
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Efficient Weighted Edit Distance and N-gram
Language Models to Improve Spelling Correction of

Segmentation Errors

Hicham GUEDDAH
Intelligent Processing and Security of Systems Team- F.S.R,

E.N.S, Mohammed V University in Rabat,
B.P:8007, Avenue des Nations Unies, Agdal, Rabat, Morocco.

https://www.researchgate.net/profile/Hicham-Gueddah

Abstract—In most research that has dealt with the correction
of spelling errors, the errors are caused by the misuse of space
(deletion or insertion of space) are not tackled. Forgetting to
deal with this type of errors in the texts poses a problem of
understanding and ambiguity of the meaning of the sentence
containing these errors. In this article, we propose a new
approach to correct errors due to the insertion of space in a
word, and at the same time correct other types of editing errors.
This approach is based on the edit distance and uses bi-grams
language models to correct words in context. The test conducted
on hundreds of erroneous words (by insertion of space and/or by
simple editing errors) made it possible to assess the relevance and
validity of the methods developed to correct this type of error.
The approaches proposed in this article provide a very important
clarification and reminder by comparing them to those of other
existing approaches.

Keywords—Spelling correction; error; natural language; inser-
tion; space; distance; language models; probability

I. INTRODUCTION

For several years now, the language industry and new infor-
mation and communication technologies have been evolving.
Alongside this progress, thousands of electronic documents
such as newspapers, emails, blogs, dissertations and theses
are produced on a daily basis. Therefore, the existence and
need for spelling correction systems in NLP applications is of
paramount importance to improve and help with sound and
unambiguous writing.

Automatic spelling error correction is currently ubiquitous
and integrated into all computer tools such as word processing,
email, social media, search engines, which are frequented
every day by millions of people around the world.

For a long time, by analyzing the strategy of correction
systems integrated into large word processing software such as
Microsoft’s WinWord, OpenOffice Writer, or those embedded
in web textures (email, search engine), we have pointed out
that these remain ineffective for correcting certain types of
spelling errors. They’re committed when typing Arabic text,
for example, which we cite as errors resulting from insertion
and/or untimely deletion of the space character in a lexical
form.

Their strategies consist only in proposing solutions sepa-
rately to segments divided by the insertion of space.

Automatic correction of spelling errors has been the topic
of much research since the 1960’s [1]. Despite the monopoliza-
tion of this axis by the major computer production industries,it
remains a promising domain of research [2][3]. The principle
is to propose the most similar solutions to a word detected out
of vocabulary based on the lexical similarity inter words.

Among the work in the subject area of spelling correction,
we mainly include:

Damerau’s analysis of typographical errors [4]. He indi-
cated that about 80-95% of mistakes in English texts are
unique errors that are induced by poor insertion, deletion,
permutation of a single character or the transposition of two
adjacent character. This analysis has been the cornerstone of
the concept of error as a simple or multiple combinations
of operations, called elementary editing operations (insertion,
deletion, transposition, and permutation).

Based on Damerau’s work, Levenshtein [5] considered
only three editing operations (insertion, deletion, permutation),
and subsequently defined a metric that allows us to compare
two words while calculating the number of editing operations
undergone on one word to turn it into some other word. This
distance is also called edit distance which remains, despite
the technique, the most widely used in spelling correction and
which has also been the themes of several adaptations and
weighting [6]. Then a series of similar works were carried
out. We can put them into different categories:

• Metric-based correction approaches such as Jaro dis-
tance [7], Jaro-Winkler distance [8], Jaccard distance
[9], distance of Stoilos [10].

• Probabilistic correction approaches such as n-grams
decomposition [11], the correction method based on
the noisy channel model [12], Alpha-code methods
[13], or those based on probabilistic automatons [14],
[15]

• Since 2012 Gueddah, Yousfi and Nejja have carried
out a series of work on spelling correction for the
Arabic language, with the aim of improving the
scheduling rate of solutions returned by the classical
edit distance [16] [17] [18], or integrating the morpho-
logical analysis into the spelling correction phase [19]
[20], or integrating context into spelling correction
[21] [22].

www.ijacsa.thesai.org 934 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

II. RELATED WORK

Based on our bibliographical research on spelling correc-
tion, we noticed that the bulk of this work did not adequately
address the errors due to insertion or deletion of space in the
seized texts. The number of works dealing with this category
of error is very negligible compared to the number of works
in the field of spelling correction.

The work that dealt with errors due to the insertion or
deletion of space is of two types:

• Census-type studies: Mitton [3], and Kukich [1] noted
that more than 14% of spelling mistakes in seized
text are mainly related to the omission of the space
between words. Conforming to a statistical study of
errors made in Urdu typed text, Tahira [23] found
out that space errors are a fairly significant percentage
of errors, more than 75% of errors are neighborhood
errors, 32% of which are linked to the insertion of
space in words.

• Research work that provides hints for dealing with
errors due to the insertion/deletion of space in words,
either at the level of detection of this type of error
or in the actual correction. This work includes, for
example, the work that relies on the generation of all
possible partitions of the erroneous word and testing
whether or not the segments exist in the dictionary
[24][25][26].

• The study presented by Alkanhal and al [27], ac-
cording to the latter, the correction of space insertion
errors uses two procedures, the initiative is to merge
the different neighboring words from the wrong word.
The outcome of this procedure is a list of the various
possible combinations of this merger. This list may
contain valid fragments and other erroneous fragments
that will subsequently be handled on to the second
correcting procedure.

In this article, we suggest a new metric approach that uses
bi-gram language models to correct spelling errors due to the
insertion of spaces (also called segmentation errors), into a
correct or incorrect word taking into account the context in
which this type of error was induced.

III. ERRORS DUE TO SPACE INSERTION AND DELETION

A. Defining Space Errors

Although the emergence of new generations of near-present
correctors in most word processing editor, emails, blogs, social
media, smartphones, these remain ineffective and unsuccessful
[28] with regard to correcting errors due to the insertion or
deletion of space in or between words. These forms of mistakes
can be induced in several situations:

• Because one writes by accelerating without regard to
who has been seized, the editor may unintentionally
insert one or more spaces within a word in the belief
that he inserted it to separate between two words.
Therefore, this type of error leads to the appearance of
two or more segments of words that may be lexicon
or wrong words.

• Moreover, this kind of error can be due to poor optical
text recognition (OCR), which can additionally insert
the space character inside the word, or as a result
of a file type conversion, such as converting Word
documents to Pdf or vice versa.

However, the problem of actual word error is more com-
plex. Generally, such an error disrupts the syntax and then
rectify it.

Example:

Instead of typing the word ”misspelled”, you add a space
in that word and you get both sequences ”missp” and ”elled”.
Instead of typing the two words ”to get vaccinated”, you
remove the space between these two words, and you get the
only word ”toget vaccinated”.

There are cases where this type of error is combined
with other types of editing errors, i.e. in the same word w,
we have errors due to editing operations more than a space
insertion(after inserting the space we have both words w1 and
w2).

In this case, there are four cases:

• Both segments w1 and w2 are not changed. In this
case the solution of the correction is simply w1-w2-w,
for example ”vacci nating instead of vaccinating”.

• The first segment w1 has been modified, and w2 not,
for example: ”vaxi nating instead of vaccinating”.

• w2 has been modified and w1 not, example of ”vacci
nathing instead of vaccinating”.

• Both segments w1 and w2 are modified, for example:
”vaxin ating instead of vaccinating”.

In the last three cases we must stick the two segments w1

and w2 (w1-w2) and then correct the new merged word.

In the recently published work Yousfi and al.[30], the
authors used and adapted the Levenshtein’s algorithm to detect
and correct errors due to space deletion between words in the
case of Arabic texts.

In this paper, we will propose a new approach to correct
space insertion errors, and to integrate it with other approach
that which corrects deletion errors and other editing errors, in
a single one that corrects these three types of error at the same
time.

B. Introducing the Approach to Correcting Deletion Space
Errors

Either werr a erroneous word of length n, and wi a word
of the lexicon of pi length. Among the errors in the wrong
word werr perhaps the space that is removed between several
words more other types of editing errors (insertion, deletion,
and permutation).

The approach is done in two stages:

• The detection of the position in the word werr where
space will be inserted.

• The correction of the two sequences obtained after the
insertion of the space.

www.ijacsa.thesai.org 935 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

We note by: DL(werr, wi) = DL(n, pi), Levenshtein’s
distance between two words werr and wi. For the detection of
the position where space will be inserted (noted pos.spacei),
the authors gave the following rule:

pos.spacei = argmin
j=1,. . . ,n

DL(j, pi) (1)

After the insertion of space, we get the two words w1spacei ,
w2spacei , and we move on to the second phase.

The second phase verifies whether the two words exist in
the lexicon or not, otherwise we move on to the correction.
To correct errors due to the deletion of spaces between words
and other types of editing errors at the same time, the authors
defined a new distance (noted DLS based on the Levenshtein
distance (edit distance):

DLS(werr, wi) = Min[DL(werr, wi);DL(werr, w1spacei)

+space+ w2spacei]

whereDL is the edit distance
(2)

The scheduling of solutions is based on this new DLS

distance.

In the sequel, we will present the new approach we propose
in this paper to correct errors in the insertion of space inside
word, and then we will show how to integrate it with the
previous approach in a single one. Then all types of spelling
errors can be corrected (editing errors, errors due to deletion
and insertion of space).

IV. THE APPROACH TO CORRECTING SPACE INSERTION
ERRORS

This approach is based on the edit distance and on the bi-
grams language models. In the rest of this paragraph, we will
give a little reminder on these two concepts.

A. The Edit Distance

The metric method introduced by Levenshtein [5] measures
the similarity between two words by calculating an edit dis-
tance. The edit distance is defined as the minimum number
of basic editing operations required to turn an erroneous word
into another word in the dictionary. Thus, to correct a wrong
word, we retain a set of solutions requiring as few editing
operations as possible.

The procedure for calculating the distance of Levenshtein
between two strings X = x1x2. . . xm of length m and Y =
y1y2. . . yn of length n, consists of calculating from near to
near in a matrix of order (m∗n) the edit distance between the
different sub-chains of X and Y .

The calculation of the case (i,j), which corresponds to the
editing distance between the sub-chains Xi

1 = x1x2 . . . xi

and Y j
1 = y1y2 . . . yj , is given by the following recurring

relationship:

D(i, j) = Minimum

{
D(i− 1, j) + 1,
D(i, j − 1) + 1,
D(i− 1, j − 1) + cost

(3)

with
cost =

{
0 if xi−1 = yj−1
1 otherwise (4)

The limitation of such a spelling correction system using
the edit distance is that it does not allow a good scheduling of
suggested solutions for a set of candidates with the same edit
distance.

B. N-gram Language Models

The importance of language models is quite clear. They
are used in several areas of NLP, such as continuous speech
recognition, machine translation, etc. The main goal in these
different applications is to have some solutions weighed
against others.

A n-gram language model shows the fact that the proba-
bility of a word appearing after a sequence of words can be
given only on the basis of the last n− 1 words [29].
This model verifies:

Pr(wi/w1, w2..., wi−1) = Pr(wi/wi−n+1, .., wi−1) (5)

In practice, the value of n does not exceed order 3.

• If n = 1, the model is called a uni-gram model. This
type of model does not take into account any history
of the word.

• If n = 2, the model is called a bi-gram model. This
type of model only takes into account the previous
word: Pr(wi/w1, w2..., wi−1) = Pr(wi/wi−1)

• If n = 3, the model is called a tri-gram model.
This type of model takes into account only the
previous two words: Pr(wi/w1, w2..., wi−1) =
Pr(wi/wi−1, wi−2)

For the construction of n-gram language models, learning is
done on a corpus of texts that must encompass all possible
successions of words belonging to the vocabulary of the
language used. This construction consists of estimating all the
probabilities already mentioned.

V. PROCESSING SPACE INSERTION ERRORS

The processing of this type of error normally goes through
the following two steps: the detection that one has an error
due to the insertion of space into a correct or erroneous word,
and the phase of correction.

A. Detection of Errors Due to the Space Insertion

Here we cite methods that are not 100% correct to detect
errors in inserting space into a correct or erroneous word. We
have cases where the probability of having a space insertion
error is very high.

Among these cases we cite:

• If two successive words w1 and w2 are erroneous,
then the probability is very high to have inserted a
space that gave us these two wrong words. In this
case, we concatenate the two words, and we treat
w1 − w2 as a single word that must be submitted to

www.ijacsa.thesai.org 936 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

the correction procedure. However, this is not always
the case as we can have two successive erroneous
words without having a space insertion error (”The
wolrd vaxinated against Covid” instead of ”The world
vaccinated against Covid”

• If we have a word consisting of a single character,
then this may be due to a bad insertion of space into
a word (”v accination” instead of ”vaccination”.

• If we have some kind of erroneous word and the
following word is correct, it may be due to a space
insertion into a word (”vacci nation” instead of ”
vaccination”).

So from what we have presented, it is very difficult to fix
cases and say that they are the only ones that exist for space
insertion errors.

There are even cases where you insert a space into a word
and you get two sequences that are both correct (”foot ball”
instead of ”football”).

For this, we will treat the problem of space insertion
according to two methods:

• Method 1: The space insertion error is only addressed
if we have two successive words that are wrong,
working with an H1-rated hypothesis that will be
defined afterwards. If we have a single erroneous
word, we correct it in a simple way.

• Method 2: Once we have a wrong word and regard-
less of the next word, plus the simple correction of that
wrong word, we add the corrections of the error due
to the wrong insertion of space between that wrong
word and the two neighboring words.

B. Correcting Space Insertion Errors using Method 1

This method uses the following hypothesis:�� ��If we have a correct word, then we should not change it.

Be a text T = w′1w
′
2. . . w

′
n consists of a set of words

typed in that order, and suppose that we have two successive
erroneous words w′i and w′i+1. To also take into account space
insertion errors, and use the H1 hypothesis, all the corrections
proposed for these errors consist of two sets:

• All simple corrections of the two words w′i and w′i−1
(assuming we don’t have errors in inserting or deleting
space). This set is given by the following rule:

S1
i = argmin

wk∈Lexique

DL(w
′
i, wk)

Pr(wk/w′i−1)
(6)

and

S1
i+1 = argmin

wk∈Lexique,wi∈S1
i

DL(w
′
i+1, wk)

Pr(wk/wi)
(7)

• we Concatenate w′i and w′i+1 (w′i+w
′
i+1), i.e. assume

that we have inserted a space in the word w′i + w′i+1
which produced the two wrong words w′i and w′i+1.
For correction, we check if w′i+w′i+1 is in the lexicon
of the system. If so, we keep the word w′i + w′i+1 as

an ideal solution with edit distance equal to zero; oth-
erwise we make the correction with the edit distance
weighted by the bi-gram language model:

S2
i = argmin

wk∈Lexique

DL(w
′
i + w′i+1, wk)

Pr(wk/w′i−2)
(8)

To take into account space insertion errors during the
correction operation, we propose the distance rated DAL which
is defined as a follow-up:

DAL(w
′
i, wk) = Min[

DL(w
′
i, wk)

Pr(wk/w′i−1)
+

DL(w
′
i+1, wk)

Pr(wk/w′i)
,

DL(w
′
i + w′i+1, wk)

Pr(wk/w′i−2)
]

(9)

The best corrections are those that check :

min
wk∈Lexique

DAL(w
′
i, wk) (10)

C. Correcting Space Insertion Errors using Method 2

For this method, we do not use the H1 hypothesis; and in
this case, we can modify words that were correct. The list of
solutions or corrections for the erroneous word w′i proposed
is of three types:

• The set of all simple corrections of the word w′i
(assuming we have no errors in the insertion or
deletion of space). This set is given by the rule given
in equation number (6)

• we concatenate w′i−1, correct word, and w′i (w′i−1 +
wi) and check if w′i−1 + w′i in the lexicon of the
system. If so, we keep the word w′i−1+w′i as an ideal
solution with edit distance equal to zero, otherwise the
correction is made with the edit distance weighted by
the bi-gram language model :

S2
i = argmin

wk∈Lexique

DL(w
′
i−1 + w′i, wk)

Pr(wk/w′i−2)
(11)

• We concatenate w′i and w′i+1 (w′i+w
′
i+1) and we check

if w′i+w
′
i+1 is in the lexicon of the system. If so,

we keep the word w′i+w
′
i+1 as an ideal solution with

distance equal to zero; otherwise the correction is
made with the edit distance weighted by the bi-gram
language model:

S3
i = argmin

wk∈Lexique

DL(w
′
i + w′i+1, wk)

Pr(wk/w′i−1)
(12)

To take into account space insertion errors during the
correction operation, we apply the DAL distance, which this
time is defined as follows:

DAL(w
′
i, wk) = Min[

DL(w
′
i, wk)

Pr(wk/w′i−1)
,

DL(w
′
i−1 + w′i, wk)

Pr(wk/w′i−2)
,
DL(w

′
i + w′i+1, wk)

Pr(wk/w′i−1)
]

(13)

www.ijacsa.thesai.org 937 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

The best corrections of the wrong word w′i are given by
the following formula:

argmin
wk∈Lexique

DAL(w
′
i, wk) = argmin

wk∈S1
i ∪S2

i ∪S3
i

[
DL(w

′
i, wk)

Pr(wk/w′i−1)
,

DL(w
′
i−1 + w′i, wk)

Pr(wk/w′i−2)
,
DL(w

′
i + w′i+1, wk)

Pr(wk/w′i−1)
]

(14)

Its solutions belong to one of the sets of S1
i , S2

i and S3
i :

1) If a solution belongs to S1
i , we correct w′i by this

solution, and we go to w′i+1 to check whether or not
this word exists in the lexicon; otherwise we repeat
our correction approach quoted here on w′i+1

2) If a solution belongs to S2
i , we removew′i−1, we

correct w′i by this solution, and switchto w′i+1. We
check w′i+1 whether we exist in the lexicon or not,
or we apply our correction approach to w′i+1.

3) If the solution belongs to S3
i , we correct w′i with

this solution, we delete w′i+1, and we move to w′i+2.
We check whether w′i+2 exists in the lexicon or not,
otherwise we apply our correction approach to w′i+2.

When the correction is completed, the new sentences
are scheduled with the original sentence, w′1w

′
2. . . wn

by the edit distance taking the space as a character:
DL(w

′
1w
′
2. . . w

′
n, w

′
1w
′
2. . . , w

′
i−2, wi−1. . . , wk) k ≤ n

Example:
”The world vaccinated against Covid”
We have two successive erroneous words, so we do the
processing according to the two methods.

Method 1:

• The corrections of the two erroneous sequences
”vacc” and ”inated” are ”vacc” ={ vaccine, vice,
Vicki, vaccines..}, and ”inated”={noted, anted,
named, mated, hated...}. The best corrections are
distance 1, so the sum 1+1=2.

• The corrections of the word ”vaccinated”, after delet-
ing space between sequences ”vacc”and ”inated” we
obtain this word which is a lexicon entry.

• Applying the distance DAL the min between 0 and 2
is 0 and like that, the best correction is ”vaccinated”
(”The world vaccinated against Covid”)

Method 2:

• The first wrong word is ”vacc”, so the three sets
without taking into account the language models in
the formulas, S1, S2, and S3 are:
◦ S1- corrections of the wrong word ”vacc” ={

vaccine, vice, Vicki, vaccines..}
◦ S2- corrections of the wrong word

”worldvacc”={∅}, in reality no suggestion
◦ S3- the corrections of the word ”vaccinated”,

this word is a lexicon entry.

TABLE I. RECALL AND ACCURACY OF DIFFERENT METHODS

Recall Accuracy

Method 1 82% 91%
Method 2 76% 88%

Words in S1 have a distance greater than or equal to 1, and
words in S2 have a distance greater than or equal to 2. So the
words that check the rule in equation (14) is ”vaccinated” that
is, the solution belongs to S3, so we correct ”vaccinated” and
we delete ”inated”, So the new sentence after the correction
is: ”The world vaccinated against Covid”.

VI. TESTS AND RESULTS

The corpus on which we conducted our test is composed
of 100 paragraphs taken from the Wikipedia site, and in each
paragraph, we randomly created space insertion errors in words
in those paragraphs in addition with other types of editing
errors.

In total, we have 1000 errors due to the insertion of space
into words that are correct or erroneous. These errors are
created according to the four types of space insertion errors
cited in subsection (3.1.)

In order to evaluate the different methods used for spelling
correction, we use the classic evaluation measurements by
calculating recall and accuracy. The results obtained are cited
according to these four types of error, and are as mentioned the
Table I. In order to test the robustness of our approach with
these two methods, we compared it to a widely recognized
commercial spell checker.

The first results approved that our approach achieves a very
high correction rate compared to this corrector: 89.5 % of the
suggested correction for errors due to the insertion against only
19.12 % for the commercial corrector. this can be interpreted
by the fact that this corrector does not take into account the
existence of this type of error due to the insertion.

CONCLUSION

According to the results obtained, we can say that our new
proposed approach is an effective method to correct errors
due to space insertion comparing with other commercial spell
checker. In other hand, our approach present an acceptable and
better complexity level compared with other approach based
only on n-gram language models.

REFERENCES

[1] Kukich K.,” Techniques for automatically correcting words in text ”,
ACM Computing Surveys (CSUR),Volume 24, Issue 4, pp: 377-439,
1992.

[2] Mitton R., ”Spelling Checkers, Spelling Correctors, and the Misspellings
of Poor Spellers ”,in Information Processing & Management, Volum23,
issue 5, pp: 495-505, 1987.

[3] Mitton R., ” Spellchecking by computer ”, in Journal of the Simplified
Spelling Society, Volum 20, Issue 1, pp :4–11, 1996.

[4] Damerau F.J.,” A Technique for computer detection and correction of
spelling errors”, Communications of the ACM, Volum 7, Issue 3, pp:
171-176, March 1964.

www.ijacsa.thesai.org 938 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

[5] Levenshtein V.I,” Binary codes capable of correcting deletions, insertions,
and reversals ”, Soviet Physics Doklady, pp: 707-710, 1966.

[6] HORST B., ”A Fast Algorithm for Finding the Nearest Neighbor of a
Word in a Dictionary ”. IAM-93-025, 1993

[7] Jaro M. A.,” Advances in record-linkage methodology as applied to
matching the census of Tampa”, Journal of the American Statistical
Association, pp : 414-420, Florida, 1985.

[8] Winkler W. E.,” The State of Record Linkage and Current Research
Problems ”, Statistical Society of Canada, Proceedings of the Section on
Survey Methods, pp: 73-79, 1999.

[9] Jaccard P.,” The Distribution of the flora in the alpine zone”, New
Phytologist, Volume 11, pp: 37-50, 1912.

[10] Stoilos G., Stamou G., Kollias S., ”A string Metric for Ontology
Alignment ”, International Semantic Web Conference, pp: 624-37, 2005

[11] Angell Richard C., Freund George E. et Willett P.,” Automatic spelling
correction using a trigram similarity measure”, Information Processing
and Management, Volume 19, Num. 4, pp: 255-261, 1983.

[12] Kernighan M.D, Church K.W. and Gale W.A.,” A Spelling correction
program based on a noisy channel model ”, In Proceeding of the 13th
Conference on Computational Linguistics, pp : 205-210, 1990.

[13] Pollock J. J. and Zamora A.,” Automatic spelling correction in scientific
and scholarly text”, Communications of the ACM, Volume 27, Num.4,
pp: 358-68, 1984.

[14] Oflazer K.,” Error-tolerant finite-state recognition with applications to
morphological analysis and spelling correction”, Computational Linguis-
tics, Volume 22, Num. 1, pp: 73-98, 1996.

[15] Savary A.,” Recensement et description des mots composés - méthodes
et applications”, Thèse de doctorat en Informatique Fondamentale, Uni-
versité de Paris 7, pp : 149-158, 2000.

[16] Gueddah H., Yousfi A. and Belkasmi M.,” Introduction of the weight
edition errors in the Levenshtein distance”, International Journal of
Advanced Research in Artificial Intelligence, Volum 1, Issue 5, pp :
30-32, 2012.

[17] Gueddah H. et Yousfi A.,” Impact de la proximité et de la similarité
inter-caractère Arabe sur la correction orthographique ”, Proceeding of
the 8th International Conference on Intelligent Systems : Theories and
Applications- SITA 13, pp : 244-246, EMI-Rabat 2013.

[18] Nejja M., Yousfi A., ”A lightweight system for correction of Arabic
derived words”, in Mediterranean Conference on Information & Com-
munication Technologies, Volum 1, pp: 131-138, Saı̈dia 2015.

[19] Bakkali H., Gueddah H., Yousfi A. and Belkasmi M.,” For an Inde-
pendent SpellChecking System from the Arabic Language Vocabulary ”,
Proceeding of International Journal of Advanced Computer Science and
Applications, Volume 5 Issue 1, pp : 114-116, Janvier 2014.

[20] Nejja M., Yousfi A., ” Contexts impact on the automatic spelling
correction”, in International Journal of Artificial Intelligence and Soft
Computing archive, Volum 6, Issue 1, pp: 56-74, 2017.

[21] Gueddah H., Aouragh L., et Yousfi A.,” Adaptation de la distance de
Levenshtein Pour la correction orthographique contextuelle ”, Proceed-
ing du 9éme Conférence Internationale sur l’Intelligence Artificielle :
Théories et Applications, SITA 14, pp : 242-245, INPT- Rabat 2014.

[22] Nejja M., Yousfi A., ” Contexts impact on the automatic spelling
correction”, in International Journal of Artificial Intelligence and Soft
Computing archive, Volum 6, Issue 1, pp: 56-74, 2017.

[23] Naseem T., Hussain S., ”A novel approach for ranking spelling error
corrections in Urdu ”, Language Resources and Evaluation, Volum
41, Issue 2, pp: 117–28. DOI 10.1007/s10579-007-9028-6, Springer
Science+Business Media B.V, 2007.

[24] Naseem T., Hussain S., ”A Hybrid Approach for Urdu Spell Checking
”, MSc thesis, National University of Computer & Emerging Sciences,
Pakistan, 2004

[25] Attia M., Pecina P., Samih Y., Shaalan K., et Genabith J.V., ”Arabic
Spelling Error Detection and Correction ”, in: Natural Language Engi-
neering, Volum 22, Issue 5, pp: 751-773 Cambridge University Press,
2016.

[26] Maha M. A., William J. T., ”Automatic Correction of Arabic Dyslexic
Text”. Computers 2019, Volum 8, Issue 1, 2019.

[27] Alkanhal M. I., Al-Badrashiny M. A., Alghamdi M. M., and Al-
Qabbany A. O., ”Automatic Stochastic Arabic Spelling Correction With
Emphasis on Space Insertions and Deletions ”, in IEEE Transactions
on Audio, Speech, and Language Processing Volum 20, Issue 7, pp:
2111–2122, 2012.

[28] Alexis Amid Neme, ” Why Microsoft Arabic Spell checker is ineffective
”, Linguistica Communication, http://www.al-erfan.com/, 2014, Arabic
Language in Information Technology, 16, pp.55, hal01081965.

[29] G. Hirst, ”An Evaluation of the Contextual Spelling Checker of Mi-
crosoft Office Word 2007 ”, Department of Computer Science university
of Toronto Toronto, Canada 2008.

[30] Yousfi A., Aouragh L., Gueddah H and Nejja M, ” Spelling correction
for the Arabic language: space deletion errors ”, in Procedia Computer
Science, pages: 568-574, Volum 177, 2020,ISSN 1877-0509.

www.ijacsa.thesai.org 939 | P a g e

