
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

546 | P a g e

www.ijacsa.thesai.org

HORAM: Hybrid Oblivious Random Access Memory

Scheme for Secure Path Hiding in Distributed

Environment

Snehalata Funde
1
*, Gandharba Swain

2

Department of Computer Science and Engineering

Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, Guntur, Andhra Pradesh, India

Abstract—Now-a-days in most of the sectors digitization has

taken place to store data and process it easily with enhanced

techniques. Online transactions produce very huge data daily in

various sectors like health care, military, government office. To

store huge data many firms, take the help of third-party

organizations and store data on machines provided by them

which creates new security issues. While performing operations

on the data or accessing data metadata leakage may happen due

to untrustworthy systems. This paper proposed hybrid oblivious

random-access memory (HORAM) offers users to access their

data from untrusted storage devices without sharing any

information about their access patterns or techniques. Here

random data block shuffling approach is used which helps in

hiding storage policies about the user data blocks placement and

preserving privacy of data. HORAM techniques perform pull-

push operations on data in a parallel manner which in turn

minimizes network overhead and reduces the execution time of

operation. An extensive experimental analysis of the proposed

system produces better results than weak and strong Federated

oblivious random access memory (FEDORAM) respectively. The

method is faster than weak FEDORAM and strong FEDORAM

as it takes 0.96 seconds for communication with 5 servers

whereas weak and strong FEDORAM takes 1.5 and 2 seconds

respectively for reading and writing data.

Keywords—HORAM; metadata; data blocks; privacy; block

shuffling

I. INTRODUCTION

Big data analytics is becoming very easy with the evolving
techniques in big data management and cloud storage.
Nonetheless, placing information on untrusted servers raises
security concerns. Nowadays privacy is required in every
sector as everything is becoming digital [1]. Every system is
getting transformed from offline form to online as it can be
accessed from anywhere. Many of the people are giving
priority to online system instead of offline system. In the
current situation of corona pandemic most of the systems like
government offices, educational systems, healthcare systems as
well as private sectors put everything online to make it easy to
people. Online platform opens easy entrance to security threats
to enter in the database systems and obtain the information
easily [1][4]. Especially if the information is extremely
sensitive it becomes very harmful and owner may need to pay
high cost for it if it gets stolen by third party.

If for example a health care system is considered with a
database of patient records, specific record denotes each patient
information, and columns reflect various characteristics. By
executing queries on a particular attribute, a health care system
may obtain details of the patient. For example, a point query
will return results for people aged 30, while a range query
would provide data for those aged between 19 and 30.
Outsourcing such information to a user is a common practice
that allows for efficient querying [2]. While executing queries
encryption is employed because a user could always be trusted
with critical information. To query the leased database
effectively, system creates a key and encrypts it together with a
data encryption structure, balancing system security and
reliability. There are many existing techniques like encryption
to protect data but it’s not much efficient as data is
exponentially growing. With existing cryptographic technique
data can be secured but metadata about data can’t be secured
because it is created daily with the various web activities
hosted by web server in many organizations [2][4]. Only
encryption cannot secure dataset completely.

Applying encryption algorithm to user message may give
information privacy, however it isn't adequate to address
metadata concerns. Specifically, if information regarding
access pattern get disclosed then it is going to damage whole
record. By guessing access pattern attacker can get access
directly to the private data. There is scope for cloud as well as
other attacker for catching the leaked access pattern and misuse
it [3]. Everyday internet thefts are finding new tricks to access
data for the financial advantage. Thus, there is need Oblivious
Random Access Machine (ORAM) is a strategy that allows
customer to retrieve encrypted data from the cloud servers in
secret way without disclosing path of data retrieval. Path of
physical location is different from actual data access by user in
ORAM. Basically to accomplish the motive of ORAM many
researchers have contributed. Researchers have updated basic
model of ORAM to improve performance of ORAM. As
ORAM is limited in terms of complexity researchers tried to
reduce it so that it will be more functional [5] to have dynamic
strategy to deal with these security risks to sensitive
information [4]. The Path ORAM techniques are used for
security in recent years, initially anticipated by Stefanov et al.
[5]. Path ORAM works to store the data blocks into the binary
tree structure, including multiple leaf nodes such as buckets.
Every bucket of a tree having a specific constant number of
blocks which is denoted as z. When the tree has initialized, the

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

547 | P a g e

www.ijacsa.thesai.org

leaf bucket is defined as 0 to N-1, while each block has a
random tag or position from range 0 to N [5]. Moreover, it
contains a single small stash region that holds numerous blocks
temporarily. If a block contains tag p, it will reside in the cache
or some along the route from the base of the plant to the p

th
 leaf

node, according to the tree's constant.

A fully functional Oblivious RAM [6], sometimes
abbreviated as ORAM, is fundamental that obscures the
device's access privileges to a repository such as DRAM. In
contrast, an attacker cannot learn very little about the data
transmitted by watching the main memory trends. The ORAM
interface converts the user's program accessing sequencing into
a series of ORAM visits to seemingly random address
information. Because the opponent is aware of the actual
locations getting accessed, the ORAM implementation of
global that the physical and logical sequence is autonomous of
the proper access sequence, ensuring that the user's access
sequences are not disclosed. Moreover, information stored
inside database is secured using stochastic encryption to hide
the captured data. Some security problem arises in hardware,
software, and application levels. Several recent studies have
taken use of the growing availability of trustworthy equipment
for database systems.

Bajaj et al. [7] introduced TrustedDB which implements
tamper-proof data aggregation using IBM 4758 PCI [8].
CryptSQLite encases the SQLite processor in an Intel SGX
compartment to provide secrecy with a bit of efficiency hit [9].
ObliDB, a more recent study, improves point query speed to
722x quicker than current encrypted communication oblivious
databases [10]. Access pattern threats in untrustworthy storage
are identified by StealthDB and EnclaveDB which offer
cryptographic solutions based on protected hardware [11] [12].
They are distinct from their ProDB regarding security border,
access pattern depreciation, and high connectivity adjustments
with hardware enclave, ORAM, and disk space. Hardware
enclaves are used to solve database problems or build data
structures with particular usage [13] [14].

ZeroTrace uses a new components library in its suggested
ORAM microcontroller to offer extra protection against
application attacks are launched on the SGX enclave, i.e., the
oblivious positioning map access [15]. Even with processor
enclaves, Oblix and ObliDB recognize the presence of access
pattern leaking of the insight of database table employed in
index searches and provide more effective performance than
the naive worst-case buffer [16] [17]. Pro-ORAM increases
system performance by utilizing the number of co Shuffle with
SGX enclaves. Even though many researchers put efforts in
providing security to metadata it is very difficult to fill the gap
between security and practical usability of system [18].

Even though there are many ORAM techniques as
mentioned above to secure metadata in online transaction they
have some limitations as mentioned below.

 Traditional ORAM techniques suffer from more
complexity in model construction.

 Many of the existing techniques are able to provide
obliviousness to metadata but failed to improve
performance with increasing data.

 As more number of users increases response time
decreases.

 Existing system are unable to maintain balance
between security and performance.

By considering previous works main inspiration of this
paper is to seek out solution which can provide combined
solution with maintaining privacy and improving performance
of existing ORAM technique.

Our Contribution:

We design our system to achieve main three goals: 1) To
reduce complexity and response time 2) To secure metadata
with active adversary attacks 3) To improve performance of
overall system with increase in number of users.

The proposed system focuses on providing security to
metadata in online transactions. As previous ORAM technique
strong FEDORAM [28] faces problem of high response time
for communication in between client and server, our proposed
system tries to reduce the execution time for pull-push
operations by making the system work in parallel manner.
Parallelizing tasks will optimize the ORAM system in turn
reducing response time and will improve performance of
overall system. As we observed weak FEDORAM suffers from
sensitive data leakage problem in active adversary attacks, our
proposed system focuses on protecting data from various
attacks like collusion attack, session hijacking, bypass
authentication, sink hole and warn hole attacks with designing
an XOR-based lightweight cryptographic technique for data
encryption as well as decryption during the communication.

Moreover, the further sections of the paper are divided as
follows: Section II describes related work done by previous
researchers. In Section III describes the algorithm for proposed
implementation. The Section IV describes the experimental
setup for evaluating the proposed work and results achieved
with our methodology and comparative analysis with various
state-of-art methods. Section V concludes the proposed work
and provides future work guidelines.

II. RELATED WORK

Yanyu Huang et al. [19] proposed real-time oblivious data
exchange into the Fog Computing. This approach can eliminate
the complex execution process of the client-side and requires
low communication cost, including the minimum response
time, and it reduces to computation up to 2x than state-of-art
methods. The Edge computing environment has been
deployed, and all transactions are performed on the edge node.
This system depicts an extensive experiment analysis, and it
achieves low network bandwidth utilization, fixed data storage
on the client machine, and minimum network overhead. The
new approach of path oblivious random-access memory is
called as R-Path ORAM with large root basket dimensions
including the small constant size of remaining buckets in the
tree [20]. A thorough examination of the root bucket capacity
is carried out in order to arrive at a restricted solution for such
necessary root buckets size with a minimal error possibility.
Using a common platform, the effectiveness of the R-Path
ORAM is assessed to that of the conventional Path ORAM.
The results of the tests indicate that R-Path ORAM offers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

548 | P a g e

www.ijacsa.thesai.org

much less server bandwidth and time taken than the original
Path ORAM. This is also a hidden eviction method for
reducing the size of the bottom bucket and preventing system
failure.

Cao et al. [21] proposed an approach string ORAM access
using spatial and temporal optimization techniques. This
approach can improve the string ORAM access by using
temporal and spatial optimization methodologies. Initially it
recognizes dummy data blocks with significantly waste storage
space and defines the optimized ORAM scheme that reduces
high time computation and effective scheduling. The outcome
of this approach reduces the 30% execution time complexity,
thus a 40% reduction of memory utilization during the
execution. A similar approach of fast and secure ring data
retrieval techniques has been proposed by Yeuzhi che et. al.
[22]. According to Fletcher et al. [23] secure processors have a
quality and speed inefficiency of more than 50%. Fletcher et al.
[23] suggested a dynamic system with a limited amount of
emission allowed.

The first Path ORAM implementations on hardware were
presented by Maas et al. [24]. Parallel Computing techniques
have been used with implementing the super demon during the
process of read and write execution. In demon, two methods
were employed to improve Path ORAM's effectiveness.
Treetop caching is the first method. Treetop caching saves the
first coefficient of determination of the tree in the cache
because only the bottom layers are changed while reading and
writing to the ORAM, decreasing latency and complexity. The
Phantom is the second method. The second Phantom method is
min-heap evictions, which stores the cache as a min-heap and
evicts the blocks that have been utilized the least in the past
initially.

In addition, Fork Path ORAM was introduced by Zhang et
al. [25]. Fork Path ORAM combines two successive ORAM
applications. Researchers highlighted two consecutive queries
could have containers in their routes which are overlapped. As
a result, they recommended when a noticed request is made
and the entire pathway of the requested data block is received
from the servers and put into the stash, the rewriting back of
the whole route be postponed until the subsequent request is
made. The buckets that intersect in the two ways are not
written back in the given details, and only the containers in the
first request's path are published back. Furthermore, only the
elements in the second route that do not overlap with the
direction of the first demand were read into the cache to
execute the new request. The procedure is then repeated with
the second and third requests, and so on. Researchers also
recommended postponing any outstanding ORAM requests.
Even though all of their studies were done using the safe
processor option, Sanchez [26] found that the advantage of
combining the requests is negligible. Sanchez demonstrated
that combining queries of size two may save one bucket.
Fletcher et al. [27] proposes an optimization that uses a large
group counter and many tiny individual numbers per Position
Map block to condense these markers to a manageable amount.

Pujol et al. [29] presented FEDORAM. Weak and strong
FEDORAM tried to tradeoff between security and performance
in the instance messaging. Weak FEDORAM focused on

performance of system while strong FEDORAM focused on
security of the system. Weak FEDORAM suffers sensitive data
leakage problem while strong FEDORAM suffers from
increasing response time with increase in number of users.

Apart from the access cost imposed by ORAM procedures,
contemporary ORAM architectures ignore the current
computer system's extensive memory and processing
hierarchy. According to [28], if the data size is higher than
actual memory capacity, it directly enhances the leaf nodes of
storage in the background illustrated in Fig. 1(a). Although
most layers will be in the high-speed memory area, the tree-top
caching has a simple design. On the other hand, each path
access is converted into a series of rapid memory locations and
sluggish I/O accesses. Due to the general poor locality,
alternative caching methods find it difficult to adapt the tree-
type structure. Such a design is improvident in terms of I/O
frequency cost due to the design difference between storage
and I/O access, as well as the disparity of storage and I/O use.

In FEDORAM and Multi-User Oblivious Storage via
Secure Enclaves (MOSE), both techniques emphasize on
reducing the input-output overhead because they extract single
block data during the transaction from backend storage which
is demonstrated in Fig. 1(b) and Fig. 1(c). Furthermore, the flat
memory structure enables effective top-layer buffering. On the
other hand, the shuffling procedure must be done often, and the
whole storage must wait for such shuffled to finish before
proceeding to another ORAM process. It adds extra waiting
time to the process resulting in delayed output [29] [30].

(a). Path ORAM (b). MOSE (c). FEDORAM

Fig. 1. Various ORAM Techniques for Efficient Input and Output Data

Access.

III. PROPOSED SYSTEM DESIGN

A. System Architecture

In the proposed system client server architecture is
considered. Fig. 2 shows architecture of proposed HORAM.
Initially if client wants to send message to client from
server destination list (list), then the client
generates the message according to below equation 1.

 * + (1)

Here is the random dummy leaf of destination node
list. The establishes connection with entry server
 establishes connection to root server to forward
 to . The established parallel connection with
candidate servers such as distributed environment. The all-
candidate servers perform the decrypt operation with given ,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

549 | P a g e

www.ijacsa.thesai.org

and if it is accurate with server id then it is destination server
selected by The same time data has been stored in internal
tree structure by particular . SR stores positionMap[id] and
OTMap[id] in which the positionMap[id] describes each leaf
node information while OTMap[id] gives the information of
message identifier of encrypted text.

In the system architecture four terms are more important.

1) Client

2) Entry Server

3) Root Server

4) Destination Server

In this architecture direct connection between client and
destination server is avoided. Instead two entities are added in
between client and destination server for secure
communication.

In data storage algorithm initially client generates a
message to Entry server . Then establishes connection
with root server which keeps virtual id of all real and
dummy messages received from entry server to destination
server. Then encrypted message will be sent to all servers in
the federation to get reply from actual destination server in
parallel manner. The server who has authority to decrypt the
message will get back to root server by decrypting message
with its keys. Sending message in parallel manner saves
communication time instead of sending it in parallel manner.
After that root server makes entry about the current transaction
id, user id and server id in its position map for further
reference.

In data access algorithm, step 1 to step 3 states about
connection establishment from user to root server through
entry server. After establishment of connection to root server
current server id for transaction is fetched and data will be
extracted from specific server. After that for securing metadata
and hiding path of current access to destination server current
destination id will be replaced with new destination server id.
Then entry for current sever id will get deleted and root server
will be updated with new server id. In this way metadata
privacy preserving access can be performed using the HORAM
data access algorithm with employing parallelism in
architecture to reduce overall response time of system.

Fig. 2. Architecture of Proposed HORAM.

In data access algorithm we describe the pull activity
perform by client Once data has been extracted it decrypts
outside of ORAM, and perform the eviction function for
update the repository of access patterns.

B. Algorithm Design

Some basic data structures have been used for
implementation for proposed system. Basic ORAM tree is a
binary tree of encoded text. Every node of tree contains certain
number of data blocks. In the below section we describe data
structure used for proposed hybrid ORAM during the
execution.

TABLE I. SYMBOLS USED IN PROPOSED HORAM

Symbol Operation

 Generated message block

 () server id

 Current session user identity

 Database transaction identity

 () Random function for selection from n to m

 () Current utilized server

 () Selected new server

positionMap Positional map

Stash Temporary buffer memory

R & W Read and write operation representation

SD Destination server

msg Message

SE Entry server

Data storage algorithm (Push):

1: Initially client generates a message using below equation to

send to entry server , Message is the random text data.

M Genereate_Message_Block(msg,) (2)

2: Send message M to entry server SE.

3: Once entry server receives message from client then

creates connection to .

Now, establishes concurrent online transactions with all m

servers.

 () ∑ (())

 (3)

4: Once server connection has done, according to decryption

process only one server who can decrypt the data will return

data. The data has forwarded to push function in the form of

Push (M, S(id),).

5: Then root server generates transaction id for further

transaction and add entry into the positional map with

encrypted data like below.

Function- Add_ positionMap(, , S(id))

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

550 | P a g e

www.ijacsa.thesai.org

TABLE II. POSITION MAP

 ()

T454565 U343 SS203

T454568 U345 SS204

T454575 U347 SS201

T454589 U349 SS203

6: Commit transaction

Data access algorithm (Pull):

1: Client sends message to Entry server as below:

M requestMessage (Msg,) (4)

2: Entry server gives request to root server to get allocated

server with get_Server_info () and detect the allocated

server for specific user.

 () ∑ ((())

 (5)

3: Establish connection with () from entry server and

extract data from

Dset getData (()) (6)

4: Now, select server from set of servers by entry server

 () ∑ (())

 (7)

5: Once server selection has done, forward data to alter

function given as Alter(M, (),).

6: Entry server generates transaction id for further transaction

and update the positional map on root party server like below

step 7 and step 8.

7: Delete (())

8: Update positionMap(, , ())

Here, Table I shows symbols used in the algorithm of
proposed HORAM technique and Table II shows entries of
position map for particular transaction along with user id and
server id.

IV. DISCUSSION

A. Environmental Setup

The proposed implementation is an open-source java
environment with 10 data servers in parallel computation for
HORAM. In the configuration setup, all are homogeneous with
a single client. In all servers there should be a single entry
server and single root server, and one destination server in the
remaining servers.

B. HORAM Performance

1) Response time: Fig. 6 depicts the average response time

for the system when 100 messages sent over the network. It

shows better result than existing strong FEDORAM as it took

less time than strong FEDORAM with increase in number of

users. It took little less time than weak FEDORAM. For 300

users it takes average 5 seconds for strong FEDORAM, 2.6

seconds for weak FEDORAM and 3.2 seconds for HORAM. It

is observed with the experiment that our technique takes less

response time with increase in number of servers. It takes 1.4

seconds for weak FEDORAM, 2 seconds for strong

FEDORAM while 0.9 seconds for HORAM.

2) Complexity: Table III illustrates our innovations and

compares our system to some of the most cutting-edge ORAM

structures, as seen above. Where N denotes the total number of

messages stored in the whole oblivious system. Because our

HORAM's client-to-server connection is based on the RAM,

they have similar client-to-server bandwidth and device storage

complexity. The federation's communication channels and

server computation are both linear.

TABLE III. PROPOSED ORAM AND EXISTING ORAM COMPLEXITY

COMPARATIVE ANALYSIS

Scheme Bandwidth cost
Client

storage
Server storage

Weak

FEDORAM
 () () ()

Strong

FEDORAM
 () () ()

HORAM

(Proposed)
 () ()

 ()

C. Security Analysis

The proposed approach provides how it achieves higher
security and eliminate the metadata leakage problem during
communication.

 Data Generation: The client generates random
message, and encrypt with proposed XOR operation
techniques with the help of receiver’s token id. The
encryption works like one-way hash function, due to
no existence of both encryption and decryption key in
message generation and transmission. The encrypted
data could transfer to and respectively. Moreover
if or compromised with attacker even though
attacker can’t extract the decrypted text, due to
dependency of receiver’s token.

 Data Forwarding: The and can forward data to
next hops or servers. Initially receives the M and he
knows the client as well as . The forward similar
data to and generate positionMap and OTMap
respectively. The positionMap[id] describes each leaf
node information while OTMap[id] gives the
information of message identifier of encrypted text,
this information stored on root server. The securely
keeps both records in ciphertext format that eliminates
the possibility of internal or external attacks. The
defined ciphertext works like a one-way hash function,
which requires a negligible cost to operate; it also does
not require significant dependency for encryption and
decryption. Moreover, worst case, we consider root
server compromised with any attacker even then they
are not able to extract actual plain text due to this
lightweight cryptographic policy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

551 | P a g e

www.ijacsa.thesai.org

 Data Extraction: When any client wants to extract the
data, it gives a request to entry server and
forward to . The message extracted from
positionMap with its server information and similar
requests were forwarded to SD from and
downloaded the plain text. Once the user extracts data
properly, the proposed algorithm works to provide
additional security to stored information. It first erases
the current record from positionMap and selects any
random server from the available server set. When the
user extract data from holds that decrypted plain
text in cache memory. The selected new server and
current plain encrypt again by cryptography function
and generate a new entry into the positionMap. Once a
new transaction is successfully committed, it erases the
previous entry of duplicate data.

In proposed architecture, it can be observed that the last
transaction has changed on root server into the positional map.
This activity can change every time when similar frequent
access request has generated by client. The stash memory auto
release when time complexity generates such 2N for N data
blocks. This functionality provides eliminate the dummy
blocks and reduce the time as well as space complexity
respectively. This algorithm automatically erases the previous
entry of a particular transaction with location details from the
position map when the user has performed a data pool
operation. It generates and stores the new entry into the
position map. The significant advantage of this functionality
traitor never identifies the background knowledge extracted
data source as well as the location of data source.

V. RESULTS

Fig. 3 describes the time required in seconds for data
encryption as well as decryption. Based on this experiment, the
decryption could take high time than the encryption process.

The two-way encryption techniques are also carried out to
achieve security to data during transmission and dynamic
decryption at the selection of the destination server. The below
table we demonstrate the complexity of proposed and existing
systems.

According to above Fig. 4, the data uploading and
downloading time required for the client-server in the proposed
HORAM. The time required based on the proposed
configuration could be flexible when the operating
environment has changed. Fig. 5 shows network utilization in
communication with number of servers.

The performance evaluation of the proposed evaluation is
based on the communication cost required for data push and
pull events. When a data push event has been generated, all n
receiver data nodes are utilized for communication.
Furthermore, the network capacity is handled to 10kb data in a
single M. The message size could be changed when the client
updates the information or generate a new message. The below
Fig. 5 describes a network utilization in MB during data
transmission.

In another experiment, we evaluated the communication
cost required for data push and pop event from to .

According to FEDORAM, it describes one-to-one
communication between all servers, which may produce high
communication costs [29]. The proposed module generates a
parallel connection between to all available sets of
servers S.

Fig. 6 and Fig. 7 depict response with number of servers
and number of users and how proposed approach reduces the
computation cost than state of the art methods.

Fig. 3. Time Required in Seconds for Data Encryption and Decryption.

Fig. 4. Time Required in Seconds for Data Push and Pop Operation with all

(10) Servers.

Fig. 5. Network Utilization (MB) with Number of Servers.

0

0.5

1

1.5

2

2.5

1 MB 2 MB 3 MB 4 MB 5 MB

Encryption Decryption

1
1.2

1.6
1.8

2.2

1.1

1.4
1.6 1.7

2.4

0

0.5

1

1.5

2

2.5

3

1 MB 2 MB 3 MB 4 MB 5 MB

Push PoP

1

2

3.6
4.2

5.8

6.7

0

1

2

3

4

5

6

7

8

S-5 S-10 S-15 S-20 S-25 S-30

M
B

 d
at

a

servers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

552 | P a g e

www.ijacsa.thesai.org

Fig. 6. Average Response Time with Number of Servers.

Fig. 7. Average Response Time with Number of Users.

Table IV compares different existing techniques with
HORAM for response time taken in data communication.

The proposed approach has evaluated with number of users
and number of servers for communication cost, based on both
results our system is efficient than [29] in both experiments.

TABLE IV. AVERAGE RESPONSE TIME REQUIRED FOR HORAM AND

EXISTING TECHNIQUES

Sr.

No.
Techniques

Response time with

number of servers in

seconds

Response time with

number of users in

seconds

No. of users N=5 N=10 N=30 N=100 N=200 N=300

1
Weak

FEDORAM
1.4 1.5 1.8 2 2.4 2.6

2
Strong

FEDORAM
2 2.4 3.6 2.1 3 5

3 HORAM 0.9 0.96 1.45 2.3 3.1 3.2

VI. CONCLUSION

The proposed HORAM, an innovative ORAM approach
achieves high level data privacy and low time computation in
distributed environment with untrusted memory. The proposed
parallel distribution HORAM provides low computation for
database transaction such as push and pull respectively.
Experimental analysis shows that the HORAM gives better
results in terms of computation time. The method is faster than
weak FEDORAM and strong FEDORAM as it takes 0.96
seconds for communication with 5 servers whereas weak and
strong FEDORAM takes 1.5 and 2 seconds respectively for
reading and writing operation. It improves security in
comparison with weak FEDORAM by avoiding direct contact
of user with destination sever and provides more privacy to
metadata with data shuffling and XOR based lightweight
cryptographic technique. To enhance this system with large
data processing environment for achieving security and privacy
of data will be addressed in future work. In future work
emphasis will be on reducing complexity of encryption and
decryption of extensive data.

REFERENCES

[1] M. Suresh Babu, K. Bhavana Raj, and D. Asha Devi, “Data Security and
Sensitive Data Protection using Privacy by Design Technique”, 2nd EAI
International Conference on Big Data Innovation for Sustainable
Cognitive Computing, 2021, ISBN : 978-3-030-47559-8.

[2] N. B. Gayathri, G. Thumbur, P. Rajesh Kumar, M. Z. U. Rahman, P. V.
Reddy, and A. Lay-Ekuakille, "Efficient and Secure Pairing-Free
Certificateless Aggregate Signature Scheme for Healthcare Wireless
Medical Sensor Networks", IEEE Internet of Things Journal, vol. 6, no.
5, pp. 9064-9075, Oct. 2019, doi: 10.1109/JIOT.2019.2927089.

[3] A. Tarannum, Z. U. Rahman, L. K. Rao, T. Srinivasulu, and A. Lay-
Ekuakille, "An Efficient Multi-Modal Biometric Sensing and
Authentication Framework for Distributed Applications", IEEE Sensors
Journal, vol. 20, no. 24, pp. 15014-15025, Dec.15, 2020, doi:
10.1109/JSEN.2020.3012536.

[4] R. Nellutla and Moulana Mohammed, “Survey: A Comparative Study of
Different Security Issues in Big Data”, Emerging Research in Data
Engineering Systems and Computer Communications, Vol. 1054, 2020,
ISBN: 978-981-15-0134-0.

[5] E. Stefanov, M. V. Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S.
Devadas, “Path ORAM: an extremely simple oblivious RAM protocol”,
Journal of the ACM, vol. 65, no. 4, pp. 1-26, 2018.

[6] G. Asharov, I. Komargodski, W. Lin, K. Nayak, E. Peserico, and E. Shi,
“Optorama: Optimal oblivious ram”, Advances in Cryptology–
EUROCRYPT 2020, Volume 12106, 2020.

[7] S. Bajaj and R. Sion, "TrustedDB: A Trusted Hardware-Based Database
with Privacy and Data Confidentiality", in IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 3, pp. 752-765, March
2014, doi: 10.1109/TKDE.2013.38.

[8] M. T. Basu and J. K. R. Sastry, “Enhancing Data Security under Multi-
Tenancy within Open Stack”, International Journal of Advanced Trends
in Computer Science and Engineering, vol. 9, no.1, January – February
2020.

[9] Y. Wang, L. Liu, C. Su, J. Ma, L. Wang, Y. Yang, Y. Shen, G. Li, T.
Zhang, and X. Dong, “Cryptsqlite: Protecting data confidentiality of
sqlite with intel sgx, in: Networking and Network Applications
(NaNA)”, 2017 International Conference on Networking and Network
Applications (NaNA), pp. 303–308, 2017.

[10] S. Eskandarian and M. Zaharia, “An oblivious general-purpose SQL
database for the cloud”, CoRR abs/1710.00458, 2017.

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30

ti
m

e
 in

 s
e

co
n

d
s

Servers
Strong FEDORAM Weak FEDORAM

Propsoed HORAM

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600

Ti
m

e
 in

 S
e

co
n

d
s

Number of users

Strong FEDORAM Weak FEDORAM

Propsoed HORAM

https://ieeexplore.ieee.org/xpl/conhome/8246105/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8246105/proceeding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

553 | P a g e

www.ijacsa.thesai.org

[11] A. Gribov, D. Vinayagamurthy, and S. Gorbunov, “Stealthdb: a scalable
encrypted database with full sql query support”, arXiv preprint
arXiv:1711. 02279, 2017.

[12] C. Priebe, K. Vaswani, and M. Costa, "EnclaveDB: A Secure Database
Using SGX", 2018 IEEE Symposium on Security and Privacy (SP), pp.
264-278, 2018, doi: 10.1109/SP.2018.00025.

[13] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, Obliviate: A data
oblivious file system for intel sgx”, 25th Annual Network and
Distributed System Security Symposium, NDSS, 2018.

[14] H. Brekalo, R. Strackx, and F. Piessens, “Mitigating password database
breaches with intel sgx”, SysTEX@ Middleware, p. 1, 2016.

[15] S. Sasy, S. Gorbunov, and C.W. Fletcher, “Zerotrace: Oblivious memory
primitivesfrom intel sgx”., IACR Cryptol. ePrint Arch. 2017 (2017) 549.

[16] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R.A. Popa, “Oblix: An
efficient oblivious search index, in: 2018 IEEE Symposium on Security
and Privacy (SP)”, IEEE, pp. 279–296, 2018.

[17] S. Eskandarian and M. Zaharia, “Oblidb: Oblivious query processing
using hardware enclaves”, arXiv preprint arXiv:1710.00458, 2017.

[18] S. Tople, Y. Jia, and P. Saxena, “Pro-oram: Practical read-only oblivious
{RAM}”, 22nd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2019), pp. 197–211, 2019.

[19] Y. Huang, B. Li, Z. Liu, J. Li, S. M. Yiu, T. Baker, and B. B. Gupta,
"ThinORAM: Towards Practical Oblivious Data Access in Fog
Computing Environment", in IEEE Transactions on Services
Computing, vol. 13, no. 4, pp. 602-612, 1 July-Aug. 2020, doi:
10.1109/TSC.2019.2962110.

[20] K. S. Al-Saleh and A. Belghith, "Radix Path: A Reduced Bucket Size
ORAM for Secure Cloud Storage," in IEEE Access, vol. 7, pp. 84907-
84917, 2019, doi: 10.1109/ACCESS.2019.2925789.

[21] D. Cao, M. Zhang, H. Lu, X. Ye, D. Fan, Y. Che, R. Wang, "Streamline
Ring ORAM Accesses through Spatial and Temporal Optimization,"
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 14-25, doi:
10.1109/HPCA51647.2021.00012.

[22] Y. Che, Y. Hong and R. Wang, "Imbalance-Aware Scheduler for Fast
and Secure Ring ORAM Data Retrieval," 2019 IEEE 37th International
Conference on Computer Design (ICCD), 2019, pp. 604-612, doi:
10.1109/ICCD46524.2019.00087.

[23] C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan and S. Devadas,
"Suppressing the Oblivious RAM timing channel while making
information leakage and program efficiency trade-offs," 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), 2014, pp. 213-224, doi: 10.1109/HPCA.2014.6835932.

[24] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J.
Kubiatowicz, and D. Song, “PHANTOM: Practical Oblivious
Computation in a Secure Processor”, In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, Berlin,
Germany, 4–8 November 2013, ACM: New York, NY, USA, pp. 311–
324, 2013.

[25] X. Zhang, G. Sun, C. Zhang, W. Zhang, Y. Liang, T. Wang, Y. Chen, J.
Di, "Fork Path: Improving efficiency of ORAM by removing redundant
memory accesses," 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 102-114, 2015, doi:
10.1145/2830772.2830787.

[26] M. Sánchez-Artigas, "Enhancing Tree-Based ORAM Using Batched
Request Reordering," in IEEE Transactions on Information Forensics
and Security, vol. 13, no. 3, pp. 590-604, March 2018, doi:
10.1109/TIFS.2017.2762824.

[27] C. Fletcher, L. Ren, A. Kwon, M. V. Dijk, and S. Devadas, “Freecursive
ORAM: [Nearly] Free Recursion and Integrity Verification for Position-
based Oblivious RAM”, Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Istanbul, Turkey, pp. 103-116, March
2015.

[28] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious
memory primitives from Intel SGX”, Symposium on Network and
Distributed System Security (NDSS), 2018.

[29] A. Pujol, L. Murphy and C. Thorpe, "FedORAM: A Federated Oblivious
RAM Scheme," in IEEE Access, vol. 8, pp. 187687-187699, 2020, doi:
10.1109/ACCESS.2020.3027516.

[30] T. Hoang, R. Behnia, Y. Jang, A. A. Yavuz, “MOSE: Practical Multi-
User Oblivious Storage via Secure Enclaves”, Proceedings of the Tenth
ACM Conference on Data and Application Security and Privacy, pp. 17-
28, march 2020.

