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Abstract—With the advancement in technology and upsurge 

in network devices, more and more devices are getting connected 

to the network leading to more data and information on the 

network which emphasizes the security of the network to be of 

paramount importance. Malicious traffic must be detected in 

networks and machine learning or more precisely deep learning 

(DL), which is an upcoming approach, should be used for better 

detection. In this paper, Detection of attacks through a 

classification of traffic into normal and attack data is done using 

1D-CNN, a special variant of convolutional neural network 

(CNN). For this, the CICIDS2017 dataset consisting of 14 attack 

types spread across 8 different files, is considered for evaluating 

model performance and various indicators like recall, precision, 

F1-score have been utilized. Separate 1D-CNN based DL models 

were built on individual sub-datasets as well as on combined 

datasets. Also, an evaluation of the model is done by comparing it 

with an artificial neural network (ANN) model. Experimental 

results have demonstrated that the proposed model has 

performed better and shown great capability in detecting 

network attacks as the majority of the class labels had achieved 

excellent scores in each of the evaluation indicators used. 

Keywords—1D-CNN; CICIDS2017; network attacks; deep 

learning 

I. INTRODUCTION 

The Internet has become a major aspect in today’s society 
with people using the services of WWW for most of their day-
to-day activities. People use the Internet for both personal as 
well as professional purposes and the majority of tasks include 
sharing data, information access, sending files, connecting 
with friends or colleagues through social media and most 
importantly e-commerce activities which include saving 
passwords, credit/debit card info. Not only individuals but 
organizations too depend heavily on the Internet and its 
services. Network attacks in the form of malicious traffic 
results in loss of data, privacy violation for individuals; 
monetary, financial and political impact on big organizations 
and interrupted businesses for all its shareholders [1]. 
Nowadays, with the effect of Covid-19 and the ongoing 
pandemic, work from home is becoming a new normal. This 
has led to personal devices being vulnerable with not so 
sophisticated protection mechanisms as compared to the 
organization’s resources. The effect of the pandemic could 
lead to attack mechanisms getting more diverse which means 
cyber-security will remain verticals of critical importance in 
the times to come. 

There are many approaches to provide cyber-security 
ranging from authentication, encryption to a firewall, IDS 
(intrusion detection system). With IDS providing monitoring 
and behavior analysis of network traffic and further 
identifying attacks from network flow, it has proven itself a 
better alternative to other approaches [2]. Detection of cyber-
attacks is like a classification approach where it categorizes 
whether it belongs to benign or different types of attacks. 
Traditional Machine learning (ML) techniques, also known as 
shallow learning, have been used for intrusion detection by 
classifying the network traffic [3]. As the real world data gets 
bigger by time resulting in high dimensional space, the drop in 
performance of ML techniques can be observed due to its 
over-dependence on the features selected by the human 
experts. DL, with its complex architecture, overcame this 
limitation by automatically learning features through a 
massive amount of data. In this paper, we propose a 1D-CNN 
as a DL technique for effective feature representation and 
categorizing traffic into normal and different attack types. 1D-
CNN’s or 2D-CNN are almost identical in architecture as the 
core process in both of them is convolution operation. 

Convolution, a mathematical operation operates on two 
signals by convolving them with one being input signal or data 
and the other known as kernel or filter. It is the process 
between input and kernel/filter which includes element-wise 
multiplication followed by summation resulting in 
single/scalar value. Convolution can be 1-d, 2-d or multi-
dimensional depending on the problem in hand but the 
traditional CNNs developed [4] and the popular ones 
employed uses 2-d convolution which became the de facto 
standard for most applications in image processing and other 
deep learning tasks [5] [6] [7]. CNNs consist of input layer, 
convolution layers in the initial stages and MLP or fully 
connected layers in the final stages of a model preceding the 
output layer. The other optional but mostly used layers include 
sub-sampling (pooling) layer and dropout (regularization 
technique). General convolution operation is shown in 
equation 1: 

Ot = (X*F)t              (1) 

Where X is the input vector and F is the filter or kernel 
used and * is the convolution operation employed. The 
dimensions of both X and F are 1 dimensional in 1D-CNN and 
subsequently vary with the CNN used. 
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Generally, the architecture of 1D-CNN and 2D CNN 
remains the same with the main difference between the two is 
the use of 1d array or tensor in the former and 2d matrix or 
tensor in the latter. This means both input data and the kernel 
used for convolution are in 1d array form and the kernel 
moves over input in 1d direction. These minor but strategic 
changes led to certain advantages of 1D-CNN over 2D-CNN 
like 1) Reduced computational complexity due to 1D tensor 
over 2D tensor, 2) Well suited for low-cost applications but 
can be used for complex problems [8]. These advantages of 
1D-CNN and better compatibility with certain problem 
domain has led to many areas where it has been applied or can 
be applied such as: 

 Most extensively used in Natural Language Processing 
(NLP), where it is quite helpful in extracting sub-
sequences from sequences of words [9]. 

 Human activity recognition task which involves time 
series of sensor data [10]. 

 Analysis of signal data over a fixed-length period, for 
example, an audio recording, real-time motor fault 
detection [11]. 

 Data in tabular form. 

The focus of this study is the network traffic data which is 
stored in tabular form where each record is represented by an 
individual row which is in a one-dimensional shape. Applying 
2D-CNN over this type of data requires converting each 1d 
row into a 2d matrix shape before convolution between input 
and kernel can be performed. Application of 2D-CNN over 
images seems justifiable since images are already in 2d shape 
but in the case of tabular data, it takes an additional effort of 
converting the 1d input data (each row) into 2d matrix shape 
which might include padding as well. This overhead can be 
avoided by using 1D-CNN over 2D-CNN with the only 
notable difference between the two being the shape of input 
data and kernel vector as 1d array (or tensor) is used in the 
former and 2d matrix (or tensor) in the latter. 

The Rest of the manuscript is organized as follows: 
Section 2 discusses the related work in the field of intrusion 
detection, Section 3 explains the methodology part which 
comprise sub-sections 1) dataset description 2) model 
architecture and 3) model evaluation. Section 4 presents the 
results and analysis while Section 5 concludes the paper. 

II.  RELATED WORK 

Research on intrusion detection has been going on for 
many decades, still a lot of work needs to be done and lots of 
issues must be examined. Several Data mining/ML techniques 
whether supervised or unsupervised learning have been 
applied for the identification of malicious traffic [12] [13]. 
More recently DL techniques have been used for the detection 
of Cyber-attacks and it has achieved significant results. So our 
literature review revolves mostly around the DL technique 
used (especially CNN) or the CICIDS2017 dataset which has 
been utilized in the proposed work. 

Detection and mitigation of the common DDoS attacks 
using DDoS detectors employed for network traffic 

monitoring have been carried out using ANN structures, 
which were designed for different protocols separately [14]. In 
[15], authors uses NSL-KDD and Kyoto dataset for 
implementing their work which contains two important 
concepts: online sequential extreme learning machine which is 
the methodology used for classification and traffic profiling 
which makes up the preprocessing part. DL based intelligent 
framework have been implemented using Long short term 
memory (LSTM) to lessen DDoS attack in fog environment 
[16]. ISCX and CTU-13 were the datasets considered along 
with attack launching tool Hping3 for model evaluation. In 
[17], the applicability of restricted boltzmann machine (RBM) 
to differentiate between normal and abnormal Netflow traffic 
have been demonstrated in the ISCX dataset. A hybrid 
approach has been adopted in the form of a Double-Layered 
Hybrid Approach (DLHA) where the first layer uses naïve 
Bayes (NB) to detect DoS and probe attacks while the second 
layer adopts SVM for detecting the remaining attacks in the 
NSL-KDD dataset [18]. In [19], authors proposed a model 
based on 5-layer autoencoder (AE) for detection of network 
anomalies. Their work also includes data preprocessing for 
removing outliers and error reconstruction for effective 
network traffic classification. 

In the detection of network attacks using CNN, the 
majority of the academic research has been done using 2D-
CNN in which input data in the linear form is transformed into 
a matrix form. In [20] and [21], the proposed approach revised 
the established LeNet-5 model for classification of attacks in 
the KDD99 dataset, and input data is converted into 32*32 
matrix shapes for input to the model. DNN based IDS was 
built with 4 hidden layers and evaluated the model using the 
NSL-KDD dataset [22]. Dimensionality reduction using 
principal component analysis (PCA) and AE has been 
performed on the KDD99 dataset before the classification 
technique CNN is applied [23]. The input shape of 1*122 is 
transformed into 1*121 and 1*100 before being converted to 
10*10 and 11*11 matrix shapes. 

Both shallow and deep learning have been combined 
through the random forest (RF) and non-symmetric deep auto-
encoders (NDAE) [24]. They exercised the NDAE technique 
for unsupervised learning of features, and for classification 
tasks, a model constructed from a combination of stacked 
NDAEs and the RF algorithm was implemented. Separate 
architectures or models were built in the form of CNN, RNN, 
and different variants of AE [25]. NSL-KDD dataset has been 
used and each record was converted into 32*32 2d form. Long 
short term memory (LSTM) is the variant of RNN used while 
Sparse, Denoising, Contractive, and Convolutional are 
different variants of AE used in the experiments. In [26], 
authors utilized the 1D-CNN based model for intrusion 
detection further evaluated using the NSL-KDD dataset. They 
compared the performance of their proposed model with 
different ML/DL techniques like J48, NB, RF, MLP, and 
RNN. In [27], authors proposed BAT as a traffic anomaly 
detection model for effective feature representation and 
network classification. The BAT model is a combination of a 
Bidirectional LSTM and attention mechanism. 

The use of the CICIDS2017 dataset for intrusion detection 
has also been found in the literature. The author in his thesis 
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has done integration of open-source anomaly-based IDS Zeek 
(Bro), which uses scripts for feature extraction, and developed 
a model using various algorithms like RF, DT, and KNN on 
the CICIDS2017 dataset [28]. An ML-based hybrid model 
was recommended which comprises DT and RF in a stacked 
manner for classifying attacks in CICIDS2017 and NSL-KDD 
dataset [29]. The author incorporates the Fisher score as the 
feature selection method and performed the analysis of 
Supervised Learning techniques like DT, KNN, and SVM in 
detecting DDOS attacks from the CICIDS2017 dataset [30]. 
Experimental results have shown a good detection rates for 
DT and KNN but mediocre classification results for models 
built using SVM. In [31], authors applied and performed 
comparative analysis of 10 common ML/ DL techniques for 
detecting web attacks. The employed techniques include 
ANN, DT, KNN, SVM, CNN, NB, RF, k-means, expectation 
maxim and SOM. The results of the experiment conducted 
have shown that the NB, KNN and DT has outperformed the 
other models. Table I summarizes the key existing studies 
done in the detection of network attacks using ML or DL. 

TABLE I. SUMMARY OF THE EXISTING STUDIES 

Ref 
Algorithm 

or model  
Dataset used Key points 

[15] LSTM 
ISCX, CTU-

13 

 Detection of DDoS attack in fog 
environment has been done. 

 Attack launching tool Hping3 
utilized for evaluation. 

[19], 
[20] 

CNN KDD99 

 Established LeNet-5 model has 

been implemented. 

 Each record is converted into a 

32*32 matrix shape. 

[22] CNN, AE KDD99 

 Dimensionality reduction using 
PCA and autoencoders. 

 Input shape of 1*122 is 
transformed into 1*121 and 

1*100 before converted to 

10*10 and 11*11 shape. 

[23] 
RF, 

NDAE 

KDD99,NSL-

KDD 

 NDAE is utilized for 

unsupervised feature learning. 

 For classification, stacked 

NDAE and RF have been 
combined. 

[25] 

CNN, RF, 

MLP, 

RNN 

NSL-KDD 
 Comparative analysis of 

different models has been done. 

[26] 
RF, DT, 
KNN 

CICIDS2017 

 Integration of Zeek IDS with 

ML models done. 

 Zeek is used to extract features 

while models for classification. 

[29] 
DT, KNN, 
SVM 

CICIDS2017 
(only DDoS) 

 Fisher score is used for selecting 

optimal features. 

 Different ML models evaluated 
for a reduced set of features for 

detecting DDoS attacks. 

[27] 
BLSTM, 

CNN 
NSL-KDD 

 Combination of BLSTM and 
attention mechanism is done. 

 CNN captures local features 
from traffic data. 

From the literature review, it can be observed: 

 Majority of the academic research is done using 
KDD99 and NSL-KDD dataset despite criticism from 
researchers about it being outdated [32]. 

 Applicability and deployment of DL in detecting 
network anomalies is still in infancy stage. 

 While implementing CNN, the preferred choice is 2D-
CNN although 1D-CNN has better applicability. 

III. PROPOSED METHODOLOGY 

The proposed 1D-CNN model for classification of attacks 
consists of four steps: 

Step 1: Data preprocessing - This step involves methods to 
make data suitable for model training. 

Step 2: Model Training - Includes specifying the 
architecture of a model and then train the model. 

Step 3: Testing - Testing the model on unobserved data 
separated from training dataset. 

Step 4: Evaluation – Evaluating the model using multiple 
metrics mentioned. 

These steps form the basis for the overall process 
demonstrated in Fig. 1. First, the dataset is split into 80:20 
train/test samples and then preprocessing of data is done on 
both. Model with basic initial architecture has been built upon 
which optimization is performed and training samples are then 
used to train the optimized model. Final model is tested using 
a test dataset with the help of various evaluation metrics. 

These stages in the proposed 1D-CNN model along with 
description of the dataset used in the process are further 
elaborated in detail in following sub-sections. 

 

Fig. 1. Flow of the Proposed Methodology. 
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A. Dataset Description 

As already mentioned, the CICIDS2017 dataset, created by 
the Canadian Institute for Cybersecurity consists of data 
scattered across eight files both in pcap and csv format [33]. It 
contains two directories containing 8 files each; 
GeneratedLabelledFlows has 85 features (including label) per 
record in each file and MachineLearningCSV, mostly used for 
ML/DL tasks and focus of this study, has 79 features. These 
features have been extracted using CICFlowMeter which is a 
network flow generator and most of the features extracted are 
time-based statistic features [34]. Csv files are the result of 
flow-based features extracted from pcap files using an 
analyzer. Data files used in our experiments contain time-
related features embedded in them are further classified as: 

Iat: the inter-arrival time between packets sent in 
backward, forward, or either direction; Psec: includes packets 
or bytes per second; Active/idle: specifies time a flow was 
active/idle before going idle/active; other: like duration, Flag 
count, etc. 

As evident from Table II, there are 8 files out of which one 
file includes only benign data while the other 7 files contain 
benign and attack data. File1 contains two types of brute force 
attacks used for logging attempts and file1 includes 
application layer based Dos attacks launched using different 
tools like GoldenEye, Hulk, slowhttptest, and slowloris. 
Furthermore, file3 contains web related attacks like SQL 
injection, brute force, and XSS while file4 incorporates 
infiltration attack records. Lastly file5, file6, file7 include 
records of the bot, PortScan, and DDoS respectively. 

1) Data preprocessing: It involves techniques for data 

preparation or transformation of values before data is fed to 

the model for training.it further consists of these steps: 

a) Handling of missing data: There are two approaches 

for handling missing data; either drop the rows containing the 

missing value; or fill the cell with a new value. As the dataset 

contains a large number of missing values, the former 

approach looks irrational due to which the latter approach of 

filling these values is chosen. There are four options to select a 

new value ranging from a constant value like zero to the mean, 

mode, or median of the selective attribute. Either one could be 

okay but we carried out a pre-experiment with a small portion 

of the dataset before major experiments to find out the best 

replaced value. 

b) Feature scaling: On reviewing the dataset, one can 

find huge disparities between values from different columns 

with attributes like SYN, PSH flag count have a smaller range 

on values while attributes like duration, total length have large 

magnitude values. To scale these values we use 

standardization which works on continuous numeric features 

and makes sure data in a column has 0 mean and unit 

variance. It is done to ensure each feature has equal weightage 

and let gradient descent converge quickly in the model 

training. The formula for standardization is given in 

equation 2: 

newval = (val – mean_val) / sd            (2) 

TABLE II. DATASET DESCRIPTION 

S.no Filename Label Records 

File0 
Monday-

WorkingHours.pcap_ISCX.csv 

Benign (Normal 

activities) 
529918 

File1 
Tuesday-

WorkingHours.pcap_ISCX.csv 

Benign,FTP-

Patator,SSH-Patator 
445909 

File2 
Wednesday-

WorkingHours.pcap_ISCX.csv 

Benign, DoS 
GoldenEye 

DoSHulk, DoS 

slowhttptest, DoS 
slowloris, 

Heartbleed 

692703 

File3 

Thursday-WorkingHours-

Morning-
WebAttacks.pcap_ISCX 

Benign, Web 

attacks (BruteForce, 
Sql injection, XSS 

170366 

File4 

Thursday-

WorkingHoursAfternoon-

Infilteration.pcap_ISCX.csv 

Benign, Infiltration 288602 

File5 

Friday-

WorkingHoursMorning .pcap_I

SCX.csv 

Benign, Bot 191033 

File6 
Friday-WorkingHours-
AfternoonPortScan.pcap_ISCX

.csv 

Benign, PortScan 286467 

File7 
Friday-WorkingHours-
AfternoonDDos.pcap_ISCX.cs

v 

Benign, DDoS 225745 

Where val is actual value, mean_val and sd are mean and 
standard deviation of respective attribute. 

c) One hot encoding: The last column/attribute 

representing class label in train dataset is one hot encoded to 

make it compatible with 1D-CNN model while training which 

expects target vector in said form. This results in additional 

columns for the output vector which is equal to the number of 

class labels (attacks and normal labels). 

B. Model Architecture 

The overall general architecture used in the experimental 
setup has been shown in Fig. 2. As we deal with different files 
the architecture of these separate models is uniform/identical 
albeit with minor changes. It consists of an input layer 
sequentially connected to 2 or 3 CNN layers intermixed by 
dropout and followed by flatten layer which further connects 
to a fully connected (FC) or dense layer and finally output 
layer. Input shape provided to the first Conv layer is (1* C) 
with 1 specifying the steps which is one row at a time and C 
states the number of features. With Conv layer mapping input 
to high dimension space, its output with dimension 1*C*f1 is 
the feature map containing f1 number of filters which learns 
network information from input data. This output is then 
applied to the activation function and for that purpose, the one 
used mostly with the Conv layer, ReLu is used. Dropout is 
then used to minimize the interaction of feature detectors 
switching off some connections randomly in the network 
thereby preventing model overfitting [35]. Dropout doesn’t 
decrease the number of parameters in the model, it only 
prevents some of them from participating in the weight update 
process. The Softmax activation function is combined with an 
FC layer to output the classified results. The mathematical 
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formulae for ReLu and Softmax activation function are given 
in equation 3 and 4 where x and xi are the input values while 
f(x) and Softmax(x) being the output values passed to the next 
layer respectively. 

f(x) = max (0, x)               (3) 

           
   

∑     
 

             (4) 

1) Parameters and Hyper-parameters: Another important 

aspect of model architecture are the parameters, which are 

learned through training and hyper-parameters, selected or 

chosen manually. In the 1D-CNN model building, the type of 

hyper-parameters ranges from general hyper-parameters like 

batch size, number of iterations to the model-specific hyper-

parameters like a number of layers, filters, size of the kernel, 

an initial rate of learning, loss function, optimizer, and 

activation function used. The total parameters depend on 

certain hyper-parameters like number of layers, filters or 

nodes in a certain layer and size of filter which might vary 

from model to model. The general architecture of the proposed 

model would be like: “Conv1(f1,k1)-Dr1(r1)-Conv2(f2,k2)-

Dr2(r2)-----Convn(fn,kn)-Drn (rn)-FC1(nd1)-FC2(nd2)”.  

Here Conv, Dr, FC are convolutional, dropout, and fully 
connected layers respectively. The fi, ki refers to the number 
of filters and kernel-size in the ith convolutional layer whereas 
ri signifies the rate of dropout. The nodes in the FC layers are 
nd1 and nd2 with the latter related to the nodes in the output 
layer and equal to the number of classes. As hyper-parameters 
are selected manually, the number of trainable parameters can 
be calculated as: 

a) No of parameters in first Conv layer= C*f1*k1+b1. (b 

represents bias) 

b) No of parameters in other Conv layer= fi-1*fi*ki + bi. 

c) No of parameters in Dense layers = ndi-1*ndi + bi. 

 

Fig. 2. Architecture of the 1D-CNN Model. 

Thus, the total number of parameters in the particular 
model architecture is equal to the sum of parameters in all the 
layers. It is to be noted that the use of dropout is optional and 
has no effect on the number of parameters. Consider a model, 
for instance, with configuration “Conv(80,1)-Dr(0.2)-
Conv(50,1)-Dr(0.2)-FC(50)-FC(2)”. Total number of trainable 
parameters could be calculated as: (78*80*1+80) + 
(80*50+50) + (50*50+50) + (50*2+2) = 13022 trainable 
parameters. 

C. Model Evaluation 

As our work is based on classification of multiple classes, 
multi-class confusion matrix is used to find or display correct/ 
incorrect instances and its constituents are TP (True positive), 
TN (True negative), FP (False positive) and FN (False 
negative). Using these various evaluation indicators like 
Precision (Pr), Recall (Rc) and F1_score (F1_sc) can be 
derived to be further used for evaluation of model. 

For classifying attack data, Pr or PPV (positive predicted 
value) specifies how many attack predictions actually belong 
to the attack data. 

PPV = TP / (TP + FP)             (5) 

Also Rc or TPR (true positive rate) specifies the ratio of 
predicted attack instances to the actual attack instances. 

TPR = TP / (TP + FN)              (6) 

Both PPV and TPR are suitable in their own way as former 
tells how attack predictions are relevant and latter tells the 
relevant records being predicted. Instead of choosing one over 
other there is another single metric F1_score calculating the 
harmonic mean of the both. 

F1_sc = (2 * PPV * TPR) / (PPV + TPR)           (7) 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup and Model Configuration 

Experiments are conducted on google colab platform using 
python language and keras is the framework used for building 
1D-CNN model with tensorflow as backend. Other important 
libraries used are pandas, numpy for loading/storing dataset 
and sklearn for preprocessing tasks and evaluating model and 
calculating results. 

Different models built and evaluated might have distinct 
configurations of their architecture resulting in a different 
number of parameters and hyper-parameter values. The 
number of epochs and batch-size is not unique for each model 
but there are still some hyper-parameter values that are 
identical for all the models implemented in experiments and 
they are shown in Table III. Table IV shows the configuration 
parameters for each model, built during experimentation, with 
its complete model architecture. 

B. Results 

The overall experimental process is divided into two 
phases: 

Phase1: Separate models built on individual files of 
dataset. 
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TABLE III. HYPER-PARAMETERS UNIFORM FOR ALL MODELS 

Hyper-parameter Value 

Optimizer used Adam 

Kernel size 1 

Learning rate 0.001 decay after certain epochs 

Loss  Categorical Crossentropy 

Activation function in all Conv layer ReLu 

Activation function in Dense layer Softmax 

TABLE IV. CONFIGURATION PARAMETERS FOR MODELS USED IN 

EXPERIMENTS 

Model Epochs 
Batch 

size 
Model Architecture 

Trainable 

parameters 

Model1 50 100 

Conv(50,1)-

Conv(40,1)- 
Conv(30,1)-FC(20)-

FC(3) 

7903 

Model2 50 100 

Conv(50,1)-

Conv(40,1)- 
Conv(30,1)-FC(20)-

FC(6) 

7966 

Model3 100 100 

Conv(40,1)-Dr(0.1)-

Conv(30,1)-Dr(0.1)- 
Conv(30,1)-Dr(0.2)-

FC(20)-FC(4) 

6024 

Model4 20 100 

Conv(80,1)-Dr(0.2)-

Conv(50,1)-Dr(0.2)-
FC(50)-FC(2) 

13022 

Model5 100 70 

Conv(50,1)-

Conv(50,1)-FC(25)-
FC(2) 

7827 

Model6 60 40 

Conv(40,1)-Dr(0.2)-

Conv(30,1)-Dr(0.2)-

FC(20)-FC(2) 

5052 

Model7 40 40 

Conv(40,1)-Dr(0.1)-

Conv(30,1)-Dr(0.1)-

FC(20)-FC(2) 

5052 

Model(phase2) 50 100 

Conv(60,1)-
Conv(50,1)-

Conv(40,1)-FC(20)-

FC(8) 

10818 

Phase2: Model built on combined dataset except file0. 
Also some labels are combined and renamed to make it more 
balanced. 

1) Phase1: During the first phase of experiments, 

individual files of the dataset have been used for building 

different models which means we have separate models for 

many different types of attacks. This means model1 is built on 

file1, model2 upon file2 and so on. This will be helpful if one 

wishes to detect a certain specific type of attack. For instance 

if you are interested in detecting DDoS attacks then model 

build using file7 will be useful and likewise for identifying 

bots model created using file5 is selected. Also processing 

individual files separately is good for attacks with less 

instances as they have better prevalence in their respective 

files rather than in combined dataset. It should be emphasized 

that file0 is not used in the experimental process as it contains 

only benign traffic which means seven models were trained 

and evaluated. Each model built is used to classify normal and 

corresponding attacks in the individual files and further tested 

on 20% test data of their respective classes. 

Table V shows the detailed evaluation of each model as 
their overall metrics results has not been displayed but 
detailed result for each class in every model as huge 
imbalance in the dataset would always results in better overall 
model performance. From the detailed analysis we can 
observe that attacks like XSS, Sql Injection and Bot have not 
performed well as compared to other attacks. 

2) Phase2: For the second phase of experiments, 

combined dataset is considered for classification and all files 

except file0 is taken into account. As other files too containing 

benign records leading to large number of normal records in 

combined dataset, inclusion of records of file0 could led to 

more imbalanced data. So dataset is combined with seven files 

and this combined dataset contains 2,300,825 overall records. 

Model built on this could classify all attacks (14) in the 

dataset. 

TABLE V. RESULTS (PHASE1) 

Model Class Label 
PPV 

(%) 

TPR 

(%) 

F1_sc 

(%) 

Model1 

Benign  99.97 99.99 99.98 

FTP-Patator 99.87 99.62 99.75 

SSH-Patator 99.2 98.41 98.8 

Model2 

Benign  99.98 99.71 99.85 

DoS GoldenEye 99.8 99.06 99.43 

DoS Hulk 99.51 99.99 99.75 

DoS Slowhttptest 96.44 99.2 97.8 

DoS slowloris 99.13 99.22 99.18 

Heartbleed  100 80 88.89 

Model3 

Benign  99.98 99.8 99.89 

Web Attack – Brute Force  61.39 99.32 75.88 

Web Attack – XSS 100 60 75 

Web Attack – Sql Injection  22.22 1.56 2.92 

Model4 
Benign 100 100 100 

Infiltration 100 77.78 88.72 

Model5 
Benign 99.62 100 99.8 

Bot 100 64.82 79.53 

Model6 
Benign 99.98 99.99 99.99 

PortScan 99.99 99.98 99.99 

Model7 
Benign 99.96 99.98 99.97 

DDoS 99.98 99.97 99.98 
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As evident from the Table VI records containing benign 
traffic constitute 75.76% of all the instances in the 
concatenated dataset while attacks barring Dos/DDoS or 
Portscan are low prevalent. The combined dataset suffers from 
a class imbalance situation with some labels like Heartbleed, 
XSS having very few records which often results in a low 
detection rate for these labels [36]. We ran an experiment to 
build a model that would classify all 15 classes (14 attacks) in 
the dataset and the results are shown in Table VII where it can 
be easily observed that attacks with few testing records owing 
to their low prevalence are not classified properly. Attacks 
with sufficient training instances have performed satisfactory 
but for minority label attacks some attacks have zero correctly 
classified instances while others too have low detection 
accuracy. 

TABLE VI. SHOWS PERCENTAGE OF OCCURRENCE OF EACH LABEL IN 

COMBINED DATASET 

S

n

o 

New 

Attack 

label 

Old Attack 

label 

No. of 

Recor

ds 

% of 

Total 

Records 

No. of 

Records 

(new) 

% of Total 

Records 

(new) 

1 Benign Benign 
17431

79 
75.76 1743179 75.76 

2 
Brute 

Force 

FTP-

Patator 
7938 0.345 

13835 0.60 
SSH-

Patator 
5897 0.2562 

3 DoS 

DoS 
GoldenEye 

10293 0.447 

252672 10.98 

DoS Hulk 
23107

3 
10.04 

DoS 
slowloris 

5476 0.239 

DoS 

slowhttptest 
5499 0.251 

Heartbleed 11 0.0004 

4 
Web 

Attacks 

Web 
Attack–

Brute Force 

1507 0.0654 

2180 0.0947 
Web Attack 

– XSS 
652 0.028 

Web 
Attack– Sql 

Injection 

21 0.00091 

5 Bot 

Bot 1966 0.085 

2002 0.087 

Infiltration 36 0.0015 

6 
PortSca

n 
PortScan 

15893

0 
6.9075 158930 6.9075 

7 DDoS DDoS 
12802
7 

5.5643 128027 5.5643 

To solve the class imbalance situation relabeling is done 
by merging minority class labels into one class label which 
proves to be a good measure for improving model 
performance. It is not done randomly but in a strategic way by 
merging similar categories of attacks. For example, SQL 
injection, XSS, and web attack-brute force are all types of web 
attacks so they are merged together and given new labels (web 

attacks). Full details of the new attack label along with the 
percentage of occurrence are shown in the Table VI. After 
relabeling it now contains 7 classes including 6 attack labels 
and a model based on 1D-CNN is trained and then evaluated. 
The results for the same are shown in Table VIII and Table IX 
with the former displaying the confusion matrix based on all 
the labels and the latter illustrating the detailed results in 
metrics for all class labels. Analyzing the confusion matrix in 
Table VIII, the number of classifications or misclassifications 
with a particular class label predicted as another label can be 
properly seen. The same can be analyzed from Table IX as a 
high number of true positives were achieved for all class 
labels with the exception of the Bot and Web attacks label. 
The overall performance of the model is better as more than 
99.6% output has been achieved in PPV, TPR, and F1_sc. Bot 
and Web attacks are the two labels with gloomy detection rate 
resulting in low values of TPR and F1_sc. 

3) Experiment with deep neural network: To compare and 

further validate our proposed model, a DNN based on an 

artificial neural network has also being used. The 

experimental setup is identical with 1D-CNN i.e., the same 

preprocessing steps and evaluation metrics. DNN comprises of 

a) input layer with 78 nodes; b) 3 hidden layers with 60, 50, 

and 20 nodes, respectively; c) output layer with 8 nodes(like 

phase2). Also, dropout with 0.1 value is used between hidden 

layers to prevent overfitting. The results are depicted in 

Tables X and XI. 

Table X displays the confusion matrix evaluated from the 
DNN-model and Table XI shows the comparative analysis of 
1D-CNN with DNN. It can be analyzed from the latter table 
that 1D-CNN model has outperformed the model built using 
DNN in detection of network attacks. 

TABLE VII. INITIAL RESULTS-15 CLASS CLASSIFICATION (PHASE2) 

Label PPV (%) TPR (%) F1_sc (%) 

BENIGN 99.71 99.78 99.75 

Bot 90.61 41.41 57.33 

DDoS 99.98 99.92 99.96 

DoS GoldenEye 99.57 98.47 99.12 

DoS Hulk 99.09 99.20 99.15 

DoS Slowhttptest 91.28 98.69 95.11 

DoS slowloris 98.71 98.88 98.85 

FTP-Patator 99.60 99.27 99.47 

Heartbleed 100.00 66.67 80.00 

Infiltration 50.00 100.00 67.00 

PortScan 99.36 99.95 99.65 

SSH-Patator 95.70 99.14 97.66 

Web Attack Brute Force 100.0 11.89 21.58 

Web Attack Sql Injection nan 0.00 0.00 

Web Attack XSS 0.00 0.00 0.00 
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TABLE VIII. CONFUSION MATRIX USING 1D-CNN FOR 7 CLASS CLASSIFICATION 

                     True 

Predicted  
BENIGN Bot Brute Force DDoS DoS PortScan Web Attacks All 

Benign 347743  3 30 11 791 205 0 348783 

Bot 253 145 0 0 0 0 0 398 

Brute Force 1723 0 2665 0 0 2 0 2683 

DDoS 99 0 0 25534 1 0 0 25558 

DoS 136 0 3 0 50043 0 0 50509 

PortScan 5 0 0 0 11 31807 0 31823 

Web Attacks 353 0 24 0 0 0 34 411 

All 350112 148 2712 25545 50846 32014 34 460165 

TABLE IX. DETAILED RESULTS- 7 CLASS CLASSIFICATION 

Label TP FN FP PPV (%) TPR (%) F1_sc (%) 

BENIGN 347743 1040 787 99.77 99.70 99.74 

Bot 145 253 3 97.97 36.43 53.11 

Brute Force 2665 18 56 97.94 99.33 98.63 

DDoS 25534 24 11 99.96 99.91 99.93 

DoS 50371 138 804 98.43 99.73 99.07 

PortScan 31807 16 205 99.36 99.95 99.65 

Web Attacks 34 377 0 100.00 8.27 15.28 

TABLE X. CONFUSION MATRIX USING DNN FOR 7 CLASS CLASSIFICATION 

                      True  

Predicted  
BENIGN Bot Brute Force DDoS DoS PortScan Web Attacks All 

Benign 345697 6 69 9 2767 234 1 348783 

Bot 257 141 0 0 0 0 0 398 

Brute Force 31 0 2650 0 2 0 0 2683 

DDoS 39 0 0 25517 2 0 0 25558 

DoS 222 0 5 2 50280 0 0 50509 

PortScan 51 0 0 1 11 31760 0 31823 

Web Attacks 375 0 23 0 3 0 10 411 

All 346672 147 2742 25529 53065 31994 11 460165 

TABLE XI. COMPARISON OF 1D-CNN WITH DNN 

 PPV (%) TPR (%) F1_sc (%) 

Label CNN DNN CNN DNN CNN DNN 

BENIGN 99.77 99.72 99.70 99.12 99.74 99.42 

Bot 97.97 95.92 36.43 35.43 53.11 51.74 

Brute Force 97.94 96.47 99.33 98.77 98.63 97.61 

DDoS 99.96 99.95 99.91 99.84 99.93 99.90 

DoS 98.43 94.75 99.73 99.55 99.07 97.09 

PortScan 99.36 99.27 99.95 99.80 99.65 99.53 

Web Attacks 100.00 90.91 8.27 2.43 15.28 4.74 
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Analysis: While analyzing the results, it can be observed. 

 In both phases, attacks with reasonable instances for 
training have produced exceptionally better results on 
testing data. Attacks like DoS, Brute force, DDoS, and 
Portscan have specific attack pattern and they are better 
detected using flow based features. 

 Overall Bot and Web attacks have shown poor 
performance in both phases. 

 Analyzing the results of Bot in phase2 (Table VIII), 
one can see similarities between Bot and Benign traffic 
as all FN and FP in case of Bot attack label belongs to 
benign label which indicates Bot is not classified as 
any other attack by the model and no other attack has 
been classified as Bot attack. This signifies the 
resemblance between the two as the distinction 
between bot and normal behavior is blurred. 

 As for web attacks, their comparatively lower 
performance could be attributed to the fewer training 
instances in the dataset as they have less than 0.1 of 
total instances. Or these attacks don’t have a specific 
pattern and they could be better detected using payload 
content. 

 Also our proposed 1D-CNN model has outperformed 
the model built using DNN (Table XI). 

V. CONCLUSION 

In this paper, we proposed a novel way of identifying 
attacks in the dataset using 1D-CNN as a classification 
approach. The proposed 1D-CNN model has performed better 
with the least number of misclassifications. Experiments were 
conducted with a model trained and evaluated on individual 
files of the dataset as well on a combined dataset which was 
further relabeled to handle class imbalance situation. 
Satisfactory performance was recorded in both cases for the 
majority of labels as more than 99% output achieved in each 
of the evaluation indicators used. Some attacks with low 
prevalence like bot and web attacks have a comparatively 
lower detection rate. Experiments using DNN have also been 
done for comparative purposes and further validation of the 
proposed model. 

As for future work, other DL algorithms need to be 
explored for training the model and a study regarding hyper-
parameter optimization should be done to find the optimal 
model configuration. Moreover, other datasets with the latest 
attack types and real world traffic should be investigated for 
detection of cyber-attacks. Addition of records of bots and 
web related attacks needs to be done as more data is needed 
for training and to improve their detection accuracy. 
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