
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

604 | P a g e

www.ijacsa.thesai.org

1D-CNN based Model for Classification and Analysis

of Network Attacks

Kuljeet Singh
1

Research Scholar

Department of Computer Science &

IT, University of Jammu

Jammu, India

Amit Mahajan
2

System Analyst

Department of Computer Science &

IT, University of Jammu

Jammu, India

Vibhakar Mansotra
3

Professor

Department of Computer Science &

IT, University of Jammu

Jammu, India

Abstract—With the advancement in technology and upsurge

in network devices, more and more devices are getting connected

to the network leading to more data and information on the

network which emphasizes the security of the network to be of

paramount importance. Malicious traffic must be detected in

networks and machine learning or more precisely deep learning

(DL), which is an upcoming approach, should be used for better

detection. In this paper, Detection of attacks through a

classification of traffic into normal and attack data is done using

1D-CNN, a special variant of convolutional neural network

(CNN). For this, the CICIDS2017 dataset consisting of 14 attack

types spread across 8 different files, is considered for evaluating

model performance and various indicators like recall, precision,

F1-score have been utilized. Separate 1D-CNN based DL models

were built on individual sub-datasets as well as on combined

datasets. Also, an evaluation of the model is done by comparing it

with an artificial neural network (ANN) model. Experimental

results have demonstrated that the proposed model has

performed better and shown great capability in detecting

network attacks as the majority of the class labels had achieved

excellent scores in each of the evaluation indicators used.

Keywords—1D-CNN; CICIDS2017; network attacks; deep

learning

I. INTRODUCTION

The Internet has become a major aspect in today’s society
with people using the services of WWW for most of their day-
to-day activities. People use the Internet for both personal as
well as professional purposes and the majority of tasks include
sharing data, information access, sending files, connecting
with friends or colleagues through social media and most
importantly e-commerce activities which include saving
passwords, credit/debit card info. Not only individuals but
organizations too depend heavily on the Internet and its
services. Network attacks in the form of malicious traffic
results in loss of data, privacy violation for individuals;
monetary, financial and political impact on big organizations
and interrupted businesses for all its shareholders [1].
Nowadays, with the effect of Covid-19 and the ongoing
pandemic, work from home is becoming a new normal. This
has led to personal devices being vulnerable with not so
sophisticated protection mechanisms as compared to the
organization’s resources. The effect of the pandemic could
lead to attack mechanisms getting more diverse which means
cyber-security will remain verticals of critical importance in
the times to come.

There are many approaches to provide cyber-security
ranging from authentication, encryption to a firewall, IDS
(intrusion detection system). With IDS providing monitoring
and behavior analysis of network traffic and further
identifying attacks from network flow, it has proven itself a
better alternative to other approaches [2]. Detection of cyber-
attacks is like a classification approach where it categorizes
whether it belongs to benign or different types of attacks.
Traditional Machine learning (ML) techniques, also known as
shallow learning, have been used for intrusion detection by
classifying the network traffic [3]. As the real world data gets
bigger by time resulting in high dimensional space, the drop in
performance of ML techniques can be observed due to its
over-dependence on the features selected by the human
experts. DL, with its complex architecture, overcame this
limitation by automatically learning features through a
massive amount of data. In this paper, we propose a 1D-CNN
as a DL technique for effective feature representation and
categorizing traffic into normal and different attack types. 1D-
CNN’s or 2D-CNN are almost identical in architecture as the
core process in both of them is convolution operation.

Convolution, a mathematical operation operates on two
signals by convolving them with one being input signal or data
and the other known as kernel or filter. It is the process
between input and kernel/filter which includes element-wise
multiplication followed by summation resulting in
single/scalar value. Convolution can be 1-d, 2-d or multi-
dimensional depending on the problem in hand but the
traditional CNNs developed [4] and the popular ones
employed uses 2-d convolution which became the de facto
standard for most applications in image processing and other
deep learning tasks [5] [6] [7]. CNNs consist of input layer,
convolution layers in the initial stages and MLP or fully
connected layers in the final stages of a model preceding the
output layer. The other optional but mostly used layers include
sub-sampling (pooling) layer and dropout (regularization
technique). General convolution operation is shown in
equation 1:

Ot = (X*F)t (1)

Where X is the input vector and F is the filter or kernel
used and * is the convolution operation employed. The
dimensions of both X and F are 1 dimensional in 1D-CNN and
subsequently vary with the CNN used.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

605 | P a g e

www.ijacsa.thesai.org

Generally, the architecture of 1D-CNN and 2D CNN
remains the same with the main difference between the two is
the use of 1d array or tensor in the former and 2d matrix or
tensor in the latter. This means both input data and the kernel
used for convolution are in 1d array form and the kernel
moves over input in 1d direction. These minor but strategic
changes led to certain advantages of 1D-CNN over 2D-CNN
like 1) Reduced computational complexity due to 1D tensor
over 2D tensor, 2) Well suited for low-cost applications but
can be used for complex problems [8]. These advantages of
1D-CNN and better compatibility with certain problem
domain has led to many areas where it has been applied or can
be applied such as:

 Most extensively used in Natural Language Processing
(NLP), where it is quite helpful in extracting sub-
sequences from sequences of words [9].

 Human activity recognition task which involves time
series of sensor data [10].

 Analysis of signal data over a fixed-length period, for
example, an audio recording, real-time motor fault
detection [11].

 Data in tabular form.

The focus of this study is the network traffic data which is
stored in tabular form where each record is represented by an
individual row which is in a one-dimensional shape. Applying
2D-CNN over this type of data requires converting each 1d
row into a 2d matrix shape before convolution between input
and kernel can be performed. Application of 2D-CNN over
images seems justifiable since images are already in 2d shape
but in the case of tabular data, it takes an additional effort of
converting the 1d input data (each row) into 2d matrix shape
which might include padding as well. This overhead can be
avoided by using 1D-CNN over 2D-CNN with the only
notable difference between the two being the shape of input
data and kernel vector as 1d array (or tensor) is used in the
former and 2d matrix (or tensor) in the latter.

The Rest of the manuscript is organized as follows:
Section 2 discusses the related work in the field of intrusion
detection, Section 3 explains the methodology part which
comprise sub-sections 1) dataset description 2) model
architecture and 3) model evaluation. Section 4 presents the
results and analysis while Section 5 concludes the paper.

II. RELATED WORK

Research on intrusion detection has been going on for
many decades, still a lot of work needs to be done and lots of
issues must be examined. Several Data mining/ML techniques
whether supervised or unsupervised learning have been
applied for the identification of malicious traffic [12] [13].
More recently DL techniques have been used for the detection
of Cyber-attacks and it has achieved significant results. So our
literature review revolves mostly around the DL technique
used (especially CNN) or the CICIDS2017 dataset which has
been utilized in the proposed work.

Detection and mitigation of the common DDoS attacks
using DDoS detectors employed for network traffic

monitoring have been carried out using ANN structures,
which were designed for different protocols separately [14]. In
[15], authors uses NSL-KDD and Kyoto dataset for
implementing their work which contains two important
concepts: online sequential extreme learning machine which is
the methodology used for classification and traffic profiling
which makes up the preprocessing part. DL based intelligent
framework have been implemented using Long short term
memory (LSTM) to lessen DDoS attack in fog environment
[16]. ISCX and CTU-13 were the datasets considered along
with attack launching tool Hping3 for model evaluation. In
[17], the applicability of restricted boltzmann machine (RBM)
to differentiate between normal and abnormal Netflow traffic
have been demonstrated in the ISCX dataset. A hybrid
approach has been adopted in the form of a Double-Layered
Hybrid Approach (DLHA) where the first layer uses naïve
Bayes (NB) to detect DoS and probe attacks while the second
layer adopts SVM for detecting the remaining attacks in the
NSL-KDD dataset [18]. In [19], authors proposed a model
based on 5-layer autoencoder (AE) for detection of network
anomalies. Their work also includes data preprocessing for
removing outliers and error reconstruction for effective
network traffic classification.

In the detection of network attacks using CNN, the
majority of the academic research has been done using 2D-
CNN in which input data in the linear form is transformed into
a matrix form. In [20] and [21], the proposed approach revised
the established LeNet-5 model for classification of attacks in
the KDD99 dataset, and input data is converted into 32*32
matrix shapes for input to the model. DNN based IDS was
built with 4 hidden layers and evaluated the model using the
NSL-KDD dataset [22]. Dimensionality reduction using
principal component analysis (PCA) and AE has been
performed on the KDD99 dataset before the classification
technique CNN is applied [23]. The input shape of 1*122 is
transformed into 1*121 and 1*100 before being converted to
10*10 and 11*11 matrix shapes.

Both shallow and deep learning have been combined
through the random forest (RF) and non-symmetric deep auto-
encoders (NDAE) [24]. They exercised the NDAE technique
for unsupervised learning of features, and for classification
tasks, a model constructed from a combination of stacked
NDAEs and the RF algorithm was implemented. Separate
architectures or models were built in the form of CNN, RNN,
and different variants of AE [25]. NSL-KDD dataset has been
used and each record was converted into 32*32 2d form. Long
short term memory (LSTM) is the variant of RNN used while
Sparse, Denoising, Contractive, and Convolutional are
different variants of AE used in the experiments. In [26],
authors utilized the 1D-CNN based model for intrusion
detection further evaluated using the NSL-KDD dataset. They
compared the performance of their proposed model with
different ML/DL techniques like J48, NB, RF, MLP, and
RNN. In [27], authors proposed BAT as a traffic anomaly
detection model for effective feature representation and
network classification. The BAT model is a combination of a
Bidirectional LSTM and attention mechanism.

The use of the CICIDS2017 dataset for intrusion detection
has also been found in the literature. The author in his thesis

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

606 | P a g e

www.ijacsa.thesai.org

has done integration of open-source anomaly-based IDS Zeek
(Bro), which uses scripts for feature extraction, and developed
a model using various algorithms like RF, DT, and KNN on
the CICIDS2017 dataset [28]. An ML-based hybrid model
was recommended which comprises DT and RF in a stacked
manner for classifying attacks in CICIDS2017 and NSL-KDD
dataset [29]. The author incorporates the Fisher score as the
feature selection method and performed the analysis of
Supervised Learning techniques like DT, KNN, and SVM in
detecting DDOS attacks from the CICIDS2017 dataset [30].
Experimental results have shown a good detection rates for
DT and KNN but mediocre classification results for models
built using SVM. In [31], authors applied and performed
comparative analysis of 10 common ML/ DL techniques for
detecting web attacks. The employed techniques include
ANN, DT, KNN, SVM, CNN, NB, RF, k-means, expectation
maxim and SOM. The results of the experiment conducted
have shown that the NB, KNN and DT has outperformed the
other models. Table I summarizes the key existing studies
done in the detection of network attacks using ML or DL.

TABLE I. SUMMARY OF THE EXISTING STUDIES

Ref
Algorithm

or model
Dataset used Key points

[15] LSTM
ISCX, CTU-

13

 Detection of DDoS attack in fog
environment has been done.

 Attack launching tool Hping3
utilized for evaluation.

[19],
[20]

CNN KDD99

 Established LeNet-5 model has

been implemented.

 Each record is converted into a

32*32 matrix shape.

[22] CNN, AE KDD99

 Dimensionality reduction using
PCA and autoencoders.

 Input shape of 1*122 is
transformed into 1*121 and

1*100 before converted to

10*10 and 11*11 shape.

[23]
RF,

NDAE

KDD99,NSL-

KDD

 NDAE is utilized for

unsupervised feature learning.

 For classification, stacked

NDAE and RF have been
combined.

[25]

CNN, RF,

MLP,

RNN

NSL-KDD
 Comparative analysis of

different models has been done.

[26]
RF, DT,
KNN

CICIDS2017

 Integration of Zeek IDS with

ML models done.

 Zeek is used to extract features

while models for classification.

[29]
DT, KNN,
SVM

CICIDS2017
(only DDoS)

 Fisher score is used for selecting

optimal features.

 Different ML models evaluated
for a reduced set of features for

detecting DDoS attacks.

[27]
BLSTM,

CNN
NSL-KDD

 Combination of BLSTM and
attention mechanism is done.

 CNN captures local features
from traffic data.

From the literature review, it can be observed:

 Majority of the academic research is done using
KDD99 and NSL-KDD dataset despite criticism from
researchers about it being outdated [32].

 Applicability and deployment of DL in detecting
network anomalies is still in infancy stage.

 While implementing CNN, the preferred choice is 2D-
CNN although 1D-CNN has better applicability.

III. PROPOSED METHODOLOGY

The proposed 1D-CNN model for classification of attacks
consists of four steps:

Step 1: Data preprocessing - This step involves methods to
make data suitable for model training.

Step 2: Model Training - Includes specifying the
architecture of a model and then train the model.

Step 3: Testing - Testing the model on unobserved data
separated from training dataset.

Step 4: Evaluation – Evaluating the model using multiple
metrics mentioned.

These steps form the basis for the overall process
demonstrated in Fig. 1. First, the dataset is split into 80:20
train/test samples and then preprocessing of data is done on
both. Model with basic initial architecture has been built upon
which optimization is performed and training samples are then
used to train the optimized model. Final model is tested using
a test dataset with the help of various evaluation metrics.

These stages in the proposed 1D-CNN model along with
description of the dataset used in the process are further
elaborated in detail in following sub-sections.

Fig. 1. Flow of the Proposed Methodology.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

607 | P a g e

www.ijacsa.thesai.org

A. Dataset Description

As already mentioned, the CICIDS2017 dataset, created by
the Canadian Institute for Cybersecurity consists of data
scattered across eight files both in pcap and csv format [33]. It
contains two directories containing 8 files each;
GeneratedLabelledFlows has 85 features (including label) per
record in each file and MachineLearningCSV, mostly used for
ML/DL tasks and focus of this study, has 79 features. These
features have been extracted using CICFlowMeter which is a
network flow generator and most of the features extracted are
time-based statistic features [34]. Csv files are the result of
flow-based features extracted from pcap files using an
analyzer. Data files used in our experiments contain time-
related features embedded in them are further classified as:

Iat: the inter-arrival time between packets sent in
backward, forward, or either direction; Psec: includes packets
or bytes per second; Active/idle: specifies time a flow was
active/idle before going idle/active; other: like duration, Flag
count, etc.

As evident from Table II, there are 8 files out of which one
file includes only benign data while the other 7 files contain
benign and attack data. File1 contains two types of brute force
attacks used for logging attempts and file1 includes
application layer based Dos attacks launched using different
tools like GoldenEye, Hulk, slowhttptest, and slowloris.
Furthermore, file3 contains web related attacks like SQL
injection, brute force, and XSS while file4 incorporates
infiltration attack records. Lastly file5, file6, file7 include
records of the bot, PortScan, and DDoS respectively.

1) Data preprocessing: It involves techniques for data

preparation or transformation of values before data is fed to

the model for training.it further consists of these steps:

a) Handling of missing data: There are two approaches

for handling missing data; either drop the rows containing the

missing value; or fill the cell with a new value. As the dataset

contains a large number of missing values, the former

approach looks irrational due to which the latter approach of

filling these values is chosen. There are four options to select a

new value ranging from a constant value like zero to the mean,

mode, or median of the selective attribute. Either one could be

okay but we carried out a pre-experiment with a small portion

of the dataset before major experiments to find out the best

replaced value.

b) Feature scaling: On reviewing the dataset, one can

find huge disparities between values from different columns

with attributes like SYN, PSH flag count have a smaller range

on values while attributes like duration, total length have large

magnitude values. To scale these values we use

standardization which works on continuous numeric features

and makes sure data in a column has 0 mean and unit

variance. It is done to ensure each feature has equal weightage

and let gradient descent converge quickly in the model

training. The formula for standardization is given in

equation 2:

newval = (val – mean_val) / sd (2)

TABLE II. DATASET DESCRIPTION

S.no Filename Label Records

File0
Monday-

WorkingHours.pcap_ISCX.csv

Benign (Normal

activities)
529918

File1
Tuesday-

WorkingHours.pcap_ISCX.csv

Benign,FTP-

Patator,SSH-Patator
445909

File2
Wednesday-

WorkingHours.pcap_ISCX.csv

Benign, DoS
GoldenEye

DoSHulk, DoS

slowhttptest, DoS
slowloris,

Heartbleed

692703

File3

Thursday-WorkingHours-

Morning-
WebAttacks.pcap_ISCX

Benign, Web

attacks (BruteForce,
Sql injection, XSS

170366

File4

Thursday-

WorkingHoursAfternoon-

Infilteration.pcap_ISCX.csv

Benign, Infiltration 288602

File5

Friday-

WorkingHoursMorning .pcap_I

SCX.csv

Benign, Bot 191033

File6
Friday-WorkingHours-
AfternoonPortScan.pcap_ISCX

.csv

Benign, PortScan 286467

File7
Friday-WorkingHours-
AfternoonDDos.pcap_ISCX.cs

v

Benign, DDoS 225745

Where val is actual value, mean_val and sd are mean and
standard deviation of respective attribute.

c) One hot encoding: The last column/attribute

representing class label in train dataset is one hot encoded to

make it compatible with 1D-CNN model while training which

expects target vector in said form. This results in additional

columns for the output vector which is equal to the number of

class labels (attacks and normal labels).

B. Model Architecture

The overall general architecture used in the experimental
setup has been shown in Fig. 2. As we deal with different files
the architecture of these separate models is uniform/identical
albeit with minor changes. It consists of an input layer
sequentially connected to 2 or 3 CNN layers intermixed by
dropout and followed by flatten layer which further connects
to a fully connected (FC) or dense layer and finally output
layer. Input shape provided to the first Conv layer is (1* C)
with 1 specifying the steps which is one row at a time and C
states the number of features. With Conv layer mapping input
to high dimension space, its output with dimension 1*C*f1 is
the feature map containing f1 number of filters which learns
network information from input data. This output is then
applied to the activation function and for that purpose, the one
used mostly with the Conv layer, ReLu is used. Dropout is
then used to minimize the interaction of feature detectors
switching off some connections randomly in the network
thereby preventing model overfitting [35]. Dropout doesn’t
decrease the number of parameters in the model, it only
prevents some of them from participating in the weight update
process. The Softmax activation function is combined with an
FC layer to output the classified results. The mathematical

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

608 | P a g e

www.ijacsa.thesai.org

formulae for ReLu and Softmax activation function are given
in equation 3 and 4 where x and xi are the input values while
f(x) and Softmax(x) being the output values passed to the next
layer respectively.

f(x) = max (0, x) (3)

∑

 (4)

1) Parameters and Hyper-parameters: Another important

aspect of model architecture are the parameters, which are

learned through training and hyper-parameters, selected or

chosen manually. In the 1D-CNN model building, the type of

hyper-parameters ranges from general hyper-parameters like

batch size, number of iterations to the model-specific hyper-

parameters like a number of layers, filters, size of the kernel,

an initial rate of learning, loss function, optimizer, and

activation function used. The total parameters depend on

certain hyper-parameters like number of layers, filters or

nodes in a certain layer and size of filter which might vary

from model to model. The general architecture of the proposed

model would be like: “Conv1(f1,k1)-Dr1(r1)-Conv2(f2,k2)-

Dr2(r2)-----Convn(fn,kn)-Drn (rn)-FC1(nd1)-FC2(nd2)”.

Here Conv, Dr, FC are convolutional, dropout, and fully
connected layers respectively. The fi, ki refers to the number
of filters and kernel-size in the ith convolutional layer whereas
ri signifies the rate of dropout. The nodes in the FC layers are
nd1 and nd2 with the latter related to the nodes in the output
layer and equal to the number of classes. As hyper-parameters
are selected manually, the number of trainable parameters can
be calculated as:

a) No of parameters in first Conv layer= C*f1*k1+b1. (b

represents bias)

b) No of parameters in other Conv layer= fi-1*fi*ki + bi.

c) No of parameters in Dense layers = ndi-1*ndi + bi.

Fig. 2. Architecture of the 1D-CNN Model.

Thus, the total number of parameters in the particular
model architecture is equal to the sum of parameters in all the
layers. It is to be noted that the use of dropout is optional and
has no effect on the number of parameters. Consider a model,
for instance, with configuration “Conv(80,1)-Dr(0.2)-
Conv(50,1)-Dr(0.2)-FC(50)-FC(2)”. Total number of trainable
parameters could be calculated as: (78*80*1+80) +
(80*50+50) + (50*50+50) + (50*2+2) = 13022 trainable
parameters.

C. Model Evaluation

As our work is based on classification of multiple classes,
multi-class confusion matrix is used to find or display correct/
incorrect instances and its constituents are TP (True positive),
TN (True negative), FP (False positive) and FN (False
negative). Using these various evaluation indicators like
Precision (Pr), Recall (Rc) and F1_score (F1_sc) can be
derived to be further used for evaluation of model.

For classifying attack data, Pr or PPV (positive predicted
value) specifies how many attack predictions actually belong
to the attack data.

PPV = TP / (TP + FP) (5)

Also Rc or TPR (true positive rate) specifies the ratio of
predicted attack instances to the actual attack instances.

TPR = TP / (TP + FN) (6)

Both PPV and TPR are suitable in their own way as former
tells how attack predictions are relevant and latter tells the
relevant records being predicted. Instead of choosing one over
other there is another single metric F1_score calculating the
harmonic mean of the both.

F1_sc = (2 * PPV * TPR) / (PPV + TPR) (7)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup and Model Configuration

Experiments are conducted on google colab platform using
python language and keras is the framework used for building
1D-CNN model with tensorflow as backend. Other important
libraries used are pandas, numpy for loading/storing dataset
and sklearn for preprocessing tasks and evaluating model and
calculating results.

Different models built and evaluated might have distinct
configurations of their architecture resulting in a different
number of parameters and hyper-parameter values. The
number of epochs and batch-size is not unique for each model
but there are still some hyper-parameter values that are
identical for all the models implemented in experiments and
they are shown in Table III. Table IV shows the configuration
parameters for each model, built during experimentation, with
its complete model architecture.

B. Results

The overall experimental process is divided into two
phases:

Phase1: Separate models built on individual files of
dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

609 | P a g e

www.ijacsa.thesai.org

TABLE III. HYPER-PARAMETERS UNIFORM FOR ALL MODELS

Hyper-parameter Value

Optimizer used Adam

Kernel size 1

Learning rate 0.001 decay after certain epochs

Loss Categorical Crossentropy

Activation function in all Conv layer ReLu

Activation function in Dense layer Softmax

TABLE IV. CONFIGURATION PARAMETERS FOR MODELS USED IN

EXPERIMENTS

Model Epochs
Batch

size
Model Architecture

Trainable

parameters

Model1 50 100

Conv(50,1)-

Conv(40,1)-
Conv(30,1)-FC(20)-

FC(3)

7903

Model2 50 100

Conv(50,1)-

Conv(40,1)-
Conv(30,1)-FC(20)-

FC(6)

7966

Model3 100 100

Conv(40,1)-Dr(0.1)-

Conv(30,1)-Dr(0.1)-
Conv(30,1)-Dr(0.2)-

FC(20)-FC(4)

6024

Model4 20 100

Conv(80,1)-Dr(0.2)-

Conv(50,1)-Dr(0.2)-
FC(50)-FC(2)

13022

Model5 100 70

Conv(50,1)-

Conv(50,1)-FC(25)-
FC(2)

7827

Model6 60 40

Conv(40,1)-Dr(0.2)-

Conv(30,1)-Dr(0.2)-

FC(20)-FC(2)

5052

Model7 40 40

Conv(40,1)-Dr(0.1)-

Conv(30,1)-Dr(0.1)-

FC(20)-FC(2)

5052

Model(phase2) 50 100

Conv(60,1)-
Conv(50,1)-

Conv(40,1)-FC(20)-

FC(8)

10818

Phase2: Model built on combined dataset except file0.
Also some labels are combined and renamed to make it more
balanced.

1) Phase1: During the first phase of experiments,

individual files of the dataset have been used for building

different models which means we have separate models for

many different types of attacks. This means model1 is built on

file1, model2 upon file2 and so on. This will be helpful if one

wishes to detect a certain specific type of attack. For instance

if you are interested in detecting DDoS attacks then model

build using file7 will be useful and likewise for identifying

bots model created using file5 is selected. Also processing

individual files separately is good for attacks with less

instances as they have better prevalence in their respective

files rather than in combined dataset. It should be emphasized

that file0 is not used in the experimental process as it contains

only benign traffic which means seven models were trained

and evaluated. Each model built is used to classify normal and

corresponding attacks in the individual files and further tested

on 20% test data of their respective classes.

Table V shows the detailed evaluation of each model as
their overall metrics results has not been displayed but
detailed result for each class in every model as huge
imbalance in the dataset would always results in better overall
model performance. From the detailed analysis we can
observe that attacks like XSS, Sql Injection and Bot have not
performed well as compared to other attacks.

2) Phase2: For the second phase of experiments,

combined dataset is considered for classification and all files

except file0 is taken into account. As other files too containing

benign records leading to large number of normal records in

combined dataset, inclusion of records of file0 could led to

more imbalanced data. So dataset is combined with seven files

and this combined dataset contains 2,300,825 overall records.

Model built on this could classify all attacks (14) in the

dataset.

TABLE V. RESULTS (PHASE1)

Model Class Label
PPV

(%)

TPR

(%)

F1_sc

(%)

Model1

Benign 99.97 99.99 99.98

FTP-Patator 99.87 99.62 99.75

SSH-Patator 99.2 98.41 98.8

Model2

Benign 99.98 99.71 99.85

DoS GoldenEye 99.8 99.06 99.43

DoS Hulk 99.51 99.99 99.75

DoS Slowhttptest 96.44 99.2 97.8

DoS slowloris 99.13 99.22 99.18

Heartbleed 100 80 88.89

Model3

Benign 99.98 99.8 99.89

Web Attack – Brute Force 61.39 99.32 75.88

Web Attack – XSS 100 60 75

Web Attack – Sql Injection 22.22 1.56 2.92

Model4
Benign 100 100 100

Infiltration 100 77.78 88.72

Model5
Benign 99.62 100 99.8

Bot 100 64.82 79.53

Model6
Benign 99.98 99.99 99.99

PortScan 99.99 99.98 99.99

Model7
Benign 99.96 99.98 99.97

DDoS 99.98 99.97 99.98

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

610 | P a g e

www.ijacsa.thesai.org

As evident from the Table VI records containing benign
traffic constitute 75.76% of all the instances in the
concatenated dataset while attacks barring Dos/DDoS or
Portscan are low prevalent. The combined dataset suffers from
a class imbalance situation with some labels like Heartbleed,
XSS having very few records which often results in a low
detection rate for these labels [36]. We ran an experiment to
build a model that would classify all 15 classes (14 attacks) in
the dataset and the results are shown in Table VII where it can
be easily observed that attacks with few testing records owing
to their low prevalence are not classified properly. Attacks
with sufficient training instances have performed satisfactory
but for minority label attacks some attacks have zero correctly
classified instances while others too have low detection
accuracy.

TABLE VI. SHOWS PERCENTAGE OF OCCURRENCE OF EACH LABEL IN

COMBINED DATASET

S

n

o

New

Attack

label

Old Attack

label

No. of

Recor

ds

% of

Total

Records

No. of

Records

(new)

% of Total

Records

(new)

1 Benign Benign
17431

79
75.76 1743179 75.76

2
Brute

Force

FTP-

Patator
7938 0.345

13835 0.60
SSH-

Patator
5897 0.2562

3 DoS

DoS
GoldenEye

10293 0.447

252672 10.98

DoS Hulk
23107

3
10.04

DoS
slowloris

5476 0.239

DoS

slowhttptest
5499 0.251

Heartbleed 11 0.0004

4
Web

Attacks

Web
Attack–

Brute Force

1507 0.0654

2180 0.0947
Web Attack

– XSS
652 0.028

Web
Attack– Sql

Injection

21 0.00091

5 Bot

Bot 1966 0.085

2002 0.087

Infiltration 36 0.0015

6
PortSca

n
PortScan

15893

0
6.9075 158930 6.9075

7 DDoS DDoS
12802
7

5.5643 128027 5.5643

To solve the class imbalance situation relabeling is done
by merging minority class labels into one class label which
proves to be a good measure for improving model
performance. It is not done randomly but in a strategic way by
merging similar categories of attacks. For example, SQL
injection, XSS, and web attack-brute force are all types of web
attacks so they are merged together and given new labels (web

attacks). Full details of the new attack label along with the
percentage of occurrence are shown in the Table VI. After
relabeling it now contains 7 classes including 6 attack labels
and a model based on 1D-CNN is trained and then evaluated.
The results for the same are shown in Table VIII and Table IX
with the former displaying the confusion matrix based on all
the labels and the latter illustrating the detailed results in
metrics for all class labels. Analyzing the confusion matrix in
Table VIII, the number of classifications or misclassifications
with a particular class label predicted as another label can be
properly seen. The same can be analyzed from Table IX as a
high number of true positives were achieved for all class
labels with the exception of the Bot and Web attacks label.
The overall performance of the model is better as more than
99.6% output has been achieved in PPV, TPR, and F1_sc. Bot
and Web attacks are the two labels with gloomy detection rate
resulting in low values of TPR and F1_sc.

3) Experiment with deep neural network: To compare and

further validate our proposed model, a DNN based on an

artificial neural network has also being used. The

experimental setup is identical with 1D-CNN i.e., the same

preprocessing steps and evaluation metrics. DNN comprises of

a) input layer with 78 nodes; b) 3 hidden layers with 60, 50,

and 20 nodes, respectively; c) output layer with 8 nodes(like

phase2). Also, dropout with 0.1 value is used between hidden

layers to prevent overfitting. The results are depicted in

Tables X and XI.

Table X displays the confusion matrix evaluated from the
DNN-model and Table XI shows the comparative analysis of
1D-CNN with DNN. It can be analyzed from the latter table
that 1D-CNN model has outperformed the model built using
DNN in detection of network attacks.

TABLE VII. INITIAL RESULTS-15 CLASS CLASSIFICATION (PHASE2)

Label PPV (%) TPR (%) F1_sc (%)

BENIGN 99.71 99.78 99.75

Bot 90.61 41.41 57.33

DDoS 99.98 99.92 99.96

DoS GoldenEye 99.57 98.47 99.12

DoS Hulk 99.09 99.20 99.15

DoS Slowhttptest 91.28 98.69 95.11

DoS slowloris 98.71 98.88 98.85

FTP-Patator 99.60 99.27 99.47

Heartbleed 100.00 66.67 80.00

Infiltration 50.00 100.00 67.00

PortScan 99.36 99.95 99.65

SSH-Patator 95.70 99.14 97.66

Web Attack Brute Force 100.0 11.89 21.58

Web Attack Sql Injection nan 0.00 0.00

Web Attack XSS 0.00 0.00 0.00

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

611 | P a g e

www.ijacsa.thesai.org

TABLE VIII. CONFUSION MATRIX USING 1D-CNN FOR 7 CLASS CLASSIFICATION

 True

Predicted
BENIGN Bot Brute Force DDoS DoS PortScan Web Attacks All

Benign 347743 3 30 11 791 205 0 348783

Bot 253 145 0 0 0 0 0 398

Brute Force 1723 0 2665 0 0 2 0 2683

DDoS 99 0 0 25534 1 0 0 25558

DoS 136 0 3 0 50043 0 0 50509

PortScan 5 0 0 0 11 31807 0 31823

Web Attacks 353 0 24 0 0 0 34 411

All 350112 148 2712 25545 50846 32014 34 460165

TABLE IX. DETAILED RESULTS- 7 CLASS CLASSIFICATION

Label TP FN FP PPV (%) TPR (%) F1_sc (%)

BENIGN 347743 1040 787 99.77 99.70 99.74

Bot 145 253 3 97.97 36.43 53.11

Brute Force 2665 18 56 97.94 99.33 98.63

DDoS 25534 24 11 99.96 99.91 99.93

DoS 50371 138 804 98.43 99.73 99.07

PortScan 31807 16 205 99.36 99.95 99.65

Web Attacks 34 377 0 100.00 8.27 15.28

TABLE X. CONFUSION MATRIX USING DNN FOR 7 CLASS CLASSIFICATION

 True

Predicted
BENIGN Bot Brute Force DDoS DoS PortScan Web Attacks All

Benign 345697 6 69 9 2767 234 1 348783

Bot 257 141 0 0 0 0 0 398

Brute Force 31 0 2650 0 2 0 0 2683

DDoS 39 0 0 25517 2 0 0 25558

DoS 222 0 5 2 50280 0 0 50509

PortScan 51 0 0 1 11 31760 0 31823

Web Attacks 375 0 23 0 3 0 10 411

All 346672 147 2742 25529 53065 31994 11 460165

TABLE XI. COMPARISON OF 1D-CNN WITH DNN

 PPV (%) TPR (%) F1_sc (%)

Label CNN DNN CNN DNN CNN DNN

BENIGN 99.77 99.72 99.70 99.12 99.74 99.42

Bot 97.97 95.92 36.43 35.43 53.11 51.74

Brute Force 97.94 96.47 99.33 98.77 98.63 97.61

DDoS 99.96 99.95 99.91 99.84 99.93 99.90

DoS 98.43 94.75 99.73 99.55 99.07 97.09

PortScan 99.36 99.27 99.95 99.80 99.65 99.53

Web Attacks 100.00 90.91 8.27 2.43 15.28 4.74

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

612 | P a g e

www.ijacsa.thesai.org

Analysis: While analyzing the results, it can be observed.

 In both phases, attacks with reasonable instances for
training have produced exceptionally better results on
testing data. Attacks like DoS, Brute force, DDoS, and
Portscan have specific attack pattern and they are better
detected using flow based features.

 Overall Bot and Web attacks have shown poor
performance in both phases.

 Analyzing the results of Bot in phase2 (Table VIII),
one can see similarities between Bot and Benign traffic
as all FN and FP in case of Bot attack label belongs to
benign label which indicates Bot is not classified as
any other attack by the model and no other attack has
been classified as Bot attack. This signifies the
resemblance between the two as the distinction
between bot and normal behavior is blurred.

 As for web attacks, their comparatively lower
performance could be attributed to the fewer training
instances in the dataset as they have less than 0.1 of
total instances. Or these attacks don’t have a specific
pattern and they could be better detected using payload
content.

 Also our proposed 1D-CNN model has outperformed
the model built using DNN (Table XI).

V. CONCLUSION

In this paper, we proposed a novel way of identifying
attacks in the dataset using 1D-CNN as a classification
approach. The proposed 1D-CNN model has performed better
with the least number of misclassifications. Experiments were
conducted with a model trained and evaluated on individual
files of the dataset as well on a combined dataset which was
further relabeled to handle class imbalance situation.
Satisfactory performance was recorded in both cases for the
majority of labels as more than 99% output achieved in each
of the evaluation indicators used. Some attacks with low
prevalence like bot and web attacks have a comparatively
lower detection rate. Experiments using DNN have also been
done for comparative purposes and further validation of the
proposed model.

As for future work, other DL algorithms need to be
explored for training the model and a study regarding hyper-
parameter optimization should be done to find the optimal
model configuration. Moreover, other datasets with the latest
attack types and real world traffic should be investigated for
detection of cyber-attacks. Addition of records of bots and
web related attacks needs to be done as more data is needed
for training and to improve their detection accuracy.

REFERENCES

[1] M. Uma, and G. Padmavathi, “A Survey on Various Cyber Attacks and

their Classification,” Int. J. Netw. Secur. 15(5), pp. 390-396, 2013.

[2] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer,

“Taxonomy and survey of collaborative intrusion detection,” ACM
Computing Surveys (CSUR), 47(4), pp. 1-33, 2015.

[3] A. L. Buczak, and E. Guven, “A survey of data mining and machine

learning methods for cyber security intrusion detection,” IEEE
Communications surveys & tutorials, 18(2), pp. 1153-1176, 2015.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the

IEEE, 86(11), 1998, pp.2278-2324.

[5] A, Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks” In Advances in neural

information processing systems, pp. 1097-1105, 2012.

[6] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014, arXiv preprint arXiv:1409.1556.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions,” In Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015 pp. 1-9.

[8] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.

Inma, “1D convolutional neural networks and applications: A survey,”
2019, arXiv preprint arXiv:1905.03554.

[9] A. Jacovi, O.S. Shalom, and Y. Goldberg, Understanding convolutional
neural networks for text classification,” 2018, arXiv preprint

arXiv:1809.08037.

[10] H. Cho, and S.M. Yoon, “Divide and conquer-based 1D CNN human
activity recognition using test data sharpening,” Sensors, 18(4), p.1055,

2018.

[11] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time

motor fault detection by 1-D convolutional neural networks,” IEEE

Transactions on Industrial Electronics, 63(11), pp.7067-7075, 2016.

[12] S. Duque, and M.N. Omar, 2015, “Using data mining algorithms for

developing a model for intrusion detection system (IDS),” Procedia

Computer Science, 61, pp.46-51, 2015.

[13] S. Aljawarneh, M. Aldwairi, and M.B. Yassein, “Anomaly-based

intrusion detection system through feature selection analysis and
building hybrid efficient model,” Journal of Computational Science, 25,

pp.152-160, 2018.

[14] A. Saied, R.E. Overill, and T. Radzik, “Detection of known and
unknown DDoS attacks using Artificial Neural

Networks,” Neurocomputing, 172, pp.385-393, 2016.

[15] R. Singh, H. Kumar, and R.K. Singla, “An intrusion detection system

using network traffic profiling and online sequential extreme learning

machine,” Expert Systems with Applications, 42(22), pp.8609-8624,
2015.

[16] R. Priyadarshini, and R. K. Barik, “A deep learning based intelligent
framework to mitigate DDoS attack in fog environment,” Journal of

King Saud University-Computer and Information Sciences, 2019

https://doi.org/10.1016/j.jksuci.2019.04.010.

[17] T. Aldwairi, D. Perera, and M.A. Novotny, “An evaluation of the

performance of Restricted Boltzmann Machines as a model for anomaly

network intrusion detection,” Computer Networks, 144, pp.111-119,
2018.

[18] T. Wisanwanichthan and M. Thammawichai, “A Double-Layered
Hybrid Approach for Network Intrusion Detection System Using

Combined Naive Bayes and SVM,” IEEE Access, 9, pp.138432-138450,

2021.

[19] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “ Improving

Performance of Autoencoder-Based Network Anomaly Detection on

NSL-KDD Dataset,” IEEE Access, 9, pp.140136-140146, 2021.

[20] Y. Liu, S. Liu, and X. Zhao, “Intrusion detection algorithm based on

convolutional neural network,” 2017 DEStech Transactions on

Engineering and Technology Research, (iceta).

[21] W.H. Lin, H.C. Lin, P. Wang, B.H. Wu, and J.Y. Tsai, “Using

convolutional neural networks to network intrusion detection for cyber
threats,” In 2018 IEEE International Conference on Applied System

Invention (ICASI), IEEE, pp. 1107-1110, April 2018.

[22] Y. Jia, M. Wang, and Y. Wang, “Network intrusion detection algorithm

based on deep neural network,” IET Information Security, 13(1), pp.48-

53, 2018.

[23] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An intrusion detection model

based on feature reduction and convolutional neural networks,” IEEE
Access, 7, pp.42210-42219, 2019.

https://doi.org/10.1016/j.jksuci.2019.04.010

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

613 | P a g e

www.ijacsa.thesai.org

[24] N. Shone, T.N. Ngoc, V.D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE transactions on emerging topics in

computational intelligence, 2(1), pp.41-50, 2018.

[25] S. Naseer, Y. Saleem, S. Khalid, M.K. Bashir, J. Han, M.M. Iqbal, and
K. Han, “Enhanced network anomaly detection based on deep neural

networks,” IEEE Access, 6, pp.48231-48246, 2018.

[26] A.K. Verma, P. Kaushik, and G. Shrivastava, “A Network Intrusion

Detection Approach Using Variant of Convolution Neural Network,”

In 2019 International Conference on Communication and Electronics
Systems (ICCES), IEEE, July 2019, pp. 409-416.

[27] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep learning

methods on network intrusion detection using NSL-KDD dataset,” IEEE
Access, 8, pp.29575-29585, 2020.

[28] V. Gustavsson, “Machine Learning for a Network-based Intrusion
Detection System: An application using Zeek and the CICIDS2017

dataset,” 2019.

[29] B. Rababah, and S. Srivastava, “Hybrid Model For Intrusion Detection

Systems,”2019, arXiv preprint arXiv:200308585.

[30] D. Aksu, S. Üstebay, M.A. Aydin, and T. Atmaca, “Intrusion detection
with comparative analysis of supervised learning techniques and fisher

score feature selection algorithm,” In International Symposium on

Computer and Information Sciences, Springer, Cham, September 2018,
pp. 141-149.

[31] Z.K. Maseer, R. Yusof, N. Bahaman, S.A. Mostafa, and C.F.M. Foozy,
“Benchmarking of machine learning for anomaly based intrusion

detection systems in the CICIDS2017 dataset” IEEE Access, 9,

pp.22351-22370, 2021.

[32] J. McHugh, “Testing intrusion detection systems: a critique of the 1998

and 1999 darpa intrusion detection system evaluations as performed by

lincoln laboratory,” ACM Transactions on Information and System
Security (TISSEC), 3(4), pp.262-294, 2000.

[33] I. Sharafaldin, A.H. Lashkari, and A.A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,”

In ICISSP, January 2018, pp. 108-116.

[34] G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, and A.A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,”

In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP), February 2016, pp. 407-414.

[35] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” 2012, arXiv preprint arXiv:1207.0580.

[36] S. Wang, L.L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE transactions on neural

networks and learning systems, 29(10), pp. 4802-4821, 2018.

