
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

415 | P a g e

www.ijacsa.thesai.org

Scalable and Reactive Multi Micro-Agents System

Middleware for Massively Distributed Systems

EZZRHARI Fatima Ezzahra, EL ABID AMRANI Noureddine, YOUSSFI Mohamed, BOUATTANE Omar

SSDIA Laboratory, ENSET, Hassan II University

Casablanca, Morocco

Abstract—IT transformation has revolutionized the business

landscape and changed most of organizations business model into

digital and innovation driven firms. To fully take advantage of

this digitalization and the exponential growth of data,

organizations need to rely on resilient, scalable, extremely

connected, highly available & very performant systems. To meet

this need, this paper presents a model of middleware for multi

micro-agents system based on reactive programming and

designed for massively distributed systems and High-

Performance Computing, especially to face big data challenges.

This middleware is based on multi-agents systems (MAS) which

are known as a reliable solution for High Performance

Computing. This proposal framework is built on abstraction and

modularity principles through a multi-layered architecture. The

design choices aim to ensure cooperation between heterogeneous

distributed systems by decoupling the communication model and

the cognitive pattern of micro agents. To ensure high scalability

and to overcome networks latency, the proposal architecture uses

distribution model of data & computing, that allows an

adaptation of the grid size as needed. The resilience problem is

addressed by adopting the same mechanism as Hazelcast

middleware, thanks to his peer-to-peer architecture with no

single point of failure.

Keywords—Massively distributed system; multi agent system

(MAS); high performance computing; reactive programming;

hazelcast

I. INTRODUCTION

Information technologies have faced breakthrough changes
during the last decades: a huge acceleration of artificial
intelligence, the invasion of cloud computing, an exponential
growth of data with the appearance of 5G, the emergence of
the big Data & IoT [1], and the birth of the blockchain.

This revolution is a real catalyst for the different fields and
industries. It is the trend changing the future and requiring each
organization to boost innovation, to ensure the performance
and to improve the time to market so that it remains
competitive and differentiated. So, companies need new
information systems able to connect permanently with many
objects, while executing treatments, analyzing huge quantities
of data & making various decisions.

To meet these expectations, we need to establish new IT
applications allowing data exploitation and enabling collective
intelligence. The massive quantity of data received from all
connected objects and social media need to be stored and
analyzed differently with suitable strategies. Moreover, the
systems need an acceleration of computing and are adopting

more and more massively distributed machines such as GPU
architecture (Graphic Processing Units) [2] to perform their
treatments more efficiently. Even so, the use of massively
distributed machine unitary is not enough efficient to process a
very large amount of data and perform the needed processing
quickly, so the use of massively distributed systems [3] has
become very common, with the deployment of several
heterogeneous systems to allow faster data processing and
more efficient data storage and analysis, it is today the real
solution for High Performance Computing [4].

This solution has been approved with the development of
new middlewares offering the possibility of cooperating
several heterogeneous hardware and software systems: mobile
devices, servers, PCs, electronic cards, embedded systems, etc.
However, challenges for this type of architecture remain
relevant: limitation in terms of network latency, load balancing,
scalability, maintenance & fault tolerance.

To design a such complex system, we must use a paradigm
capable of integrating these different constraints and providing
a complete solution, promoting cooperation, interaction &
scalability. This is the case of Multi-Agent Systems [5] which
have proven their usefulness for this type of high complexity
problem.

This article proposes a new model of multi micro-agent
middleware for massively distributed systems based on
reactive programming and applied to big data applications. The
proposal framework is built on several abstraction levels to
ensure modularity, scalability, load balancing and fault
tolerance. It allows to cooperate different micro-agents that can
be deployed in heterogenous IT infrastructure with different
communication channels and various learning models. This
middleware offers several technological implementations &
interfaces for each layer and it is also open to extension by new
implementations. To ensure a good performance level and to
deal with fault tolerance challenge, we chose to use the
mechanism of Hazelcast in term of data and computing
distribution. So, the present model ensures resilience by
guaranteed replication, a peer-to-peer architecture for the
distribution of processing operations, and fault tolerance with
the absence of Single Point Of Failure (SPOF).

We have organized the rest of this paper into six sections.
The following section II is a description of the overall
middleware architecture. Section III details the micro agent
structure and kinematics. In the fourth section, we carried a
deep dive of the data distribution model. The fifth section
describes the computing distribution model of the middleware.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

416 | P a g e

www.ijacsa.thesai.org

Section VI present some performance measurement of the
proposal framework. And last section concludes with
highlighting advantages and improvement areas of the present
work.

II. GLOBAL ARCHITECTURE OF THE PROPOSED

MIDDELWARE

We have designed this framework to ensure a high level of
abstraction and modularity [6], it is composed of several
abstraction layers that are 7 APIs:

 An agent API for easy creation and deployment of
micro-agents allowing different implementations and
using multiple programming languages. This API
defines the lifecycle of a micro-agent such as
instantiation, initialization, deployment, serialization,
deserialization, and destruction;

 A Communication API, that allows clear and
transparent communication between micro-agents by
adopting semantic messages ACL compliant;

 A cognitive API to implement & assign learning models
to micro-agents with both supervised models and/or
reinforcement learning models;

 A data distribution API: allowing to the middleware a
balanced and transparent distribution of massive data. It
uses distributed collections to dispatch data across
cluster’s nodes of heterogeneous computers.

 A data computing that enables a transparent distributed
computing among the cluster nodes.

 A monitoring API to scan the status of the MAS.

 An API to build the cluster by defining the
infrastructure to use for the distributed system.

Figure 1 illustrates the architecture and the different layers
of a multi micro-agent system built by three member nodes.

A. Cluster Builder API

To create a Multi micro-Agent System using this
middleware, we need first to identify the soft & hard
infrastructure by launching a cluster of nodes. These
infrastructures enable the distribution of data & computing for
massive data applications or for computationally intensive
applications.

A cluster [7] is a network of machines where each machine
executes a member Instance. Each member automatically joins
the others to form the cluster in a decentralized model while
still having instances fully connected to each other’s. The
cluster’s instances represent the hard core of the infrastructure
allowing the nodes of the cluster to accommodate the data and
the distributed computing over the micro-agents of the
application.

To ensure the junction between the members of the cluster,
different discovery mechanisms can be used by members to
find each other, namely:

 Multicast mode: This mode uses the multicast
mechanism with UDP protocol. It is useful when the
cluster instances belong to the same local network.

 TCP mode: This mode requires the specification of the
IP address of one of the active nodes of the cluster
when a new member joins the cluster.

 Cloud Discovery: The proposal framework allows the
use of cloud discovery services such as: AWS Cloud
Discovery, ZooJeeper, Apache jclouds, GCP Cloud
Discovery.

After establishing the junction between the members of the
cluster, any communication between these members is carried
out exclusively by a TCP / IP mode.

B. Monitoring API

In order to monitor the state of the cluster, we suggest
starting a special instance in the cluster. Once it joins the
cluster, this instance receives real-time notifications from all
instances in the cluster whenever the state of an instance
changes. Therefore, this instance will allow real-time
monitoring of the distribution of data and computing at the
cluster level.

C. Data Distribution API

To allow data distribution, this layer provides the default
interfaces and implementations to represent data in standard
structures and collections such as List, Map, Queue, Set, etc.

D. Computing Distribution API

This layer allows to distribute the execution of massive
tasks of an application among the nodes of the cluster. It
provides various interfaces & implementations allowing to
submit complex jobs for distributed execution.

Fig. 1. Overall Architecture of the Proposal Middleware.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

417 | P a g e

www.ijacsa.thesai.org

E. Communication API

We define at this layer the communication mechanisms
between micro-agents. After each micro-agent deployment, the
framework provides to this new agent a subscription to a Topic
at the cluster level, then allows him to receive messages from
other platform’s micro-agents. This API also provides an
implementation of Agent Communication Language (ACL)
which allows agents to exchange semantic messages compliant
to the FIPA [8] ACL standard and therefore ensuring
interoperability with other MAS platforms.

F. Cognitive API

This API provides the interfaces and implementations for
machine and deep learning models. It defines supervised,
unsupervised and reinforcement learning models.

G. Agent API

This is the layer deploying interfaces & implementations to
easily create micro agents by using and extending the
functionalities offered by the other layers of the framework.
This API also provides the mechanisms for managing the agent
life cycle.

III. MICRO AGENT STRUCTURE AND KINEMATICS

In this section, we will have a deep dive on the Agent layer
by presenting its static structure, its ecosystem, and its
interactions with the other layers. We will detail the life cycle
of a micro-agent by its deployment and migration processes.

A. Agent API Description

To create a micro-agent, the developer has just to extend
the abstract class “Agent” and to redefine the operators that
composes the agent's life cycle at its container level.

The created micro-agent inherits all operators allowing:

 Creating and configuring ACL messages;

 Sending messages to a micro-agent or to a community
of agents by choosing a communication strategy by the
developer. In fact, the present framework is open to
extension by using any communication mechanism as
by external brokers such as KAFKA, RabbitMQ or
ActiveMQ based on several messaging protocols as
MQTT, AMQP or STOMP. If the developer does not
have a preference, the system is based by default on an
internal communication system as a broker directly
using the messaging functionalities offered by the
middleware cluster [9].

The figure 2 focuses on the principle of micro-agent’s
communication of the model.

Fig. 2. Micro Agents Communication Model.

 Assign learning behavior to the micro-agent using one
of the possible strategies. The framework implements 3
interfaces representing respectively:

- supervised learning strategy with different
implementations of machine and deep learning
techniques based on neural networks.

- unsupervised learning strategy with various
implementations: the k-means clustering
algorithm, fuzzy-cmeans, ...

- reinforcement learning strategy with several
possible implementations such as the Qlearning
algorithm.

The developer is free to choose the appropriate
learning strategy among these three implementations,
to assign to his micro-agent according to the context of
his application.

 Create and access the data collections distributed over
the nodes of the cluster. We have defined interfaces and
implementations based on classic distributed structures
like Queue, Map, Topic.

 Submit distributed tasks for cluster-level executions. To
create a distributed task, the developer must create a
class that inherits from the abstract
DistributedCallableTask class and then redefine the call
method by implementing the code of the task to be
distributed. The micro-agent can submit this distributed
task to a cluster node transparently for remote execution
returning the result asynchronously. Once deployed in a
node, the task becomes bound to the instance, allowing
it to transparently access the functionality and data
distributed in the cluster.

Figure 3 illustrates the core class diagram of this API.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

418 | P a g e

www.ijacsa.thesai.org

Fig. 3. Summary Class Diagram of the Agent API.

B. Agent Container

A micro-agent is systematically deployed in a container
where it lives and finds the various techniques for managing its
life cycle. An agent is systematically deployed in a container
where it lives and finds the various techniques for managing its
life cycle.

The present model is FIPA Compliant, it deploys two types
of container: MainContainer which is deployed in a single
instance of the MAS platform, and several LightContainers
which allow the deployment of the agents of the developed
MAS platform.

The MainContainer essentially deploys technical agents in
accordance with the specifications of the FIPA:

 Agent Management System (AMS): used to manage the
identity of agents and the communication system
between agents.

 Directory Facilitator (DF) Agent: which defines the
directory of yellow pages allowing agents to publish
their services and discover the services offered by other
agents of the MAS platform.

Once the MainContainer instance is started, the following
operations are automatically performed:

 the launch of the first instance of the cluster for
distributed computing.

 the deployment of AMS and DF agents that each
subscribes their own mailbox as a Topic, at the level of
the messaging service provided by the cluster.

 The subscription to a topic specific to the
MainContainer.

Indeed, each time a container is created, the system
must create a specific mailbox for this container, which
is used in different agent operations, notably when a
migration of an agent is requested to this container, by
retrieving the code of the migrant agent in the mailbox.

 The start of the MainContainer graphical interface. This
interface has a graphical component representing each
agent deployed in the container to easily and visually
identify the agents deployed and their location/status.

Figure 4 shows the sequence diagram illustrating the
deployment of the MainContainer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

419 | P a g e

www.ijacsa.thesai.org

Fig. 4. Sequence Diagram for MainContainer Deployment Process.

To deploy a MainContainer with its Graphical interface, the
developer must use just one code line:

Figure 5 is a screenshot of the MainContainer graphical
interface.

Fig. 5. Default Graphical Interface for the MainContainer.

C. Agent Deployement

The creation of an agent goes through an extension of the
abstract class "Agent", then a redefinition of the various
methods of the agent lifecycle management, in particular:

 init() method: is called by the container while its
deploying just after instantiation. This method allows to
the developer to initialize the agent and assign it its
behaviors.

 onMessage() method: is invoked by the container every
time a message is received by the agent topic.

 beforeMoving(): is called just before activating the
agent migration process to another container.

 afterMoving() method: is invoked after the agent
migration process.

 goingToDie() method: is performed just before the
agent destruction.

The listing 1 represents an example code for a java
implementation of an agent. It shows the main methods of the
agent lifecycle.

To deploy an agent, we have first to create a
LightContainer where the agent will live, then deploy the agent
using the deployAgent () method. Figure 6 illustrates the
deployment process of an agent.

MainContainer mainContainer=MainContainer.getInstance(true);

public class SampleAgent extends Agent {
 @Override
 public void init() {
 }
 @Override
 public void onMessage(ACLMessage aclMessage) {
 }
 @Override
 public void beforeMoving(String from, String to) {
 }
 @Override
 public void afterMoving(String from, String to) {
 }
 @Override
 public void goingToDie() {

 }
}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

420 | P a g e

www.ijacsa.thesai.org

Fig. 6. Sequence Diagram for the Agent Deployment.

The deployment process begins by calling the container
factory “LightContainerFactory” that creates an instance of
LightContainer. This container will connect to the distributed
computing cluster by Launching an instance of
“ClusterInstanceClient”. This instance establishes a permanent
and transparent connection to the container through its instance
linked to the MainContainer. The created lightContainer
subscribes to his own topic at cluster level, which constitutes a
reception box for agents requesting to migrate to this container.
Subsequently, if the developer wishes, a default graphical
interface for this container is displayed.

Once the container is ready, the agent is deployed using the
deployAgent () method - which is an instantiation of the agent
class -, then the agent asks the cluster to create its own mailbox
by creating its own topic. After this initialization, the agent
deploys its default graphical interface inside the graphical
interface of its container. these graphical interfaces are very
useful to allow the developer to graphically visualize the
different agents of the platform without having to develop code
for this purpose; it can send messages to agents, activate the
migration of an agent to another container or even display the
messages received by the various agents.

These two code lines below represent the creation of a
LightContainter and the deployment of an agent with default
graphical interface.

The following screenshots show the graphical interfaces of
two containers MainContainer and LightContainer (Figure 7 &
figure 8).

Fig. 7. MainContainer Graphical Interface.

Fig. 8. LightContainer Graphical Interface.

LightContainer

lightContainer=LightContainer.getInstance("Container1",true);

lightContainer.deployNewAgent("SampleAgent",

SampleAgent.class,true);

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

421 | P a g e

www.ijacsa.thesai.org

D. Agent Migration

The agent mobility or migration is an essential asset of
Multi Agents Systems, it provides the ability to agents to
migrate from their initial container to other containers for many
reasons: load balancing to overcome problems of overloading

resources, requirements or constraints of applications
requesting agent relocation.

To migrate an agent, we must send to the agent an ACL
message with the communication act is “MIGRATE” and the
content is the address of the destination container. Figure 9
shows the sequence diagram of an agent migration process.

Fig. 9. Sequence Diagram of an Agent Migrating between Two Containers.

As explained previously, each container subscribes to a
reception topic for migrant agents.

The sequence diagram above illustrates an agent “Agent1”
initially deployed in “AgentContainer1”. This agent had its
own topic “Agent1@Container1”. Once “Agent1” received
from AMS agent an ACL message requesting him to migrate to
“Container2”, he studies the possibility of this migration
according to his state, then, if the migration is possible, he
auto-serializes into a byte array. Afterwards, the agent sends
his clone by message to the Container2 topic. This latter
deserializes the Agent1 clone and deploy it. The agent method
“afterMigration” is invoked by Container2 and a notification is
sent to the AMS agent requesting him to kill the original agent.
The AMS agent sends to the Container1 an ACL message with
the act of KILL and the content is the Agent1 address.
Container1 runs the onGoingToDie() method, kill the original
agent and sends a notification to AMS agent. AMS agent
updates his context and the graphical interface of the
MainContainer with current localization of agents, then sends
to Agent1 his new localization using the afterMoving()
method.

The following figures show some screenshot of containers
graphical interface before and after migration. We can see the
change of location of the agent “SampleContainer” that moved
from Container1 to Container2. All graphical interfaces of
MainContainer, Container1 & Container2 tracked this
migration (Figure 10 to figure 15).

1) Before migration:

a) MainContainer

Fig. 10. MainContainer before Migration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

422 | P a g e

www.ijacsa.thesai.org

b) Container1

Fig. 11. Container1 before Migration.

c) Container2

Fig. 12. Container2 before Migration.

2) After migration:

a) MainContainer

Fig. 13. MainContainer after Migration.

b) Container1

Fig. 14. Container1 after Migration.

c) Container2

Fig. 15. Container2 after Migration.

It is important to retrieve the migration information,
including the duration of the migration and the size in bytes of
the agent. to take advantage of this logging functionality, just
run the getLastMigration () method of the agent class. It allows
us to log in:

 The original container;

 the destination container;

 the start time of migration;

 the end time of migration;

 the size of the agent.

IV. DATA DISTRIBUTION MODEL

Data distribution requires the definition of data structures
as collections. For the management of these distributed
collections, we chose the same mechanism used by the
Hazelcast middleware [10].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

423 | P a g e

www.ijacsa.thesai.org

Map<String, String> data=memberInstance.getMap("myData");

data.put("key1","Item 1") ;

data.put("key2","Item 2") ;

data.put("key3","Item 3") ;

String value=data.get("key1");

A. Hazelcast

Hazelcast is an In Memory Distributed Grid (IMDG), it is a
java open-source middleware allowing to create distributed
memory cache.

In a Hazelcast grid, data are distributed evenly among the
nodes of a group of computers to ensure:

 Scalable distributed storage (distributed memory cache).

 Scalable distributed computing.

 Replication of data on several nodes for fault tolerance.

These three Hazelcast principles reduce the load of
database queries and improve the performance of distributed
systems.

The following figure 16 shows the Hazelcast architecture. It
consists of a cluster of nodes which host the distributed data (3
nodes in the example diagram below), a memory cache
distribution layer which performs dispatching and ensures
compliant addressing of the data, and various client APIs of
various and varied programming languages to allow
communication with other components of the system which
could be heterogeneous.

Fig. 16. Hazelcast Architecture.

B. The Distribution Model Description

The creation of a distributed collection can simply be done
using one of these methods: getMap(), gestQueue(), getTopic()
of a cluster’s instance.

For example:

The expression above allows to implicitly return an
instance of DistributedMapImpl. Then, we can easily
manipulate the inputs of this collection using methods "put" &
"get" as follows:

A distributed collection is splited into several partitions. A
partition is a memory segment able to contain hundreds or even
thousands of data inputs depending to the capacity of the
system memory.

Each partition can have several backups that are distributed
over the cluster nodes. One of these partitions becomes the
main replica and others are secondary. The cluster member that
has the main replica becomes the owner. When we need to read
or write a specific data entry, we address transparently the
owner of the partition containing that entry.

By default, the system proposes a number n of partitions to
create. When we start the cluster with one member, it owns all
n partitions. For example, if n=100, we will have:

Once we launch a second member of the cluster, the

partitions are distributed over the two nodes as follows:

The 50 first partitions remain at node 1 that is the owner,
while partitions 51 to 100 are sent implicitly to node 2 which
will be their owner. A backup (in red) of the 50 partitions of
node 1 is created in node 2, and vice-versa.

If we start or stop other cluster members, the same
distribution mechanism happens again. For example, if the
cluster has 4 nodes, we will have:

P 1

P 2

P 3

…

P 98

P 99

P 100

Node 1

P 1

P 2

…

P 50

P 51

P 52

…

P 100

Node 1

P 51

P 52

…

P 100

P 1

P 2

…

P 50

Node 2

P 1

P 2

…

P 25

P 76

P 77

…

P 100

Node 1

P 26

P 27

…

P 50

P 1

P 2

…

P 25

Node 2

P 51

P 52

…

P 75

P 26

P 27

…

P 50

Node 3

P 76

P 77

…

P 100

P 51

P 52

…

P 75

Node 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

424 | P a g e

www.ijacsa.thesai.org

Thereby, we distribute main and secondary partitions
equally among cluster members. backup replicas of partitions
are kept for redundancy.

For data partitioning, we use the following algorithm:

 When a cluster member starts up, a partition table is
created in that member.

 This partition table records the IDs of the partitions and
the cluster members to which these partitions belong.
This allows each member to know where the data is.

 The oldest member of the cluster (the one that started
first) periodically sends the partition table to all
members. This way, every member of the cluster is
informed of any change in partition ownership.

 Repartitioning is carried out each time a new member
joins or leaves the cluster.

C. Advantages of this Distribution Model

This mechanism offers to us solutions to 3 main problems:

 First, spread the data over several nodes of the cluster,
which overcomes the problem of storage limit of the
memories of the physical units representing the nodes
(scalability).

 Second, face the challenge of fault tolerance, because if
a node goes down, the data is not lost (replication).

 Third, in the case of distributed computing, the
execution of each node can perform the elementary task
using the part of the elementary data fragments of the
local node (performance).

V. DISTRIBUTED COMPUTING MODEL

A. Static Model

To create a distributed task, you would have to create a
class that extends the abstract generic DistributedCallableTask

<T> class, then implement the code to be executed in the
generic public T call () method.

This class implementing the two interfaces Callable <T>
and Serializable is linked to the instance of the cluster that
hosts this task. This allows access to data distributed in the
cluster grid.

To deploy a distributed task, we define in this layer an
ExecutorService with several implementations allowing this
task to be submitted to an instance, a group of instances or to
all instances of the cluster.

Figure 17 shows the main part of the class diagram of this
API.

Fig. 17. Class Diagram of the Task Distribution Layer.

B. Sequence Model

Figure 18 illustrates the sequence diagram which describes
an example of deployment of a distributed task in the cluster.

The agent begins by soliciting the local cluster client
instance to retrieve the Distributed Task Execution service.
This operation returns a DefaultExecutorService object
configured and linked to the local cluster instance.

Fig. 18. Sequence Diagram of a Distribution Task Example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

425 | P a g e

www.ijacsa.thesai.org

After instantiating the implementation of the distributed
task, the agent calls the ExecutorService object to submit the
code for that task to all nodes in the cluster. The latter relies on
the local cluster instance to do this. The DistributedTaskImpl
object is first serialized in binary format before submitting this
binary code to all instances in the cluster.

Each remote cluster instance that receives this code
deserializes the object implementing the task code and then
configures it by binding it to the local cluster instance. Then
the remote cluster instance executes the call method of the
distributed task.

Often in the distributed task code, we need to retrieve the
data to be processed that is distributed in the grid as shared
memory by calling the getDistributedData () operations of the
local cluster instance. Then the result of the execution is
returned to the cluster instance that submits this task. This
result is returned to the agent who created the task.

VI. HIGHLIGHT ON THE MIDDELWARE PERFORMANCE

The present middleware aims to optimize usage
performance to verify this objective, we have monitored and
carried out several measurements during the execution of the
multi-agent system.

A. System Status after Maincontainer Launch

Figure 19 indicates an optimization of threads number just
after the launch of the platform with a reduction of CPU use.

B. System Status after Container1 Creation

The following figure 20 shows an increase of the threats
number after the deployment of a lightContainer “Container1”
with its graphical interface. All usage of the system increase:
CPU and memory occupation.

C. System Status after Container2 Deployment

Figure 21 present an evolution of the performance status
after the creation of a second LightContainer “Container2”. At
the creation moment, there is a pic of threats that is optimized
just after the launch by eliminating all inactive threats.

Fig. 19. Overview Performance Measurement – After MainContainer Launch.

Fig. 20. Performance Measurement – After Container1 Deployment.

Fig. 21. Performance Measurement – After Container2 Deployment.

D. System Status after Migration Precess from Container1 to

Container2

The figure 22 illustrates a liberation of many threats and
memory after the agent migrates.

Fig. 22. Performance Measurement – After Agent Migration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

426 | P a g e

www.ijacsa.thesai.org

E. System Status after an Agent Communication

Figure 23 visualizes that in case of an agent communication
act, some threats are used to send the message and are
destructed just after optimizing also the CPU and memory
usage.

Fig. 23. Performance Measurement – After Agent Communication.

All these use cases show that the present middleware
mobilize threats, CPU and memory just as needed, and
optimizes these performance metrics dynamically.

VII. CONCLUSION

We presented in this article a scalable multi micro agent
middleware based on reactive programming and designed for
massively distributed systems and High-Performance
Computing. This middleware is modular, based on seven APIs
separating the creation/management of micro-agent, the
communication pattern, the learning pattern, the data &
distribution models, and the creation of the cluster and its
monitoring.

The main objective is to find a reliable solution to design
and build applications of massively distributed systems
enabling cooperation, scalability, communication efficiency,
resilience, and fault tolerance. We based the data & computing
distribution approach on Hazelcast mechanism, which is
efficient in term of data storage, cache computing structure &

tasks distribution. Several performance metrics were explored
after implementing the proposal middleware, that show
optimization of CPU usage, memory allocation and threads
mobilization.

To confirm the performance of this solution, we are going
to implement it in a big data context with a massively
distributed architecture. The results of this implementation and
the performance measurements will be published in a future
article.

ACKNOWLEDGMENT

This project has received funding from the European nion’s
Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No 777720.

REFERENCES

[1] E. Ahmed, I. Yaqoob, I. A. Targio Hashem & al. :“The role of big data
analytics in Internet of Things”. In: Computer Networks, vol. 129, pp
459-471, December 2017.

[2] R. Todd Evans, M. Cawood, S. Lien Harrell & al. : “Optimizing GPU-
enhanced HPC system and cloud procurements for scientific
workloads”. In: High Performance Computing, pp. 313-331, June 2021.

[3] M. Youssfi, O. Bouattane, J. Bakkoury & M. O. Bensalah “A new
massively parallel and distributed virtual machine model using mobile
agents”. In: 2014 International Conference on Multimedia Computing
and Systems (ICMCS), pp. 407-414, April 2014.

[4] Youssfi M., Bouattane O., Bensalah M. : “A parallel computational
model based on mobile agents for high performance computing”. In:
Contemporary Engineering Sciences, vol. 8, no. 15, pp. 677- 698, 2015.

[5] J. M. Alberola, J. M. Such, V. Botti, A. Espinosa, A. Garcia-Fornes : “A
scalable multiagent platform for large systems”. In Computer Science
and Information Systems Journal, vol. 10, N. 1, 2013.

[6] F. Ezzrhari, M. Youssfi, O. Bouattane, V. Kaburlasos : “Scalable multi
agent system middleware for HPC of big data applications”. In : 2020
International Conference on Intelligent Systems and Computer Vision
(ISCV), June 2020.

[7] P. Rathore, D. Kumar, J. C. Bezdek, S. Rajasegarar, M. Palaniswami “A
rapid hybrid clustering algorithm for large volumes of high-dimensional
data". In: IEEE transactions on knowledge and data engineering, 2018.

[8] FIPA Agent Communication Language Specifications. http://www.fipa.
org/repository/aclspecs.html, last accessed October 2021.

[9] F. Ezzrhari, H. Bensag, M. Youssfi, O. Bouattane & O. K. Abra :
“Towards a New Micro Agents Middleware for Massively Distributed
Systems”. In: 2018 6th International Conference on Multimedia
Computing and Systems (ICMCS), May 2018.

[10] HAZELCAST. https://docs.hazelcast.com/hazelcast/latest/index.html,
last accessed October 2021.

