersonal 
changes in illumination, facial expressions, posture, occlusions, 
views, and other factors, that lead their performance begins to 
deteriorate [4]. Furthermore, light intensity, the number of light 
sources, light direction, and camera angle are all unpredictable. 
However, these methods extract a small number of image 
features in lower recognition accuracy, which cannot satisfy 
human face recognition in complex conditions [5]. With deep 
learning-based approaches for image feature extraction, 
superior performance has been achieved. Convolutional Neural 
Network has become a popular method for face recognition 
system. The CNN, which automatically extracts a variety of 
features of the image and classify, has good robustness to 
complex environments [2]. The architecture of CNN is inspired 
by biological processes and loosely based on the responses of 
the neurons in the receptive field of the human brain visual 
context [7]. Convolutional Neural Networks (CNN) are usually 
composed of convolutional layer, normalization layer, 
activation layer, max-pooling layer, and fully connected layers 
[8]. The driving factor for their successes has been the 
abundance of available data via the internet and the huge 
efforts of the research community to create large hand label 
dataset such as ImageNet [9]. A recent improvement called 
batch normalization [8], accelerate the learning process by 
computing batch statistic, it makes normalization an internal 
part of the model architecture. These changes allow for much 
faster convergences, diminishes the impact of model 
initialization, and act as a regularization method [10]. 

In this paper, we explore the impact of key architectural 
elements of a convolutional neural network. These are the 
batch normalization and dropout layers in the context of pre-
active batch normalization architecture of convolutional neural 
networks [11]. 

II. MAJOR CONTRIBUTION 

The main contribution of this paper is to enhance the 
performance of Convolutional neural network architecture for 
face recognition with a higher recognition rate. In this research, 
we built an improved Pre-active Batch Normalization CNN 
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algorithm by applying a batch normalization layer immediately 
after each convolutional layer before the non-linear (ReLu) 
activation function to perform the normalization operation 
thereby reducing the internal covariate shift. We again added a 
dropout layer in between the two fully connected layers to help 
improve the network performance. The general structure of the 
proposed model is made up of four (4) convolutional units, one 
dropout layer, two fully connected layers, one softmax layer, 
and one classification layer.  First, confirm that you have the 
correct template for your paper size. 

The rest of this paper is organized as follows: Section 
discusses various works of literature. The proposed research 
methodology is highlighted in Section IV. Sections V and VI 
present the research experiments. Finally, Section VII consists 
of the research paper conclusions. 

III. RELATED WORK OF LITERATURES 

Compare to previous literature work, our main contribution 
is the application of four batch normalization layers to the four 
convolutional units of a simple convolutional neural network 
for face recognition application. A dropout layer is also added 
in between the two fully connected layers. This is done to 
prevent gradient exploding or gradient disappearance, prevent 
network overfitting and increase performance with higher 
recognition accuracy. Convolution Neural Network was first 
proposed by LeCun and it was firstly applied in handwriting 
recognition [12]. Literature [3] proposed a modified CNN 
architecture for face recognition application by adding two 
normalization layers for the output of the first and last 
convolutional layers to accelerate the network. The result 
showed a satisfying recognition rate of 98.8%. Literature [2]. 
Explored the efficiency of a new sparse batch normalization 
CNN to overcome the problem of gradient disappearance and 
gradient exploration faced by the facial expression recognition 
model. There proposed model uses continuer convolution at the 
begging of the network to enhance the integrity of the facial 
regional features. Batch Normalization is sparely added to 
facilitate network training. The experiment shows that the 
model has a sufficient performance of 96.87% recognition rate 
to satisfy the 7 classes of the express. Literature [13] proposed 
a CNN model for a real-time face recognition system. Model 
architecture has no batch normalization layer, but it has a 
dropout layer. The performance of the model architecture is 
evaluated by turning various parameters of the model to 
enhance the recognition rate. Maximum accuracy of 98.75% 
and 98.00% is obtained. Literature [14] proposed an end-to-end 

face recognition system based on 3D face texture. Combining 
the geometric invariants, histogram of orientated gradient, and 
the fine-tuned Residual Neural Network. Batch Normalization 
is added to each convolutional layer to affine transformation on 
the input of each layer. The experimental results show that the 
best top 1 accuracy is up to 98.26% and the top 2 accuracy is 
99.40% respectively. Literature [15] tested the performance of 
their proposed CNN for face recognition with three well-
known image recognition methods PCA, LBPH, and KNN. 
Batch normalization and dropout are not employed in the 
model architecture. The experimental result shows that the 
proposed CNN has obtained the best recognition rate of 98.3%. 
The proposed method based on CNN outperforms the state-of-
the-art methods. Literature [16] proposed to used and integrate 
deep learning CNN for human face Analytic and recognition 
for diversified applications. In their study the profound 
learning-based methodology of CNN with fuzzy logic is 
introduced, so the higher level of exactness in the face grin 
should be possible. With this method, the predictive feature of 
the human face can be used for a criminal investigation of the 
social analytics-based application. This model was training 
without a batch normalization layer. The model achieves a 
recognition accuracy of 98.12%. Literature [17] Evaluates the 
robustness of three well-known approaches by combining 
CNN as a powerful feature extraction algorithm followed by 
SVM as a high classifier and PCA for feature dimensional 
reduction technique. The result of the combined models 
provides a significant performance improvement and enhances 
recognition rate up to 95.2%. 

IV. METHODOLOGY 

A. Pre-Activation-BN-Convolution Neural Network 

(PABNCNN) Approach for Training and Features 

Classification 

In this research, we aim to enhance the performance of the 
face recognition system, based on Deep Learning 
Convolutional Neural Network (CNN). The study proposed to 
reduce covariate shift, gradient disappearance and gradient 
explosion for better network convergence. Therefore, to 
achieving these aims the study proposed a new method called 
Pre-Activation Batch Normalization Algorithm. The method is 
powerful in preventing vanishing gradient and overfitting of 
the model. The proposed model is trained with Mini-Batch 
Stochastic Gradient Descent training algorithm. The block 
scheme of the proposed algorithm is shown in Fig. 1. 

 

Fig. 1. The Structure of the Proposed Pre-Activation BN-CNN. 
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 Convolutional Neural Network (CNN) 

A CNN is made up of numerous layers with image 
processing activities that are built into its structure. This deep 
learning model was built using three structural representations: 
shared weights, local receptive field, and subsampling. The 
convolution kernel shapes shared weights to reduce the number 
of free parameters. For the feature maps at each layer, the 
convolution kernels are subjectively changed to build a noise 
filter as well as an edge detector. Both the convolution and 
subsampling kernels benefit from the local receptive field since 
it enchants a set of nearby pixels for further processing before 
transferring the result of a coarser resolution to the next 
convolutional layers. While reducing the feature map scope at 
the corresponding layer, the subsampling process involves 
local averaging [6]. A new trend in CNN comes with a batch 
normalization algorithm integrated into the architecture, 
thereby enhancing the network performance and training 
speed. 

 Batch Normalization 

The goal of batch normalization is to achieve a stable 
distribution of activation values through training. Batch 
normalization has been established as a component in deep 
learning, largely helping to push the frontiers of computer 
vision [18]. BN normalized the means and variance computed 
within a mini-batch. This contributes tremendously to 
simplifying the optimization and enabling the network to 
converge [19]. Therefore, in batch normalization, the data 
distribution has the attribute that the mean of the data 
distribution is 0 and the variance is 1 [8]. The batch 
normalization performs well at medium and large batch sizes 
and has good generalization to multiple vision tasks [20]. Step 
of batch normalization operation can be presented as seen in 
Fig. 2. 
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Fig. 2. Figurative Representation of Batch Normalization Operation. 

These can be represented in the formula below: 
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Where   is the mean value of the output layer     and     is 

the variance value, while       ̂ is the normalization output 
obtained after subtracting the mean and dividing it by standard 

deviation
    

√   ∑
  , while     set the mean and variance to the 

new value.       +  are learnable parameters. 

With this operation by BN, after processing the problem of 
multiple layers, mutual coupling in network training weight 
updating can be solved, and the possibility of gradient 
disappearance or gradient explosion can be reduced. 

B. The Design Principle of the Proposed Pre-activation BN-

CNN Approach 

The proposed Pre-activation BN-CNN consists of one input 
layer, four convolution units, one dropout layer, two fully 
connected layers, one Soft-Max layer, and one classification 
layer. The first convolution unit involves the first convolution 
layer labelled as C1 in Fig. 1. This layer is followed by the 
batch normalization layer, which is labelled as BN1, then the 
Rectifier linear unit (ReLu) activation function, which is 
labelled as R1, and the Max pooling (down sampling) layer, 
which is labelled as Mp1. The second convolution unit, the 
third, and the fourth all follow the same design format as the 
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first convolutional unit, having the batch normalization layer 
after each convolutional layer before the activation function. 

In this paper, the relevant parameters of the proposed Pre-
Activation Batch Normalization CNN Architecture are selected 
according to the proposed face images. The size of the input 
images is 64x64x3. The four convolutional kernels' sizes are 
set to 3x3, K1 = 3, K2 = 3, K4 = 3. All the convolutional 
strides, S1, S2, S3, and S4 are set to 1. In all the four 
convolutional units, we set the size of the convolutional layers 
as C1 = 64, C2 = 32, C3 = 16, C4 = 8. Each convolution layer 
is followed by a batch normalization layer before the activation 
function. Rectifier linear Unit (ReLu) is the activation function 
in all the four convolutional units, followed by a max-pooling 
layer for the down sampling operation. The operation has k = 
2, with a stride of 2. This gives us the max-pooling result as C1 
= 64, C2 = 32, C3 = 16, C4 = 8. All the feature maps F1 = 8, 
F2 = 16, F3 = 32, F4 = 64, and all the C4 = 8x8 max pool to 
4x4x64, which were expanded into a one-dimensional vector 
and then connected to the first fully connected layer that is 
composed of 1024 neurons, a dropout is added between the 
first and second fully connected layers. And then 6 neurons are 
connected as the category of the six classes of different 
variations. 

C. Data 

This research paper proposed using two publicly available 
databases, namely the Label Faces in the Wild database and the 
Caltech 101_Object_Category database. These two databases 
are used to build a suitable database of 5280 face images, 
which we named AS_Darma. The 5280 face images were 
selected from the above two databases. The Label Faces in the 
Wild has 13,233 target face images of 5749 different 
individuals. In this database, there are 1680 individuals with 
two or more images. The remaining 4069 people have just 
single images. In the database, the image size in this database 
is 250x250 pixels and is in JPEG image format. Many of the 
images are in the r.g.b. color scheme. In this research, we 
selected 4,200 face images of 105 individuals. All of the 
selected images are in the same r.g.b. color scheme, resized to 
64x64 pixel size in the same jpeg format, Fig. 3. 

While the Caltech 101_Object_Category database has 450 
face images of 27 unique subjects, The images are 325x495 
pixels in jpeg format with a different expression, background, 
and light, but this research proposed cropping and resizing 
each face image to 64x64 pixels. 

 
(a)    (b) 

Fig. 3. (a) A Sample of Face Images from the Caltech 101_Object Category 

Database. (b) Label Face in the Wild Face Images. 

In this research, we proposed using 5,280 human face 
images of 132 individuals. Each individual has 40 face images. 
To achieve this, we used dynamic data augmentation and 
preprocessing techniques to produce several synthetic images 
for each face image of an individual. 

We produced 1,080 face images for 27 individuals from the 
Caltech 101_objects_categories database and 4,200 images for 
105 individuals from the LFW. This gives us a total number of 
5280. The 5280 images were split into 5280/100 x 70 = 3,696, 
which is 70%, and 5280/100 x 30 = 1,584, which is a 30% 
ratio. For both training and testing, 70% is for the training and 
the other 30% is for the testing. The 5280 images are used to 
form the proposed dataset called AS_Darmaset for the training 
and testing of the proposed deep learning architectures. 

V. EXPERIMENT 

This section provides an overview of the experimental 
setup that is used to verify the effect of our proposed Pre-
Activation-Batch-normalization-CNN-Architecture [21]. The 
experiments were conducted using the newly built 
AS_Darmaset of 5280 face images. To understand the benefits 
of adopting a powerful deep learning batch normalization 
algorithm for enhancing the performance of the face 
recognition system. In this research, we compared the accuracy 
and loss errors produced by the four deep learning architectures 
of different batch normalization approaches. To help in 
determining the best and most robust batch normalization 
algorithm between the four models in terms of performance 
and recognition accuracy rate, the experiment will look at how 
these regularization techniques can improve network stability 
and performance. 

MATLAB R2018b is used to develop and implement the 
four deep learning batch normalization CNN architectures. It is 
used for conducting the experiments as well. The Matlab 
software is used because it is the best programing tool for 
engineering and artificial intelligence systems. The architecture 
of our models is meant to run on the HP Elite Book 854w, 
Mobile Workstation. The CPU is an Intel Core i7 M620 @ 
2.67GHz processor with internal physical memory of 8.00GB. 
Four experiments were conducted. 

A. Experiment with Pre-activation Batch Normalization CNN 

Architecture 

We first conducted the experiments using a Pre-activation 
Batch Normalization CNN architecture. With this batch 
normalization algorithm, the batch normalization layers are 
placed immediately after the convolutional layer in each 
convolutional unit of the network. This means that the batch 
norm layer is applied before each of the Rectifier Linear Unit 
(ReLu) activation functions. The performance of this 
architecture is evaluated using the proposed AS_Darmaset. In 
this research, the dataset is categorized into six classes of 
different face image variations. The six classes of variations 
include Facial Expiration, Facial Makeup, Occlusion, Old Age, 
Pose variation, and Younger Age variation. In each class, there 
are 880 face images of 22 individuals, and each person has 40 
face images of size 64x64 pixels. 

 Design Principle of Pre-activation Batch Normalization 
CNN Architecture. 
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Compute the input         Batch Norm         Applied Activation 

Compute Next layer input        Batch Nor          Applied 

Activation 

The performance of this model for face recognition is 
evaluated across six different classes of human face variation. 
Facial Expression, Makeup, i.e., cosmetic effects, occlusion, 
faces of older age, pose variation, and faces of younger age. 
There are 880 images in each of the different classes. Each 
class has 22 individuals, and each of the individuals has 40 face 
images of 64x64 pixel size. 

Table I shows the information obtained from the training 
plot of the experiment, which shows the training accuracy, 
validation accuracy, training loss, and validation loss as 
illustrated in Fig. 4. 

In the above figure, the first graph at the top shows the 
training accuracy (i.e., classification accuracy). The X-axis has 
90 epochs and 810 iterations, while the Y-axis shows the 
accuracy values in percentages. The second graph at the 
bottom shows the loss function (cross-entropy loss). The 
training plot is for monitoring the status of the network. It 
shows how the network's accuracy is increasing. The upper 
side of the graph shows the performance accuracy, while the 
lower side of the graph shows the loss function. The graph 
shows the training matrices at each. 

TABLE I. TRAINING PLOT DETAILS FOR PRE-ACTIVATION BATCH 

NORMALIZATION CNN TRAINING FROM THE SCRATCH 

Parameters  Values 

Training Accuracy  100.00% 

Validation Accuracy  99.87% 

Training Status  Completed 

Elapsed Time  39 min 20 sec 

Number of Epoch per Iteration 9 

Mux. Number  of Iteration  810 

Validation Frequency 80 iteration 

 

Fig. 4. Training Progress Plot Graph for Pre-Activation BN CNN 

Architecture. 

Iteration: That is the estimation of the gradient [22]. The 
classification accuracy is represented by a light blue line, while 
the dark blue line represents the accuracy obtained by applying 
a smoothing algorithm to the training accuracy. While an 
interrupted black dotted line is defined as the classification 
accuracy of the whole validation dataset. At epoch 10 and 
iteration 90, the network started to converge with 100% 
training accuracy and validation accuracy of 99.87%. At epoch 
80 and iteration 720, the training accuracy decreases to 
99.75%, while the testing (validation) continues to maintain its 
accuracy value of 99.87%. Then, at epoch 84, iteration 750, the 
training accuracy improved to its normal 100% accuracy. 
Finally, the training and testing accuracies are 100% and 
99.87%, respectively, at last epoch 90 and iteration 810 [21]. 
The Pre-Activation-CNN Architecture has yielded a better 
classification performance of 100% training accuracy and 
99.87% validation accuracy. Without network overfitting, 
network convergence is successful. The loss function is shown 
on the second graph at the lower end. The light orange line is 
training loss, the smooth training loss is a dark dotted line, and 
the validation loss is a disrupted line, meaning the loss on each 
mini-batch and the validation dataset [23]. The figure shows 
that both the training and validation loss functions have 
converged to the minimum as the learning rate reached 1.600e-
05. While the number of iterations reached 810 at 39 min 20 
sec of training time. 

B. Experiment with Traditional CNN Model without BN 

Algorithm 

The traditional CNN model has a simple architecture of 
four convolutional units. In each of the units, there is one 
convolutional layer followed by a Rectifier linear unit (ReLu) 
activation function, then a max-pooling layer and a down 
sampling layer. This shows that there is no batch normalization 
algorithm in any of the four convolutional units. The 
architecture of this CNN is comprised of four (4) convolution 
layers, four (4) max-pooling layers, and two (2) fully 
connected layers. There is no batch normalization layer in the 
design principle of this model. The model was implanted in 
MATLAB R2018b and all the trainable parameters (i.e., layer 
weights and biases) were initialized with the Rectifier Linear 
Unit (ReLu) activation function at each convolutional process. 
Fig. 5, shows the training progress plot graph and the details 
regarding the training phase are listed in Table II below. 

Table II shows the training details with training and 
validation accuracies of 96.50% and 98.93%, respectively as 
shown in the training graph below. 

TABLE II. TRAINING PLOT DETAILS FOR PRE-ACTIVATION BATCH 

NORMALIZATION CNN TRAINING FROM THE SCRATCH 

Parameters  Values 

Training Accuracy  96.50% 

Validation Accuracy  98.93% 

Training Status  Completed 

Elapsed Time  32 min 50 sec 

Number of Epoch  9 

Mux. Number  of Iteration  810 

Validation Frequency 80 iteration 
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Fig. 5. Training Progress Plot Graph for Traditional CNN without BN 

Architecture. 

In the above graph, the training and testing accuracies at 
epoch 1 and iteration 1 are initialised to 17.25% and 16.67%, 
respectively. The accuracy sharply increases at epoch 27 and 
iteration 240 to 62.00% and 69.00%, respectively. After epoch 
50 and iteration 450, the accuracy reaches 93.50% and 97.66%. 
Similarly, at epoch 63, iteration 560, both the training and 
validation accuracies continue to increase to 96.50% and 
98.04%. At epoch 78, iteration 700, the training accuracy 
decreased to 95.75%, while the testing accuracy of 98.04% was 
maintained. Finally, at the last epoch, 90 and iteration 810, the 
training and testing accuracies increased to 96.50% and 
98.93%, respectively. The result is shown in the graph, which 
shows that the training data accuracy is higher than the testing 
dataset accuracy throughout the training process. This implies 
that there is large overfitting that occurred, particularly at the 
beginning of the training because the batch normalisation has 
not been implemented. While in the second graph, The training 
and testing losses, which represent the degree of differences 
between the model prediction and the real classes, decrease 
with increasing epoch number [23]. At epoch 1 and iteration 1, 
the training and testing losses were 1.7917 and 1.7918, 
respectively. While the number of epochs reaches the final 
stage, which is 90 epochs and 810 iterations, the training and 
testing losses were 0.1094 and 0.0628. This indicates that the 
model has overfitting and gradient disappearance caused by 
covariate shift. 

C. Experiment with Post-activation Batch Normalization 

CNN Architecture 

The Post-activation Batch Normalization CNN architecture 
has the following setup in the model design principle: Four (4) 
convolution layers, four (4) batch normalization layers, four (4) 
max-pooling layers, and two fully connected layers. In this 
architecture, the batch normalization layer is applied after each 
of the rectifier linear unit (Relu) activation functions within all 
four convolutional units. Table III shows the training details 
and Fig. 6: The Post-Activation Batch Normalization CNN 
Algorithm Training Progress Plot Graph. 

TABLE III. TRAINING PLOT DETAILS FOR PRE-ACTIVATION BATCH 

NORMALIZATION CNN TRAINING FROM THE SCRATCH 

Parameters  Values 

Training Accuracy  100.00% 

Validation Accuracy  99.81% 

Training Status  Complete 

Elapsed Time  39 min 8 sec 

Number of Epoch per iteration  9 

Mux. Number  of Iteration  810 

Validation Frequency 80 

 

Fig. 6. Training Progress Plot Graph for Post-Activation-Batch-

Normalization-CNN Model. 

In the above training graph, it can be seen that the training 
and testing values at the initial epoch of 9 and iteration 80 have 
an accuracy value of 99.75% and 99.75%, respectively. Both 
the training and testing accuracies start to converge at epoch 18 
and iteration 160 with the accuracy values of 100.00% and 
99.68%. At epoch 27 and iteration 240, the training accuracy 
decreases to 99.75%, while the testing accuracy increases to 
99.81%. At epoch 39 and iteration 350, the training accuracy 
reached 100.00% and the testing accuracy still maintained its 
accuracy value of 99.81. At the final epoch of 90 and iteration 
of 810, the training and testing accuracies continued to be 
100.00% and 99.81%, respectively. The result shows that the 
testing dataset accuracy is close to that of the training dataset 
throughout the training process. This implies that no overfitting 
occurred and that the implementation of the batch 
normalization operation is working very well [24]. While in the 
lower part of the graph, which is the loss error curve, the 
training and testing losses, which represent the degree of 
differences between the model prediction and the real classes, 
decrease with increasing epoch number [23]. At epoch 1 and 
iteration 1, the training and loss errors were initialized as 
1.7920 and 1.7915, respectively. While the number of epochs 
reaches its final stage, of epoch 90 and iteration 810, the 
training loss decreases to 0.0026 and the testing loss decreases 
to 0.0052. These show that both the training and validation loss 
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functions have convergence at the learning rate that reaches 
1.600e-05. So the network has no overfitting concerning its 
testing dataset since the training and testing loss values are 
closed. 

D. Experiment with Sparse Batch Normalization CNN 

Architecture 

The fourth model is a deep learning model with a sparse 
batch normalization architecture. This model was developed 
and used by [2]. The design principle of this deep learning 
model is characterized by the following: 

An input layer convolutional layer 1; Convolutional layer 2, 
max-pooling layer, batch normalization layer; Convolutional 
layer 3, max pooling layer; Convolutional layer 4, max-pooling 
layer. It could be seen that the first convolutional layer unit has 
only the first convolutional layer, which has no operational 
layer attached to it. The batch normalization operation only 
takes place at the second convolution unit after the max-
pooling operation. The third and fourth convolutional units 
have only convolutional layers with max-pooling layers each. 
It can be noticed that the architecture of this network does not 
utilize any activation function using the convolutional 
operation units. It only uses the soft-max function as an output 
function after the two fully connected layers within the output 
units of the network. 

Table IV shows the training details and Fig. 7 shows the 
Sparse Batch Normalization CNN Architecture Training 
Progress Plot Graph. 

The sparse Batch normalization model In Fig. 6, was 
implemented using MATLAB R2018b for the training and 
validation. This model runs around 270 epochs with 3 
iterations per epoch and a batch size of 400. This is done to 
train this model with our proposed dataset very well [25]. 
Stochastic gradient descent and momentum term are the 
optimizers used for this model. The training graph in Fig. 6 
above illustrates performance and classification accuracy and 
losses between both the training and validation phases with the 
number of epochs and iterations. At an initial learning rate of 
0.0100, Epoch 1, and iteration 1, the training and validation 
accuracy values are initialized. The training and validation 
accuracy values reach 96.00% and 97.54%, respectively, at 
Epoch 107 and iteration 320.650increases %. Finally, at the 
last epoch of 270 and last iteration 810, the values of both the 
training and validation accuracies increase to 96.25% and 
97.60%, respectively. 

TABLE IV. TRAINING PLOT DETAILS FOR SPARSE BATCH 

NORMALIZATION CNN ARCHITECTURE TRAINING FROM THE SCRATCH 

Parameters  Values 

Training Accuracy  96.25% 

Validation Accuracy  97.60% 

Training Status  Complete 

Elapsed Time  132 min 32sec 

Number of Epoch per iteration  3 

Mux. Number  of Iteration  810 

Validation Frequency 80 

 

Fig. 7. Training Progress Plot Graph for Sparse Batch Normalization-CNN 

Architecture. 

In the above training graph, the training and validation 
losses that represent the degree of differences between the 
model prediction and the real classes decrease with increasing 
epoch numbers [44]. At epoch1 and iteration 1, the training and 
validation losses were 1.7918 and 1.7913, respectively. At 
epoch 107 and iteration 320, the training and validation losses 
decrease to 0.1747 and 0.1335, respectively. While the number 
of epochs reaches its final stage, of epochs 270 and iteration 
810, the training loss value increases to 0.1768, and the testing 
loss decreases to 0.1294. This result shows that the network 
has over fitted concerning its training and testing datasets since 
there are many differences between the loss values of the 
training and loss values of the testing dataset. 

VI. COMPARISON OF THE TRAINING AND VALIDATION 

ACCURACIES AND LOSS ERRORS FOR DIFFERENT DEEP 

LEARNING CNN ARCHITECTURES 

To find suitable deep learning CNN architectures for the 
proposed face recognition system, it is vital to recall the 
alleged effects of batch normalization, which can be broadly 
categorized as convergence speed and generalization 
performance improvement. In this paper, we trained and tested 
four different deep learning convNets with different model 
architectures. By comparing the experimental results of the 
four Fig. 9, comparison of Validation Accuracies of the deep 
learning ConvNet architectures, we will be able to rule out the 
robust ConvNet model that leads to higher classification 
performance and it will also rule out the type of model that 
leads to insignificant results. This section focuses on 
comparing the experimental results of the four deep learning 
models by observing the training and validation behavior of the 
different architectures [10]. Here we aim to isolate the effect of 
batch normalization in general, concerning our proposed Pre-
Activation-Batch Normalization CNN Architecture. In this 
experiment, the Pre-Activation-BN-CNN-Architecture is 
abbreviated as PRACBNCNN, the Post-Activation-BN-CNN is 
presented as PSTACBNCNN, the Traditional-CNN-without-
BN is denoted as TRCNNWITHOUTBN, and lastly, the 
Sparse-BN-CNN is represented as SPSBNCNN. 
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Fig. 8. Comparison of Training Accuracies of the Four CNN Architectures. 

 
Fig. 9. Comparison of Validation Accuracies for the Four CNN 

Architectures. 

Fig. 8 and Fig. 9 above show the training and validation 
accuracies overtime for all the four deep learning models. In 
terms of the training and validation accuracies, we can observe 
that both the Pre-activation-BN-CNN and Post-Activation-BN-
CNN models have to reach overall accuracies in all cases by 
simply adding batch normalization before and after the rectifier 
linear unit activation function. The training and validation 
accuracies (solid blue lines) of the proposed Pre-active-BN-
CNN follow by the Post-Activation-BN-CNN Training and 
validation accuracies (dotted red lines) consistently achieve 
higher accuracies and gained immediate convergence speed 
improvement on both the training and validation accuracy. 
While the Training and validation accuracies (zigzag dashed 
mustard lines) of the Traditional CNN without batch 
normalization architecture and that of Sparse Batch 
Normalization CNN (Fluctuated dotted purple line) are not 
ideal this is because there is a lot of overfitting. The results 
show that the training dataset of both TRCNNWTHOUTBN 
and SPSBNCNN are harder than validation datasets of the 
model. In the two figures the Pre-activation-BN-CNN model 
started to converge at epoch 10 with training and validation 

accuracies of 100.00% and 99.87 respectively, the Post-
Activation-BN-CNN started its convergence at epoch 18 with 
training and validation accuracies of 100.00% and 99.68%. On 
the other hand, the training and validation accuracies of 
Traditional-CNN-without-BN start to improve at 62 with 
96.50% and 97.73%, respectively. The Accuracies of Sparse 
increases at epoch 23 with 95.50% and 97.47%. The training 
and validation results in the two figures tried to show that the 
performance of Post-Activation-BN-CNN is about the same as 
the Pre-Activation-BN-CNN, but the Pre-Activation-BN-CNN 
outperforms all the three deep learning CNN architectures. 
This is supported by the higher accuracy of each data. The 
training data has a curacy value of 100.00% and 99.87% on the 
Testing data [26]. 

 

Fig. 10. Comparison of Training Losses for the Four CNN Architectures. 

 

Fig. 11. Comparison for Validation Losses of the Four CNN Architectures. 
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The curve in Fig. 10 is the comparison of training loss error 
curve for the four CNN architectures, and the other graph in 
Fig. 11, is the validation loss error curve. Each with a different 
number of epochs ranging from 0 to 90. The two curves show 
the comparison results of the cross-entropy loss errors of the 
four deep learning models. By observing the losses over time 
of both the Pre-activation-BN-CNN- model and that of the 
Post-Activation-BN-CNN model we can see how the losses 
repeatedly fall to the lower level. In the figures, a noteworthy 
observation can be made at the begging of the training on the 
Traditional CNN without BN and Sparse BN CNN Networks. 
During the first phase of the training epochs training and 
validation losses of two models plateaus for the higher amount 
loss errors, until the gradient update escapes the unfavorable 
local minimum at epoch 72, iteration 640 with training and 
validation loss of 0.1059 and 0.653 for the Traditional CNN 
without BN. 

While for the Sparse BN CNN model at epoch 84, 750 
iterations with training and validation loss of 0.1565 and 
0.1305 prospectively. The results show that the two models 
suffer from large covariate shifts, which lead to the network 
gradient disappearance and higher overfitting. In both the 
training and validation losses of the four models in the two 
graphs, we can see that there is separation between the models 
the Pre-activation BN-CNN training and validation loss errors 
(the solid blue lines) start to converge to the minimal error at 
epoch 10 with training and validation losses of 0.0067 and 
0.0065. Finally, at the last epoch 90, the training and validation 
loss decreases to 0.0013 and 0.0048. While The Post-
Activation-BN-CNN started to converges at epoch 18 and its 
last epoch 90 the training and validation loss decreases to 
0.0026 and 0.0052 respectively. Fig. 9 and 10 illustrates the 
training and testing error rate of the proposed Pre-Activation 
Batch Normalization CNN Architecture, over 90 training 
Epochs, and 810 iterations. The training Errors are always 
lower than that produce by post Batch Normalization CNN and 
there is a higher split between the Pre-Activation-BN-CNN and 
the Traditional CNN without BN Architecture. In terms of the 
training and validation performance, Post-Activation Batch 
Normalization CNN architecture is about the same as Pre-
Activation Batch Normalization Architecture, but Pre-
Activation BN CNN Architecture has outperformed all of the 
other deep learning models. This can be seen in the two 
figures. The resulting training and validation loss values 
obtained from the Pre-Activation-BN-CNN are 0.0013 and 
0.0048 when compare with the training and validation loss 
values of the other three models are very small. So that these 
values can be said to be quite low. This implies that the 
resulting model can be said to be able to classify well because 
it has lower loss error values and high accuracies values. This 
can be illustrated in Table V. 

In the table, the Training and Testing of Different Deep 
Learning Models after 810 iterations, as in, the experiment 
results of the four deep learning CNN models are given. Some 
of the models have batch normalization layers and some 
without. 

TABLE V. PERFORMANCE COMPARISON OF THE (FOUR) DIFFERENT DEEP 

LEARNING MODELS WITH AND WITHOUT BATCH NORMALIZATION LAYERS 

Deep Learning 

Models  

Face Recognition Accuracies Rate 

Model Type  
Training 

Accuracy 

Validation 

Accuracy  

Model 1 PRACBNCNN 100.00% 99.87% 

Model 2 PSTACBNCNN 100.00% 99.81% 

Model 3 TRCNNWITHUTBN 96.50% 98.93% 

Model 4 SPSBNCNN 96.25% 97.60% 

The batch normalization techniques give a classification 
improvement. The Pre-Activation-BN-CNN model performed 
better than the other three models, with training and validation 
accuracies of 100.00% and 99.87 as shown in the table. This is 
because the model architecture encompasses a batch 
normalization layer in each of the four convolutional units, 
which is placed before the Rectifier linear unit (ReLu) 
activation function. According to the training and validation 
results in the table, the Post-Activation is the next model with 
better training and validation accuracies of 100.00% and 
99.81%. This model has a batch normalization layer in each of 
its four convolutional units after the rectified linear unit (ReLu) 
activation function. On the other hand, the table result shows 
that the traditional CNN has training and validation accuracies 
of 96.50% and 98.93%. This model has no batch normalization 
techniques in any of its four convolutional units, but it has the 
rectified linear unit in each of the convolution units. That is 
why its accuracy results outperformed those of the Sparse BN 
CNN model, which has the training and validation accuracies 
of 96.25% and 97.60% as shown in the table. This model has 
only one batch normalization layer at the second convolutional 
unit. The model has no rectifier linear unit (ReLu) activation 
function. 

VII. PERFORMANCE EVALUATION MATRICS 

It is critical to define performance measures that are 
appropriate for the job at hand when evaluating the 
performance of deep learning models. In this study, we 
proposed the most critical performance indicators for accuracy, 
precision, f-score, and recall, as given in the equations below, 
to analyze our results and to demonstrate that the above results 
explained in the preceding section are correct [26]. 

Precision =   
  

     
              (1) 

Recall =       
  

     
                (2) 

Accuracy = 
     

           
              (3) 

F1-Score = 
                     

                
             (4) 
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TABLE VI. COMPARISON OF THE RESULTS FROM THE PERFORMANCE 

EVALUATION MATRICS 

Deep 

Learnin

g 

Models  

 Performance Evaluation    

Model Type  
Accurac

y 

Precisio

n 
Recall 

F1-

Score 

Model 1 PRACBNCNN 0.99873 0.9987 1.00 
0.999

3 

Model 2 PSTACBNCNN 0.9981 0.9867 1.00 
0.999
0 

Model 3 
TRCNNWITHUT
B 

0.98926 0.9892 0.994 
0.993
2 

Model 4 SPSBNCNN 0.97601 0.97595 
0.989

9 

0.983

1 

 

Fig. 12. Performance Evaluation Results. 

As we mentioned in the above sections, this research aim to 
enhance the performance of the face recognition system, using 
a deep learning approach that involves a convolutional neural 
network (CNN). In order to evaluate the robustness of our 
proposed model we compared it result with the results of three 
other deep learning models. In this section in Table VI, we 
again compare the results in terms of Accuracy, Precision, 
Recall and F1-Score to show the correctness of the previous 
explanations of our study results. These results were obtained 
after we evaluated the result obtained from the confusion 
matrices produce by each of the four models. 

When observing the results in the table it can be seen that 
the PRACBNCNN model 1 is having the high accuracy of 
0.99873 and precision of 0.9987. This goes along with the 
previous result in Table V, where the model has 99.87% 
validation accuracy. These results are represented in Fig. 12. 

VIII. SUMMARY AND CONCLUSION 

This research paper presented four deep convolutional 
neural network models. The architectural styles of the models 
were divided into two categories: The first architectures were 
deep learning CNN architectures with batch normalization 
techniques in each of the model convolutional units, and the 

second deep learning architecture was deep learning models 
without batch normalization techniques. In this research, the 
best deep learning CNN architecture for recognizing human 
face images was obtained from the Pre-Activation-BN-CNN 
Architecture. This model is powered by a batch normalization 
layer at each of its four convolutional units. The batch 
normalization layers are all placed before the rectified linear 
units (Relu) activation function. The result of this research 
shows that placing the Batch Normalization layer before the 
ReLu activation function improved network classification 
power, as the model training and validation results showed 
100.00% and 99.87%, respectively. This shows the 
regularization effect of the Pre-Activation-BN-CNN model 
over the other three CNN architectures for face recognition 
systems. In this research work, the application of the Pre-
Activation-BN-CNN Architecture has enhanced the 
performance of the face recognition system. Therefore, 
reducing covariate shift prevents gradient disappearance and 
gradient exploration. This leads to better network convergence. 
The experiment results also show that having the rectified 
linear unit (Relu) activation function in a model architecture 
stabilizes network training and improves model classification. 
This is justified by comparing the results of the 
TRCNNWITHOUTBN, which has no batch normalization 
layer but has rectifier linear units, and the results of the 
SPSBNCNN, which has only one batch normalization layer at 
the second convolutional unit but has no rectifier linear 
activation unit. The training and validation accuracy of 
TRCNNWITHOUTBN are 96.50% and 98.93%, while that of 
SPSBNCNN is 96.25% and 97.60%, respectively. 
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