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Abstract—IT transformation has revolutionized the business 

landscape and changed most of organizations business model into 

digital and innovation driven firms. To fully take advantage of 

this digitalization and the exponential growth of data, 

organizations need to rely on resilient, scalable, extremely 

connected, highly available & very performant systems. To meet 

this need, this paper presents a model of middleware for multi 

micro-agents system based on reactive programming and 

designed for massively distributed systems and High-

Performance Computing, especially to face big data challenges. 

This middleware is based on multi-agents systems (MAS) which 

are known as a reliable solution for High Performance 

Computing. This proposal framework is built on abstraction and 

modularity principles through a multi-layered architecture. The 

design choices aim to ensure cooperation between heterogeneous 

distributed systems by decoupling the communication model and 

the cognitive pattern of micro agents. To ensure high scalability 

and to overcome networks latency, the proposal architecture uses 

distribution model of data & computing, that allows an 

adaptation of the grid size as needed. The resilience problem is 

addressed by adopting the same mechanism as Hazelcast 

middleware, thanks to his peer-to-peer architecture with no 

single point of failure. 
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I. INTRODUCTION 

Information technologies have faced breakthrough changes 
during the last decades: a huge acceleration of artificial 
intelligence, the invasion of cloud computing, an exponential 
growth of data with the appearance of 5G, the emergence of 
the big Data & IoT [1], and the birth of the blockchain. 

This revolution is a real catalyst for the different fields and 
industries. It is the trend changing the future and requiring each 
organization to boost innovation, to ensure the performance 
and to improve the time to market so that it remains 
competitive and differentiated. So, companies need new 
information systems able to connect permanently with many 
objects, while executing treatments, analyzing huge quantities 
of data & making various decisions. 

To meet these expectations, we need to establish new IT 
applications allowing data exploitation and enabling collective 
intelligence. The massive quantity of data received from all 
connected objects and social media need to be stored and 
analyzed differently with suitable strategies. Moreover, the 
systems need an acceleration of computing and are adopting 

more and more massively distributed machines such as GPU 
architecture (Graphic Processing Units) [2] to perform their 
treatments more efficiently. Even so, the use of massively 
distributed machine unitary is not enough efficient to process a 
very large amount of data and perform the needed processing 
quickly, so the use of massively distributed systems [3] has 
become very common, with the deployment of several 
heterogeneous systems to allow faster data processing and 
more efficient data storage and analysis, it is today the real 
solution for High Performance Computing [4]. 

This solution has been approved with the development of 
new middlewares offering the possibility of cooperating 
several heterogeneous hardware and software systems: mobile 
devices, servers, PCs, electronic cards, embedded systems, etc. 
However, challenges for this type of architecture remain 
relevant: limitation in terms of network latency, load balancing, 
scalability, maintenance & fault tolerance. 

To design a such complex system, we must use a paradigm 
capable of integrating these different constraints and providing 
a complete solution, promoting cooperation, interaction & 
scalability. This is the case of Multi-Agent Systems [5] which 
have proven their usefulness for this type of high complexity 
problem. 

This article proposes a new model of multi micro-agent 
middleware for massively distributed systems based on 
reactive programming and applied to big data applications. The 
proposal framework is built on several abstraction levels to 
ensure modularity, scalability, load balancing and fault 
tolerance. It allows to cooperate different micro-agents that can 
be deployed in heterogenous IT infrastructure with different 
communication channels and various learning models. This 
middleware offers several technological implementations & 
interfaces for each layer and it is also open to extension by new 
implementations. To ensure a good performance level and to 
deal with fault tolerance challenge, we chose to use the 
mechanism of Hazelcast in term of data and computing 
distribution. So, the present model ensures resilience by 
guaranteed replication, a peer-to-peer architecture for the 
distribution of processing operations, and fault tolerance with 
the absence of Single Point Of Failure (SPOF). 

We have organized the rest of this paper into six sections. 
The following section II is a description of the overall 
middleware architecture. Section III details the micro agent 
structure and kinematics. In the fourth section, we carried a 
deep dive of the data distribution model. The fifth section 
describes the computing distribution model of the middleware. 
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Section VI present some performance measurement of the 
proposal framework. And last section concludes with 
highlighting advantages and improvement areas of the present 
work. 

II. GLOBAL ARCHITECTURE OF THE PROPOSED 

MIDDELWARE 

We have designed this framework to ensure a high level of 
abstraction and modularity [6], it is composed of several 
abstraction layers that are 7 APIs: 

 An agent API for easy creation and deployment of 
micro-agents allowing different implementations and 
using multiple programming languages. This API 
defines the lifecycle of a micro-agent such as 
instantiation, initialization, deployment, serialization, 
deserialization, and destruction; 

 A Communication API, that allows clear and 
transparent communication between micro-agents by 
adopting semantic messages ACL compliant; 

 A cognitive API to implement & assign learning models 
to micro-agents with both supervised models and/or 
reinforcement learning models; 

 A data distribution API: allowing to the middleware a 
balanced and transparent distribution of massive data. It 
uses distributed collections to dispatch data across 
cluster’s nodes of heterogeneous computers. 

 A data computing that enables a transparent distributed 
computing among the cluster nodes. 

 A monitoring API to scan the status of the MAS. 

 An API to build the cluster by defining the 
infrastructure to use for the distributed system. 

Figure 1 illustrates the architecture and the different layers 
of a multi micro-agent system built by three member nodes. 

A. Cluster Builder API 

To create a Multi micro-Agent System using this 
middleware, we need first to identify the soft & hard 
infrastructure by launching a cluster of nodes. These 
infrastructures enable the distribution of data & computing for 
massive data applications or for computationally intensive 
applications. 

A cluster [7] is a network of machines where each machine 
executes a member Instance. Each member automatically joins 
the others to form the cluster in a decentralized model while 
still having instances fully connected to each other’s. The 
cluster’s instances represent the hard core of the infrastructure 
allowing the nodes of the cluster to accommodate the data and 
the distributed computing over the micro-agents of the 
application. 

To ensure the junction between the members of the cluster, 
different discovery mechanisms can be used by members to 
find each other, namely: 

 Multicast mode: This mode uses the multicast 
mechanism with UDP protocol. It is useful when the 
cluster instances belong to the same local network. 

 TCP mode: This mode requires the specification of the 
IP address of one of the active nodes of the cluster 
when a new member joins the cluster. 

 Cloud Discovery: The proposal framework allows the 
use of cloud discovery services such as: AWS Cloud 
Discovery, ZooJeeper, Apache jclouds, GCP Cloud 
Discovery. 

After establishing the junction between the members of the 
cluster, any communication between these members is carried 
out exclusively by a TCP / IP mode. 

B. Monitoring API 

In order to monitor the state of the cluster, we suggest 
starting a special instance in the cluster. Once it joins the 
cluster, this instance receives real-time notifications from all 
instances in the cluster whenever the state of an instance 
changes. Therefore, this instance will allow real-time 
monitoring of the distribution of data and computing at the 
cluster level. 

C. Data Distribution API 

To allow data distribution, this layer provides the default 
interfaces and implementations to represent data in standard 
structures and collections such as List, Map, Queue, Set, etc. 

D. Computing Distribution API 

This layer allows to distribute the execution of massive 
tasks of an application among the nodes of the cluster. It 
provides various interfaces & implementations allowing to 
submit complex jobs for distributed execution. 

 

Fig. 1. Overall Architecture of the Proposal Middleware. 
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E. Communication API 

We define at this layer the communication mechanisms 
between micro-agents. After each micro-agent deployment, the 
framework provides to this new agent a subscription to a Topic 
at the cluster level, then allows him to receive messages from 
other platform’s micro-agents. This API also provides an 
implementation of Agent Communication Language (ACL) 
which allows agents to exchange semantic messages compliant 
to the FIPA [8] ACL standard and therefore ensuring 
interoperability with other MAS platforms. 

F. Cognitive API 

This API provides the interfaces and implementations for 
machine and deep learning models. It defines supervised, 
unsupervised and reinforcement learning models. 

G. Agent API 

This is the layer deploying interfaces & implementations to 
easily create micro agents by using and extending the 
functionalities offered by the other layers of the framework. 
This API also provides the mechanisms for managing the agent 
life cycle. 

III. MICRO AGENT STRUCTURE AND KINEMATICS 

In this section, we will have a deep dive on the Agent layer 
by presenting its static structure, its ecosystem, and its 
interactions with the other layers. We will detail the life cycle 
of a micro-agent by its deployment and migration processes. 

A. Agent API Description 

To create a micro-agent, the developer has just to extend 
the abstract class “Agent” and to redefine the operators that 
composes the agent's life cycle at its container level. 

The created micro-agent inherits all operators allowing: 

 Creating and configuring ACL messages; 

 Sending messages to a micro-agent or to a community 
of agents by choosing a communication strategy by the 
developer. In fact, the present framework is open to 
extension by using any communication mechanism as 
by external brokers such as KAFKA, RabbitMQ or 
ActiveMQ based on several messaging protocols as 
MQTT, AMQP or STOMP. If the developer does not 
have a preference, the system is based by default on an 
internal communication system as a broker directly 
using the messaging functionalities offered by the 
middleware cluster [9]. 

The figure 2 focuses on the principle of micro-agent’s 
communication of the model. 

 

Fig. 2. Micro Agents Communication Model. 

 Assign learning behavior to the micro-agent using one 
of the possible strategies. The framework implements 3 
interfaces representing respectively: 

- supervised learning strategy with different 
implementations of machine and deep learning 
techniques based on neural networks. 

- unsupervised learning strategy with various 
implementations: the k-means clustering 
algorithm, fuzzy-cmeans, ... 

- reinforcement learning strategy with several 
possible implementations such as the Qlearning 
algorithm. 

The developer is free to choose the appropriate 
learning strategy among these three implementations, 
to assign to his micro-agent according to the context of 
his application. 

 Create and access the data collections distributed over 
the nodes of the cluster. We have defined interfaces and 
implementations based on classic distributed structures 
like Queue, Map, Topic. 

 Submit distributed tasks for cluster-level executions. To 
create a distributed task, the developer must create a 
class that inherits from the abstract 
DistributedCallableTask class and then redefine the call 
method by implementing the code of the task to be 
distributed. The micro-agent can submit this distributed 
task to a cluster node transparently for remote execution 
returning the result asynchronously. Once deployed in a 
node, the task becomes bound to the instance, allowing 
it to transparently access the functionality and data 
distributed in the cluster. 

Figure 3 illustrates the core class diagram of this API. 
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Fig. 3. Summary Class Diagram of the Agent API. 

B. Agent Container 

A micro-agent is systematically deployed in a container 
where it lives and finds the various techniques for managing its 
life cycle. An agent is systematically deployed in a container 
where it lives and finds the various techniques for managing its 
life cycle. 

The present model is FIPA Compliant, it deploys two types 
of container: MainContainer which is deployed in a single 
instance of the MAS platform, and several LightContainers 
which allow the deployment of the agents of the developed 
MAS platform. 

The MainContainer essentially deploys technical agents in 
accordance with the specifications of the FIPA: 

 Agent Management System (AMS): used to manage the 
identity of agents and the communication system 
between agents. 

 Directory Facilitator (DF) Agent: which defines the 
directory of yellow pages allowing agents to publish 
their services and discover the services offered by other 
agents of the MAS platform. 

Once the MainContainer instance is started, the following 
operations are automatically performed: 

 the launch of the first instance of the cluster for 
distributed computing. 

 the deployment of AMS and DF agents that each 
subscribes their own mailbox as a Topic, at the level of 
the messaging service provided by the cluster. 

 The subscription to a topic specific to the 
MainContainer. 

Indeed, each time a container is created, the system 
must create a specific mailbox for this container, which 
is used in different agent operations, notably when a 
migration of an agent is requested to this container, by 
retrieving the code of the migrant agent in the mailbox. 

 The start of the MainContainer graphical interface. This 
interface has a graphical component representing each 
agent deployed in the container to easily and visually 
identify the agents deployed and their location/status. 

Figure 4 shows the sequence diagram illustrating the 
deployment of the MainContainer. 
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Fig. 4. Sequence Diagram for MainContainer Deployment Process. 

To deploy a MainContainer with its Graphical interface, the 
developer must use just one code line: 

 

Figure 5 is a screenshot of the MainContainer graphical 
interface. 

 

Fig. 5. Default Graphical Interface for the MainContainer. 

C. Agent Deployement 

The creation of an agent goes through an extension of the 
abstract class "Agent", then a redefinition of the various 
methods of the agent lifecycle management, in particular: 

 init() method: is called by the container while its 
deploying just after instantiation. This method allows to 
the developer to initialize the agent and assign it its 
behaviors. 

 onMessage() method: is invoked by the container every 
time a message is received by the agent topic. 

 beforeMoving(): is called just before activating the 
agent migration process to another container. 

 afterMoving() method: is invoked after the agent 
migration process. 

 goingToDie() method: is performed just before the 
agent destruction. 

The listing 1 represents an example code for a java 
implementation of an agent. It shows the main methods of the 
agent lifecycle. 

 

To deploy an agent, we have first to create a 
LightContainer where the agent will live, then deploy the agent 
using the deployAgent () method. Figure 6 illustrates the 
deployment process of an agent. 

MainContainer mainContainer=MainContainer.getInstance(true); 

 

public class SampleAgent extends Agent { 
 @Override 
 public void init() {  
 } 
 @Override 
 public void onMessage(ACLMessage aclMessage) {  
 } 
 @Override 
 public void beforeMoving(String from, String to) { 
 } 
 @Override 
 public void afterMoving(String from, String to) {  
 } 
 @Override 
 public void goingToDie() { 
  
 } 
} 
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Fig. 6. Sequence Diagram for the Agent Deployment. 

The deployment process begins by calling the container 
factory “LightContainerFactory” that creates an instance of 
LightContainer. This container will connect to the distributed 
computing cluster by Launching an instance of 
“ClusterInstanceClient”. This instance establishes a permanent 
and transparent connection to the container through its instance 
linked to the MainContainer. The created lightContainer 
subscribes to his own topic at cluster level, which constitutes a 
reception box for agents requesting to migrate to this container. 
Subsequently, if the developer wishes, a default graphical 
interface for this container is displayed. 

Once the container is ready, the agent is deployed using the 
deployAgent () method - which is an instantiation of the agent 
class -, then the agent asks the cluster to create its own mailbox 
by creating its own topic. After this initialization, the agent 
deploys its default graphical interface inside the graphical 
interface of its container. these graphical interfaces are very 
useful to allow the developer to graphically visualize the 
different agents of the platform without having to develop code 
for this purpose; it can send messages to agents, activate the 
migration of an agent to another container or even display the 
messages received by the various agents. 

These two code lines below represent the creation of a 
LightContainter and the deployment of an agent with default 
graphical interface. 

 

The following screenshots show the graphical interfaces of 
two containers MainContainer and LightContainer (Figure 7 & 
figure 8). 

 

Fig. 7. MainContainer Graphical Interface. 

 

Fig. 8. LightContainer Graphical Interface. 

LightContainer 

lightContainer=LightContainer.getInstance("Container1",true); 

lightContainer.deployNewAgent("SampleAgent", 

SampleAgent.class,true); 
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D. Agent Migration 

The agent mobility or migration is an essential asset of 
Multi Agents Systems, it provides the ability to agents to 
migrate from their initial container to other containers for many 
reasons: load balancing to overcome problems of overloading 

resources, requirements or constraints of applications 
requesting agent relocation. 

To migrate an agent, we must send to the agent an ACL 
message with the communication act is “MIGRATE” and the 
content is the address of the destination container. Figure 9 
shows the sequence diagram of an agent migration process. 

 

Fig. 9. Sequence Diagram of an Agent Migrating between Two Containers. 

As explained previously, each container subscribes to a 
reception topic for migrant agents. 

The sequence diagram above illustrates an agent “Agent1” 
initially deployed in “AgentContainer1”. This agent had its 
own topic “Agent1@Container1”. Once “Agent1” received 
from AMS agent an ACL message requesting him to migrate to 
“Container2”, he studies the possibility of this migration 
according to his state, then, if the migration is possible, he 
auto-serializes into a byte array. Afterwards, the agent sends 
his clone by message to the Container2 topic. This latter 
deserializes the Agent1 clone and deploy it. The agent method 
“afterMigration” is invoked by Container2 and a notification is 
sent to the AMS agent requesting him to kill the original agent. 
The AMS agent sends to the Container1 an ACL message with 
the act of KILL and the content is the Agent1 address. 
Container1 runs the onGoingToDie() method, kill the original 
agent and sends a notification to AMS agent. AMS agent 
updates his context and the graphical interface of the 
MainContainer with current localization of agents, then sends 
to Agent1 his new localization using the afterMoving() 
method. 

The following figures show some screenshot of containers 
graphical interface before and after migration. We can see the 
change of location of the agent “SampleContainer” that moved 
from Container1 to Container2. All graphical interfaces of 
MainContainer, Container1 & Container2 tracked this 
migration (Figure 10 to figure 15). 

1) Before migration: 

a) MainContainer 

 

Fig. 10. MainContainer before Migration. 
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b) Container1 

 

Fig. 11. Container1 before Migration. 

c) Container2 

 

Fig. 12. Container2 before Migration. 

2) After migration: 

a) MainContainer 

 

Fig. 13. MainContainer after Migration. 

b) Container1 

 

Fig. 14. Container1 after Migration. 

c) Container2 

 

Fig. 15. Container2 after Migration. 

It is important to retrieve the migration information, 
including the duration of the migration and the size in bytes of 
the agent. to take advantage of this logging functionality, just 
run the getLastMigration () method of the agent class. It allows 
us to log in: 

 The original container; 

 the destination container; 

 the start time of migration; 

 the end time of migration; 

 the size of the agent. 

IV. DATA DISTRIBUTION MODEL 

Data distribution requires the definition of data structures 
as collections. For the management of these distributed 
collections, we chose the same mechanism used by the 
Hazelcast middleware [10]. 
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Map<String, String> data=memberInstance.getMap("myData"); 

data.put("key1","Item 1") ; 

data.put("key2","Item 2") ; 

data.put("key3","Item 3") ; 

String value=data.get("key1"); 
 

A. Hazelcast 

Hazelcast is an In Memory Distributed Grid (IMDG), it is a 
java open-source middleware allowing to create distributed 
memory cache. 

In a Hazelcast grid, data are distributed evenly among the 
nodes of a group of computers to ensure: 

 Scalable distributed storage (distributed memory cache). 

 Scalable distributed computing. 

 Replication of data on several nodes for fault tolerance. 

These three Hazelcast principles reduce the load of 
database queries and improve the performance of distributed 
systems. 

The following figure 16 shows the Hazelcast architecture. It 
consists of a cluster of nodes which host the distributed data (3 
nodes in the example diagram below), a memory cache 
distribution layer which performs dispatching and ensures 
compliant addressing of the data, and various client APIs of 
various and varied programming languages to allow 
communication with other components of the system which 
could be heterogeneous. 

 

Fig. 16. Hazelcast Architecture. 

B. The Distribution Model Description 

The creation of a distributed collection can simply be done 
using one of these methods: getMap(), gestQueue(), getTopic() 
of a cluster’s instance. 

For example: 

The expression above allows to implicitly return an 
instance of DistributedMapImpl. Then, we can easily 
manipulate the inputs of this collection using methods "put" & 
"get" as follows: 

A distributed collection is splited into several partitions. A 
partition is a memory segment able to contain hundreds or even 
thousands of data inputs depending to the capacity of the 
system memory. 

Each partition can have several backups that are distributed 
over the cluster nodes. One of these partitions becomes the 
main replica and others are secondary. The cluster member that 
has the main replica becomes the owner. When we need to read 
or write a specific data entry, we address transparently the 
owner of the partition containing that entry. 

By default, the system proposes a number n of partitions to 
create. When we start the cluster with one member, it owns all 
n partitions. For example, if n=100, we will have: 

 
Once we launch a second member of the cluster, the 

partitions are distributed over the two nodes as follows:  

 

The 50 first partitions remain at node 1 that is the owner, 
while partitions 51 to 100 are sent implicitly to node 2 which 
will be their owner. A backup (in red) of the 50 partitions of 
node 1 is created in node 2, and vice-versa. 

If we start or stop other cluster members, the same 
distribution mechanism happens again. For example, if the 
cluster has 4 nodes, we will have: 

    

P 1 

P 2 

P 3 

… 

P 98 

P 99 

P 100 

Node 1 
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Thereby, we distribute main and secondary partitions 
equally among cluster members. backup replicas of partitions 
are kept for redundancy. 

For data partitioning, we use the following algorithm: 

 When a cluster member starts up, a partition table is 
created in that member. 

 This partition table records the IDs of the partitions and 
the cluster members to which these partitions belong. 
This allows each member to know where the data is. 

 The oldest member of the cluster (the one that started 
first) periodically sends the partition table to all 
members. This way, every member of the cluster is 
informed of any change in partition ownership. 

 Repartitioning is carried out each time a new member 
joins or leaves the cluster. 

C. Advantages of this Distribution Model 

This mechanism offers to us solutions to 3 main problems: 

 First, spread the data over several nodes of the cluster, 
which overcomes the problem of storage limit of the 
memories of the physical units representing the nodes 
(scalability). 

 Second, face the challenge of fault tolerance, because if 
a node goes down, the data is not lost (replication). 

 Third, in the case of distributed computing, the 
execution of each node can perform the elementary task 
using the part of the elementary data fragments of the 
local node (performance). 

V. DISTRIBUTED COMPUTING MODEL 

A. Static Model 

To create a distributed task, you would have to create a 
class that extends the abstract generic DistributedCallableTask 

<T> class, then implement the code to be executed in the 
generic public T call () method. 

This class implementing the two interfaces Callable <T> 
and Serializable is linked to the instance of the cluster that 
hosts this task. This allows access to data distributed in the 
cluster grid. 

To deploy a distributed task, we define in this layer an 
ExecutorService with several implementations allowing this 
task to be submitted to an instance, a group of instances or to 
all instances of the cluster. 

Figure 17 shows the main part of the class diagram of this 
API. 

 

Fig. 17. Class Diagram of the Task Distribution Layer. 

B. Sequence Model 

Figure 18 illustrates the sequence diagram which describes 
an example of deployment of a distributed task in the cluster. 

The agent begins by soliciting the local cluster client 
instance to retrieve the Distributed Task Execution service. 
This operation returns a DefaultExecutorService object 
configured and linked to the local cluster instance. 

 

Fig. 18. Sequence Diagram of a Distribution Task Example. 
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After instantiating the implementation of the distributed 
task, the agent calls the ExecutorService object to submit the 
code for that task to all nodes in the cluster. The latter relies on 
the local cluster instance to do this. The DistributedTaskImpl 
object is first serialized in binary format before submitting this 
binary code to all instances in the cluster. 

Each remote cluster instance that receives this code 
deserializes the object implementing the task code and then 
configures it by binding it to the local cluster instance. Then 
the remote cluster instance executes the call method of the 
distributed task. 

Often in the distributed task code, we need to retrieve the 
data to be processed that is distributed in the grid as shared 
memory by calling the getDistributedData () operations of the 
local cluster instance. Then the result of the execution is 
returned to the cluster instance that submits this task. This 
result is returned to the agent who created the task. 

VI. HIGHLIGHT ON THE MIDDELWARE PERFORMANCE  

The present middleware aims to optimize usage 
performance to verify this objective, we have monitored and 
carried out several measurements during the execution of the 
multi-agent system. 

A. System Status after Maincontainer Launch 

Figure 19 indicates an optimization of threads number just 
after the launch of the platform with a reduction of CPU use. 

B. System Status after Container1 Creation 

The following figure 20 shows an increase of the threats 
number after the deployment of a lightContainer “Container1” 
with its graphical interface. All usage of the system increase: 
CPU and memory occupation. 

C. System Status after Container2 Deployment 

Figure 21 present an evolution of the performance status 
after the creation of a second LightContainer “Container2”. At 
the creation moment, there is a pic of threats that is optimized 
just after the launch by eliminating all inactive threats. 

 

Fig. 19. Overview Performance Measurement – After MainContainer Launch. 

 

Fig. 20. Performance Measurement – After Container1 Deployment. 

 

Fig. 21. Performance Measurement – After Container2 Deployment. 

D. System Status after Migration Precess from Container1 to 

Container2 

The figure 22 illustrates a liberation of many threats and 
memory after the agent migrates. 

 

Fig. 22. Performance Measurement – After Agent Migration. 
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E. System Status after an Agent Communication 

Figure 23 visualizes that in case of an agent communication 
act, some threats are used to send the message and are 
destructed just after optimizing also the CPU and memory 
usage. 

 

Fig. 23. Performance Measurement – After Agent Communication. 

All these use cases show that the present middleware 
mobilize threats, CPU and memory just as needed, and 
optimizes these performance metrics dynamically. 

VII. CONCLUSION 

We presented in this article a scalable multi micro agent 
middleware based on reactive programming and designed for 
massively distributed systems and High-Performance 
Computing. This middleware is modular, based on seven APIs 
separating the creation/management of micro-agent, the 
communication pattern, the learning pattern, the data & 
distribution models, and the creation of the cluster and its 
monitoring. 

The main objective is to find a reliable solution to design 
and build applications of massively distributed systems 
enabling cooperation, scalability, communication efficiency, 
resilience, and fault tolerance. We based the data & computing 
distribution approach on Hazelcast mechanism, which is 
efficient in term of data storage, cache computing structure & 

tasks distribution. Several performance metrics were explored 
after implementing the proposal middleware, that show 
optimization of CPU usage, memory allocation and threads 
mobilization. 

To confirm the performance of this solution, we are going 
to implement it in a big data context with a massively 
distributed architecture. The results of this implementation and 
the performance measurements will be published in a future 
article. 
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