
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Towards a New Metamodel Approach of Scrum, XP
and Ignite Methods

Merzouk Soukaina, Elkhalyly Badr, Marzak Abdelaziz, Sael Nawal
Department of Mathematics and Computer Sciences, Hassan II University- Casablanca

Faculty of Sciences Ben M’sik, Casablanca, Morocco

Abstract—The agile approach is a philosophy that aims to
avoid the traditional management approach problems. It
concentrates on the collaborative approach, using iterative and
incremental development. The client receives a first production
version (increment) of his software, faster thanks to agile
methodologies. Project needs are influenced by the rapid
expansion of technologies, particularly after the emergence of the
Internet of Things (IoT). They are becoming larger and more
complex. IoT provides a standardization and unification of
electronic identities, digital entities, and physical objects.
Consequently, interconnected devices can retrieve, store, send,
and process data easier from both physical and virtual worlds.
Scalable methods such as SAFe, LeSS, SPS, and others are
existing methodologies ameliorated and dedicated to large
projects. These methods are tough to adopt and do not consider
the physical side of the project, according to IoT enterprise
teams. Based on their managerial and IoT expertise, they suggest
their own methods (Ignite | IoT Methodology and IoT
Methodology). Model Driven Architecture (MDA) was coined by
the Object Management Group (OMG) in 2000 to develop
perpetual models that are independent of the technical intricacies
of the execution platforms. The purpose of this paper is to
propose a metamodel for each methodology among: Scrum, XP,
and Ignite.

Keywords—Agile software development; scrum; extreme
programming; XP; internet of things; IoT; Ignite | IoT
Methodology; IoT Methodology; metamodel; MDA; OMG

I. INTRODUCTION
For decades, projects have been managed with the classic

(or traditional or predictive) approach, which is characterized
by gathering the requirements, defining the product,
developing, and testing it before the delivery. This is the
"waterfall" model [1] or its adaptation, the "V" model [2].

One of the main weaknesses of 'waterfall' approach is that
the design errors are often not discovered until the time of
deployment. At this time, the project is almost complete, and
errors are often costly to recover.

Agile methods avoid this weakness by executing iterative
and incremental development that is carried out in a
collaborative spirit, with the right amount of formalism. They
generate a high-quality product while considering the
modification needs of the customers.

Thanks to agile methods, the client participates in the
realization of the project (prioritize, select items to be
implemented on current iteration, do the functional tests, etc.)
and obtains very quickly a first production release of his

software, by using one of these methods: the XP method, the
SCRUM method, the DSDM method, the FDD method, etc.
[3].

Projects are becoming larger and complicated as the
technology industry expands, especially after the emergence of
the Internet of Things. The latter is defined as a network of
interconnected electronic devices, which enables electronic
identities, digital entities, and physical objects to be
standardized and united. As a result, being able to recover,
store, transmit, and process the associated data without
interruption across the physical and virtual worlds [4].

The technology evolution leads project management
experts to try different management methods or to improve
existing ones. SAFe [5] [6], LeSS [7], SPS [8] and others are
among the methods dedicated to large projects. IoT experts
find that these methods, despite being dedicated to large and
complex projects, they are complex in use and do not address
the physical part of the project. At this level, IoT companies'
teams propose their own methodologies based on their
managerial and IoT experience. These methodologies are
Ignite | IoT methodology (Ignite) [9] and IoT Methodology
[10].

In 2000, the Object Management Group (OMG) coined the
term Model Driven Architecture (MDA) to create perennial
models that are independent of the technical minutiae of the
execution platforms. This approach necessitates the use of a
variety of models, including CIM, PIM, PSM, and others. As a
result, the various formalisms that enable the building of
models that are both sustainable and productive had to be
explicitly specified. The MetaObject Facility (MOF [16])
standard, which was designed by OMG specifically for this
purpose, supports the establishment of modeling formalisms in
the form of metamodels. These are made up of a collection of
metaclasses linked together through meta-association [11].

This article aims to present first of all the Scrum, XP and
Ignite methodologies, describing their processes, artifacts, and
roles. Then, it proposes a metamodel for each of these methods
using MOF standards.

The rest of the paper is organized as follows: Section 2
presents the research work related to the field of project
management and model engineering. Section 3 describes the
methodology followed in this work. Section 4 is specific to the
definition of the metamodel principle, the presentation of the
proposed metamodel, and finally the description of the method

192 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

components that are the basis of the proposal. Section 5
presents the paper's discussion and conclusion.

II. RELATED WORK
During this work, there are research works related to the

metamodels of project management methods.

Many companies that use agile processes might benefit
from using a process measurement framework, for example, to
evaluate their process maturity. Ernesto et al. [12] offer a
metamodel for the construction of specialized data models for
agile development processes in their study. Then, they
demonstrate how their metamodel can be utilized to derive a
Scrum process model.

The traditional approaches of software development (e.g.,
RUP, waterfall) and agile approaches (e.g., Scrum, XP) are the
two most popular software development strategies nowadays.
Hybrid methods can also be used because both approaches
offer advantages. Darko and Zeljko's work [13] demonstrates
how to use metamodels to create new hybrid software
engineering methodologies. They build a common metamodel
by combining the metamodels of the traditional waterfall
method with extreme programming. The new hybrid method
development and development workflow are then built on top
of this shared metamodel.

Given the rapid advancement of technology, the necessity
for project management in terms of methodology and new
concepts continues to develop. Hamzan and Belangour [14]
constructed a framework for generating a metamodel that they
used to project management to provide a generic metamodel of
project management. This approach is founded on two project
management methodologies which are "PRINCE 2"
and "Scrum". The goal of this research is to validate and apply
this methodology to all aspects of IT governance, then merge

the metamodels to build a global metamodel that covers all IT
governance domains.

 The Agile Project Management Framework (APMF) is a
collection of fine-grained project management techniques used
in agile methodologies that is quickly gaining traction as a
viable alternative to traditional project management
frameworks. However, both frameworks have flaws that
prevent developers from improving one in order to accept the
other. Merging the two systems into a Unified Project
Management Framework (UPMF) is a reasonable option. In
order to achieve this goal, Mahsa and Raman [15] propose a
project-management technique metamodel as a common
abstract substrate for fusing the traditional framework with its
agile counterpart. By abstracting the fine-grained parts of
APMF, the proposed Agile Project Management Methodology
Metamodel (APM3) was created. An analytical analysis of the
project management procedures of seven important agile
approaches was undertaken using APM3's generic agile
metamodel.

A standardization of the methods concerning Scrum, XP
and Ignite is proposed. This standardization is a metamodeling
of the phases, the artifacts, and the whole ecosystem.

III. METHODOLOGY
The carrying out of the work is done by applying the Scrum

methodology as shown in the Fig. 1. The first step consists in
defining a list of tasks in the form of user stories that should be
carried out throughout the work and to refine them. This list is
not definitive, as it will be updated during the work. The next
step is prioritizing the list according to the importance of the
user stories and its sequence. The second step is to select the
user stories to be done for each sprint. Finally, an increment is
produced, and the next sprint is started, and so on.

Fig. 1. The Work using Scrum Process.

193 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

The list of user stories contains: reading the books for the
Scrum method; reading the books for the XP method; reading
the books for the Ignite method; reading the books for agile
development; reading the articles for the Scrum method;
reading the articles for the XP method; reading the articles for
the Ignite method; reading the articles concerning IoT projects;
extracting the roles, phases, artifacts, etc., and the relationships
between them; identifying entities and relationships and
defining cardinalities; transforming each component into a
Meta Class; reading the articles that are based on the concept
of the metamodel.

• The first Sprint concerns the realization of the Scrum
metamodel.

• The 2nd Sprint concerns the realization of the XP
metamodel.

• The 3rd Sprint concerns the realization of the Ignite
metamodel.

• The 4th Sprint concerning the proofreading, writing and
correction of the proposed metamodels.

Moreover, daily meetings are held for the discussion
regarding the work and the problems encountered in the
realization of the current activity.

IV. METAMODEL APPROACH

A. Definition
The Object Management Group (OMG) defined Model

Driven Architecture (MDA) in 2000.

This approach advocates the massive use of models and
offers the first answers to how, when, what and why to model.
It includes the definition of several standards, notably UML,
MOF, and XMI. The main objective of MDA is the
development of perennial models, independent of the technical
details of the execution platforms, in order to allow the
automatic generation of the entire application code and to
obtain a significant gain in productivity.

MDA necessitated the employment of a variety of models.
As a result, it was necessary to explicitly specify the many
formalisms that permit the construction of models that are both
sustainable and productive. The MOF [16] standard, created by
OMG for this purpose, provides support for establishing
modeling formalisms in the form of metamodels. According to
MOF, any model must respect the structure defined by its
metamodel. A metamodel is thus composed of a set of
metaclasses. The latter has a name and contains attributes and
operations, also called meta-attributes and meta-operations. A
meta-association is a binary association between two
metaclasses. A meta-association has a name, and each of its
ends can have a role name and a multiplicity [11].

B. Extreme Programming Methodology
1) Definition: Extreme programming, or XP, is a method

proposed by Kent Beck that applies the old development
principles to the extreme. It divides the project into
subprojects applying the traditional development steps in each
subproject in an iterative way and continuous integration
(incremental) which reduces the change cost [17] [18] [19]
[20]. Fig. 2 shows the evolution of the Waterfall model
towards extreme programming.

2) XP Metamodel: Fig. 3 shows the metamodel of the XP
method. This metamodel is based on the transformation of the
method's components into metaclasses and the relationships
between them into meta-associations.

Fig. 2. Evolution towards XP Method: (a) Waterfall Model, (b) Spiral

Model, (c) XP [18].

Fig. 3. Proposed Metamodel for XP Method.

194 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

3) Component:
a) Phases: The XP method consists of five phases viz.,

exploration, planning, iteration to release, productionizing,
maintenance, and death. Each phase consists of a set of
activities. These phases are described according to [20], [21],
and [22].

• Exploration: The customer uses index cards to write
user stories presenting his needs, as shown in the Fig. 4.
These user stories are estimated by developers one by
one in terms of the time needed to implement them and
the implementation risk. This phase should take a few
weeks to a few months and defines the technologies,
tools and architectures that will be used in the project.
Fig. 4 shows an example of a user story card used in the
C3 project.

Fig. 4. C3 Project user Story Card [21].

• Planning: Commitment schedule meeting is done, after
all user stories are written by the customer and
estimated by the developers, to define the priority of
each story and which ones are needed for the current
release. In addition, the customer writes the functional
tests based on the user story cards. The team transforms
these cards into tasks with an estimate of each (the
Fig. 5 shows a task card used in the C3 project). The
meeting ends when the list of stories and the schedule
are validated.

Fig. 5. C3 Project Engineering Task Card [21].

• Iteration To Release: This phase consists of breaking
down the schedule of commitments set in the previous
phase in a series of iterations. Each iteration follows the
phases of the classical approach (designing, coding,
testing, and integration). Furthermore, functional tests
are applied at the end of each iteration to verify the
functioning of the story.

• Productionizing: The system is ready for production at
the end of the last iteration. In this case, it is necessary
to ensure the performance of the system before
delivering it to the customer. To do this, extra testing is
done. The ideas and proposals reported are documented
for later implementation during, for example, the
maintenance phase.

• Maintenance and Death: The maintenance phase is
triggered after the first release to the customer. The
team must keep the system running in production while
the new iteration is in production. It may also require
the integration of new people into the team and the
modification of the team structure. The death phase is
the phase that describes the end of the project when the
customer is satisfied and has no stories to implement.
At this point, the system documentation is written. This
phase also consists of closing down the system if it does
not deliver the desired results or if it becomes too costly
for further development.

b) Roles: Furthermore, XP defines six roles viz.,
Customer, Consultant, Programmer, Coach, Tester, and
Manager that are described according to [18], [21], and [22].
The consultant is responsible for advising and training the
programmer that having communication, coding, and
teamwork skills.

• Customer: The client is responsible for defining the
requirements because he writes the user stories. In
addition, he defines the priority for each card and writes
the functional tests which are used at the end of the
iteration to check that the stories work. There is a
special role in the XP method called on site customer.
This is often a domain expert representing the customer.

• Consultant: In most XP projects, there are no
professionals due to the rules and practices. A
consultant will be employed in these circumstances to
supply this information. The consultant's job is to
provide expertise. One or two team members will meet
with the consultant and ask several of the technical
questions before attempting to fix the problem.

• Programmer: The programmer is responsible for the
analysis of the design code, etc. He writes the program
code as simple as possible. He is required to be
competent in communication, coding, and teamwork.

• Managing part of XP project: The project management
part of XP is divided into two roles such as coach and
tracker Coach: The system manager participates in the
management meetings. His role is to guide the team
away from the process. It is necessary to be calm; to
understand alternative practices that need it and could

195 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

help the current set of problems; what the ideas behind
XP are; how it relates to the current situation and how
other teams use XP. Tracker: Acts as the conscience of
the team. He/she must track to determine if the Iteration
Schedule and Commitment Schedule can be met. This
work gives him data that is used to give feedback to
developers on the quality of their estimates. Also, it
helps him get feedback on the team's next estimates. In
addition, the tracker is required to be proficient in
collecting the necessary information without disrupting
the whole process.

• Tester: The programmers have a large portion of the
duty of testing, so the role of the tester in an XP team is
particularly customer-centric. However, someone needs
to run all the tests regularly, disseminate the test
findings, and guarantee that the testing instruments are
in good working order.

• Big Boss: Courage, confidence, and the occasional
insistence that they do what they say they will be what
the team most needs from the Big Boss. They aren't
complaining; they genuinely aren't. They want Big Boss
to know as soon as possible if things aren't going as
planned, so he can react as quickly as feasible. If it
works, he will be golden because he will have a team
that's productive, satisfied with its clients, and does
everything they can to avoid surprising him.

c) Practices: The method's practices are grouped into
three categories, such as programming, collaboration and
project management, which are described according to [21],
[22], [23], and [24].

Programming category

• Simple design: The simplest solution that will work is
always implemented by developers. They do not, for
example, design generic mechanisms if the urgent
necessity does not necessitate it.

• Refactoring: Developers are not hesitant to go back over
the written code to make it "cleaner," to remove any
unused components, and to prepare it for the addition of
the next feature. More generally, this practice suggests a
continuous design approach that highlights the
application's structure as it develops.

• Test-first programming, unit tests, developer tests: Even
as they are writing the code, developers generate
automated tests for it. This enables them to gain a
deeper understanding of the problem before creating the
code. In addition, to gradually build up a battery of tests
that enables them to make changes to the application
fast and with confidence.

• Acceptance Tests, Customer Tests: Through
participating in the writing of acceptance tests, the
client expresses his wants and the programmers'
objectives very explicitly. Acceptance tests, like unit
tests, must be automated in order to ensure that the
product does not regress on a daily basis.

Collaboration category

• Pair Programming: The developers always work in pairs
on the same machine when coding for the application -
this is an "extreme" type of code review that both
developers actively collaborate to resolve issues they
discover. The pairs change regularly, so everyone must
work with all other team members early or later.

• Collective code ownership: All developers in the team
may be required to work on all parts of the application.
Furthermore, they have a duty to improve the code they
work on, even if they are not the original authors.

• Coding standards: Developers follow coding rules
defined by the team itself. This ensures that their code
is consistent with the rest of the application, and
therefore facilitates the intervention of other developers.

• Metaphor: Developers do not hesitate to use metaphors
to describe the internal structure of the software or its
functional issues. This facilitates communication and
ensures a certain homogeneity of style throughout the
design, the ideal being to describe the system in its
entirety by a single metaphor.

• Continuous integration: Developers synchronize their
work as frequently as feasible, at least once a day. This
decreases the frequency and severity of integration
issues, while also ensuring that a current version of the
software is always available.

Project Management Category

• Frequent releases: The team delivers software releases
at a regular rate, as high as possible, depending on the
client's preferences. This enables both the team and the
client to guarantee that the product meets the client's
expectations and that the project remains on schedule.

• Planning game: In dedicated sessions done on a regular
schedule throughout the project, the client and the
development team collaborate on project planning.

• On-site customer, whole team: The customer is literally
incorporated into the development team, allowing him
to set priorities and specify his wants clearly, notably by
directly addressing programmers' inquiries and taking
advantage of the instant feedback provided by a
frequent-delivery application.

• Sustainable pace: The team adopts schedules that allow
it to keep the energy required to create high-quality
work and efficiently follow other project procedures.

C. Scrum Methodology
1) Definition: The word "scrum" and the method's idea

are derived from a rugby strategy that entails "bringing an out-
of-play ball back into the game" through collaboration [25]
[26]. The method was created in the early 1990s to manage the
systems development process. It is a framework that focuses
on how team members should work together and always ready
to reorient so as to create a flexible system in an ever-
changing environment. Scrum helps an organization's existing

196 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

engineering processes by requiring frequent management
activities to systematically identify gaps or impediments in the
development process, as well as the techniques that are
employed [27] [19].

2) Scrum metamodel: The Fig. 6 shows the metamodel of
the Scrum method. This metamodel is based on the
transformation of the method's components into metaclasses
and the relationships between them into meta-associations.

3) Component:
a) Phases: Scrum process consists mainly of three

phases viz; Pre-Game, Development and Post-Game, which
are described according to [20] and [22].

• Pre-Game: Pre-game consists of two sub-phases, the
planning phase, which serves to define the system being
developed. Defining the customer requirements and
estimating the effort needed to implement each
requirement. The list of requirements is always updated
with new requirements. This phase ends with the
definition of the project team, tools, and resources. The
architecture phase consists of the high-level design of
the system based on the requirements determined in the
previous phase and the preparation of preliminary plans
for the content of the releases.

• Development: The development phase or game phase is
a black box where the system is developed in sprints
that comprise the traditional software development
phases. In addition, Scrum identifies environmental and
technical variables. Then, aims to control them through
various Scrum practices during the sprint, which is
planned to take from one week to one month.

• Post-Game: The closing phase of the release after the
customer has reached his goal, and he has no change or
other requirements. Release preparation includes the
integration, testing, and documentation of the final
system.

b) Roles: Scrum defines the roles, described according
to [28], which are Scrum Master, Product Owner, Team, and
Stakeholders.

• Scrum Master: He is the team leader and at the same
time a team member, he helps the team to understand
the Scrum methodology, to create a high-value
increment. He ensures that there are no obstacles that
stop the progress of the product and that the team
respects the work schedule. It helps the product owner
to define and manage the product backlog. Then,
facilitates the collaboration of stakeholders according to
the demands or needs and to remove the barriers
between them and the team [27].

• Product Owner: This is the most important role in this
method. For the reason that it is the representative of
the customer and responsible for defining the product
vision and following its transition to the product
backlog list. The latter is used by the product owner to
check that the requirements are developed. The most
significant skill that the product owner is supposed to
have is written and oral communication [29].

• Team: Responsible for the project from planning to
delivery of an increment. It is self-organized, works
together, and takes account of the probability of change
in requirements.

• Stakeholder (s): It is a person or a group of people or
organizations that have a relationship with the project
who are the clients [30].

c) Practices: It also defines seven practices divided into
two categories, events, and artifacts to be applied in different
phases to avoid chaos caused by the unpredictability and
complexity. The practices, which are described according to
[22], [27], and [31], are: Daily Meeting, Sprint Planning
Meeting, Sprint Review Meeting, Effort Estimation, Sprint,
Sprint Backlog, Product Backlog. Sprint has a Velocity based
on the Sprint Backlog, which is produced from the Product
Backlog. In addition, it consists of a set of User Stories that
contain Elements and contain Tasks of different types.

Fig. 6. Proposed Metamodel for Scrum Method.

197 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Events category

• Daily Meetings: Scrum meetings are led by the Scrum
Master. In addition to the Scrum team, management can
also attend the meeting. The Scrum Team's Developers
attend the Daily Scrum, which lasts 15 minutes.
Developers are those who are actively working on
Sprint Backlog items, such as the Product Owner or
Scrum Master. Daily Scrums improve communication,
identify barriers, stimulate quick decision-making, and
thereby avoid the need for additional meetings.

• Sprint Planning Meeting: The Scrum Master organizes a
Sprint Planning Meeting that is a two-section meeting.
In the primary section of the meeting, customers, users,
management, the Product Owner, and the Scrum Team
determine the objectives and functionalities of the
subsequent Sprint. The Scrum Master and the Scrum
Team hold the second section of the meeting, which
focuses on how the product increment is implemented
in the course of the Sprint.

• Sprint Review Meeting: The Sprint Review's goal is to
examine the Sprint's results and make recommendations
for future changes. In an informal meeting, the Scrum
Team and Scrum Master present the outcomes of their
work to management, customers, users, and the Product
Owner. The participants evaluate the product increment
and make decisions about the next steps. The review
meeting may result in the addition of new Backlog
items and possibly a change in the system's direction.

Artifact’s category

• Sprint: The procedure of adjusting to changing
environmental variables is known as sprint
(requirements, time, resources, knowledge, technology,
etc.). In a Sprint, where ideas are becoming valuable,
the Scrum Team arranges itself to generate a new
executable product increment over the course of thirty
calendar days. Sprint Planning Meetings, Sprint
Backlog, and Daily Scrum meetings are the team's
working tools. Each Sprint may be in concept of as a
small project. Burndowns, burn-ups, and cumulative
flows are all techniques for forecasting progress. While
they have proven to be valuable, they do not take the
place of empirical evidence. What's going to occur in
complicated environments is unknown. Only what has
already occurred can be used to make decisions in the
future. If the Sprint Goal is no longer relevant, the
Sprint may be cancelled. Only the Product Owner has
the right to terminate the Sprint. During the Sprint, no
modifications are made that might endanger the Sprint
Goal; quality is maintained; the Product Backlog is
adjusted as required; and, as additional information
becomes available, with the Product Owner, the Scope
can be clarified and renegotiated.

• Sprint Backlog: A Sprint Backlog is created at the start
of each Sprint. The Sprint Backlog is made up of the
Sprint Goal (why), the Product Backlog items chosen
for the Sprint (what), and an actionable plan for
producing the Increment (how). The Sprint Backlog is a
strategy created by and for developers. The items are
chosen in the Sprint Planning meeting by the Scrum
Team, in collaboration with the Scrum Master and the
Product Owner. Which are based on prioritized items
and Sprint Goals. The Sprint Backlog, in contrast to the
Product Backlog, is stable until the Sprint is finished. A
new iteration of the system is deployed once all the
items in the Sprint Backlog have been accomplished.

• Product Backlog: Based on existing knowledge, the
Product Backlog describes everything that is required in
the final product. As a result, the Product Backlog
describes the project's tasks. Features, functionality, bug
fixes, issues, requested improvements, and technology
upgrades are all examples of backlog items. The list
also includes issues that must be resolved before other
Backlog items may be completed. Product Backlog
items can be created by a variety of actors, including
the customer, project team, marketing and sales,
management, and customer support. The Product
Owner oversees keeping the Product Backlog updated.

• Effort Estimation: The Product Owner and the Scrum
Team oversee effort estimation, which is an iterative
procedure. The Product Owner collaborates with others
as the backlog is generated to predict how long it will
take to develop. He or she consults with developers,
technical writers, quality assurance staff, and others
who are familiar with the product and technology in
order to arrive at the estimate. Because the product
owner and the team are experienced in estimating, the
estimate will be accurate. The Product Owner develops
estimates for every item, beginning with the highest
priority backlog.

D. Ignite Methodology
1) Definition: Originally from industry. The founders of

this methodology are based on the analysis of manufacturing
and industry, connected vehicles, Smart Energy and Smart
Cities. Through collecting best practices of IoT strategy
management and project execution. It is open source and
covers all aspects of IoT development. It addresses various
IoT stakeholders, namely product managers, project managers,
and solution architects [9] [32] [33] [34] [35].

2) Ignite metamodel: Fig. 7 shows the metamodel of the
Ignite method. This metamodel is based on the transformation
of the method's components into metaclasses and the
relationships between them into meta-associations.

198 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Fig. 7. Proposed Metamodel for Scrum Method.

3) Component: All components of this methodology are
described according to [9].

a) Phases: Two activities make up the Ignite process (as
shown in Fig. 8). The first is to define the strategy and prepare
the organization to adopt IoT, then create and manage the
portfolio of IoT projects to support the IoT Strategy. This
activity is called IoT Strategy Execution. The second activity,
called IoT Solution Delivery, is used to execute the famous
three phases such as Plan, Build and Run to deliver a solution.

Fig. 8. Ignite | IoT Methodology Activities.

Ignite | IoT Strategy Execution

IoT Strategy, IoT Opportunity Identification, IoT
Opportunity Management, Initiation, IoT Center of
Excellence, and IoT Platform are the six domains of the Ignite
| IoT Strategy Execution framework.

• IoT Strategy: The extent and speed with which a
corporation should migrate toward IoT should be
reflected in its IoT strategy. The Internet of Things
strategy must have a vision, goals, and guiding
principles. It should also provide a high-level overview
of how IoT-related business areas should create
strategic alliances and partner ecosystems. Finally, it
must oversee the portfolio of IoT prospects and

projects, as well as budgeting and IoT roadmap
management.

• IoT Opportunity Identification: The generation of IoT
solution innovation ideas, can take two forms: an open
process that taps into the creativity of employees,
customers, and developers, or a more structured
approach in which ideas are derived from a specific
context, such as the company's value chain. Ideas that
show the most promise should be fleshed out further,
perhaps using idea refinement templates.

• IoT Opportunity Management: The most promising
ideas are then improved as part of the IoT Opportunity
Management process after passing the first quality gate.
In order to examine the utility and the business case, a
more complete business model must be created. The
following Impact & Risk Assessment step guarantees
that all conceivable results of the business model are
taken into account.

• Initiation: An IoT opportunity can be moved to the
Initiation stage once it has been authorized.
Management must decide how to best set up the effort
at this stage, e.g., as a dedicated internal project, a spin-
off, or even an M&A project. These activities connect
to the Ignite | IoT Solution Delivery for internal
initiatives.

• IoT Center of Excellence: An IoT Center of Excellence
(CoE) can assist new projects in gaining traction faster.
For instance, by offering IoT consulting and alter
management support, IoT maturity evaluations can
assist a company in determining where it stands in
terms of IoT adoption.

• IoT Platform: Large enterprises may find it beneficial to
provide a shared IoT Platform that many projects can
use to create their solutions. An IoT application
platform, connectivity solutions, and technical and
functional standards are typically included.

199 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Process

• Generate Idea: In a large company, there are usually
two approaches to produce ideas: open idea generation
(green field technique) or a more structured idea
generation approach. The latter approach is generally
carried out in a top-down manner. It typically entails a
thorough market investigation by an internal strategy
team or an external consulting agency. Open idea
creating is more likely to produce disruptive ideas. As a
result, companies should have numerous channels in
place to collect these ideas, including employees,
consumers, and even developers.

• Refine Idea: Many good ideas aren't particularly
attractive when they're initially formed. Before they will
really persuade potential stakeholders, they need care in
order to grow and mature. Thankfully, there is no
shortage of ideation methodologies that promote idea
refining, such as the St. Gallen Business Model
Navigator™ and the Innovation Project Canvas. The
detailed idea sketch, which is the product of the idea-
refinement phase, can be used for presentations at the
next quality gate level. It can be used to develop the
business model after it has been approved.

• Business Model Development: it consists of four phases
(shown in the Fig. 9) viz., Strategic embedding (it lays
the foundations of the business model and ensures
consistency with the IoT strategy or the company's IoT
vision. The implementation of "future proofing" should
indicate how the business model intends to address
future challenges.); Value proposition (To increase the
attractiveness of the offer for customers, the proven
approach of segmentation of target groups, formulation
of the value offer and definition of customer channels
can be used.); Customer journey (The explanation of
the end-to-end solution from the customer's perspective
serves in highlighting the characteristics of the proposal
that the consumer finds important. Another benefit of
establishing the customer journey is that it guarantees
that all relevant consumer channels have been
identified.); Value added (The value added can be
demonstrated once the solution has been defined. The
capabilities of the parties are the network's constituent
elements: they are a combination of technology,
resources, and know-how that they can bring in to assist
the solution.); Business case (There are numerous
techniques and templates for calculating business cases,
but the recommendation is to use the same one for all
IoT activities, as this makes comparing business models
easier.); Strategic impact and subsequent business
models (The house's chimneys represent two non-
monetary effects of a business model that must be
considered alongside the business case. The second
chimney, “subsequent business models” is extremely
specific to the IoT: it is very usual for teams to come up
with exciting new ideas on how to utilize the data.
Additionally, build new services while designing the
business model and gathering all the associated data
with connected devices.).

Fig. 9. Builder of IoT Business Model [9].

• Impact And Risk Analysis: Business models, and
business cases in particular, deal with future value
flows, so they are subject to uncertainty. To promote
transparency for decision-makers and to generate the
tasks necessary to resolve these uncertainties, it is
critical to underline the degree of uncertainty within the
business model. Various future scenarios are suggested
that support the provided parameters. Trends or cause-
and-effect relationships can be used to accomplish this.
In the context of the strategy, it is crucial to check those
aspects of the business model that create effect and
value.

2 Ignite | IoT Solution Delivery

• By providing project templates, checklists, and solution
architectural blueprints, the mission is to make IoT best
practice applicable in the form of a technology-
independent, reusable, open-source methodology that
supports IoT solution design as well as the
implementation and management of IoT projects. The
following is a breakdown of Ignite | IoT Solution
Delivery.

• The IoT Solution Lifecycle focuses on the planning,
development, and execution of IoT solutions encloses
the following elements. Initial Project Design: The
elements established as part of the generic IoT Building
Blocks, such as project self-assessment employing IoT
Project Dimensions, solution architecture employing
IoT Architecture Blueprints, and technology selection
employing IoT Technology Profiles, are all used in this
design blueprint. Project workstreams and project
organization: The top-level organization and
workstreams generally found in an IoT solution project
are defined in this blueprint. There is a checklist for
every workstream, as well as a list of common
dependencies between them.

200 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

• IoT Building Blocks includes reusable artifacts such as
IoT Project Dimensions, IoT Architecture Blueprints,
and IoT Technology Profiles from successful projects.

• IoT Project DB is a repository of reference projects that
have been analyzed in order to identify best practices
for the IoT Solution Lifecycle and Building Blocks.

Process

• IoT Project Initiation: A requirements study, which is
more in-depth than the analysis performed during the
business model building phase, is a significant factor in
the Ignite | IoT Project Initiation phase. A tiny team of
subject matter specialists is generally in charge of
project initiation. A business analyst with strong
domain expertise and a clear vision for the solution's
functional features should also be part of the team.

• Initial Solution Design: Initial Solution Design consists
of a collection of key artifacts that include analysis,
projections, and planning, as well as functional and
technical design artifacts. Even though they might be
developed concurrently, it is generally more practical to
group them, as shown the Fig. 10. Analysis,
Projections, Planning: It was created to aid with
analysis, projections, and planning. They contain:
Problem Statement, Stakeholder Analysis; Site Survey;
Solution Sketch; Project Dimensions; Quantity
Structure; Milestone Plan.

Fig. 10. Initial Solution Design Artifacts.

Functional Design contains: Process Maps / Use Cases; UI
Mockup; Domain Model; Asset Integration Architecture; SOA
Landscape. Technical Design contains: Software Architecture;
Technical Infrastructure; Hardware Design.

• Plan: After the funding decision on Ignite | IoT Strategy
Execution, this phase begins. A small, but devoted team
usually creates an initial project plan, which includes a
solution definition, based on the ideas and criteria from
the business planning phase. This could be an RFP
(Request for Proposal) document or the initial list of
high-level epics that will need to be broken down into
more detailed user stories later in the Build phase. The

initial team will often oversee sourcing (internally or
externally) the larger team that will eventually create
the solution during the planning phase.

• Build: A larger team or teams often execute the build
phase. Keep in mind that, particularly in the IoT, the
work is frequently with various, multidisciplinary
teams. It's worth noting that, due to the often highly
dynamic nature of IoT projects, planning continues
during the build phase. Each sprint will be meticulously
planned, especially if an Agile approach is used. The
higher-level papers developed during the planning
phase will frequently need to be updated to reflect new
or changing needs, as well as lessons gained from prior
sprints.

• Run: The project team is typically disbanded, and the
solution is handed over to a line organization around the
time of the IoT solution's Start of Production (SOP).
This line organization will set up an integrated DevOps
organization in modern enterprises, which will deal
with both the solution's continuous development and
operations. DevOps for IoT can be more challenging
than typical DevOps due to the potentially extremely
distributed nature of IoT systems.

V. DISCUSSION AND CONCLUSION
The previous section presents the Scrum and XP agile

methods and the dedicated IoT project method Ignite.
Moreover, it presents the metamodel of each one with their
components that have been translated into metaclasses and
meta-associations.

The Scrum and XP methods are based on almost the same
principles, with a very clear definition of roles, unlike the
Ignite method.

Furthermore, another difference between Ignite and the
Scrum and XP methods is that Ignite divides the project
realization process into two sub-processes called Strategy
Execution and Solution Delivery activity, whereas Scrum and
XP have an ecosystem whose components are chained.

To sum up, the paper presents the standardization of the
Scrum, XP and Ignite methods as metamodels based on their
components and the fundamental MDA principles. These
metamodels are the beginning of the forthcoming contribution
concerning a Framework used for Industry 4.0.

REFERENCES
[1] L. Sherrell, “Waterfall Model,” in Encyclopedia of Sciences and

Religions, A. L. C. Runehov and L. Oviedo, Eds. Dordrecht: Springer
Netherlands, 2013, pp. 2343–2344. doi: 10.1007/978-1-4020-8265-
8_200285.

[2] I. Graessler, J. Hentze, and T. Bruckmann, “V-MODELS FOR
INTERDISCIPLINARY SYSTEMS ENGINEERING,” 2018, pp. 747–
756. doi: 10.21278/idc.2018.0333.

[3] S. Merzouk, S. Elhadi, A. Cherkaoui, A. Marzak, and N. Sael, “Agile
Software Development: Comparative Study,” SSRN Electron. J., 2018,
doi: 10.2139/ssrn.3186323.

[4] A. Abddessamad, S. Cherkaoui, M. Sm, A. Abdelaziz, M. Marzak, and
H. Mh, “Review on Embedded Systems and the Internet of Things:
Comparative Study,” Assoc. Comput. Mach., p. 7, 2021, doi:
10.1145/3454127.3457636.

201 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

[5] R. Knaster, SAFe 4.0 distilled: applying the Scaled Agile Framework for
Lean software and systems engineering. Boston, MA: Addison-Wesley,
2017.

[6] “What is SAFe | Scaled Agile,” SAFe® Enterprise Solutions.
https://www.scaledagile.com/enterprise-solutions/what-is-safe/

[7] C. Larman, B. Vodde, and B. Jensen, Large-scale scrum. Dpunkt, 2017.
[8] G. Verheyen, “Scaled Professional Scrum – NexusTM,” p. 5.
[9] D. Slama, F. Puhlmann, J. Morrish, and R. M. Bhatnagar, Eds.,

Enterprise IoT: Enterprise IoT: strategies and best practices for
connected products and services. Beijing Boston Farnham Sebastopol
Tokyo: O’Reilly, 2016.

[10] “IoT Methodology – The Internet of Things project lifecycle guide for
creative, technical and business people.”
http://www.iotmethodology.com/ (accessed May 30, 2020).

[11] X. Blanc and O. Salvatori, « MDA in action model-driven software
engineering », MDA en action ingénierie logicielle guidée par les
modèles. Paris: Eyrolles, 2005. [Online]. Available:
https://www.eyrolles.com/Informatique/Livre/mda-en-action-
9782212115390/

[12] E. Damiani, A. Colombo, F. Frati, and C. Bellettini, “A Metamodel for
Modeling and Measuring Scrum Development Process,” in Agile
Processes in Software Engineering and Extreme Programming, vol.
4536, G. Concas, E. Damiani, M. Scotto, and G. Succi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 74–83. doi:
10.1007/978-3-540-73101-6_11.

[13] D. Androcec and Z. Dobrovic, “Creating Hybrid Software Engineering
Methods by Means of Metamodels,” p. 6.

[14] H. Ibrahim and B. Abdessamad, “Project Management Metamodel
Construction Regarding IT Departments,” Int. J. Adv. Comput. Sci.
Appl., vol. 10, no. 10, 2019, doi: 10.14569/IJACSA.2019.0101029.

[15] M. H. Sadi and R. Ramsin, “APM3: A Methodology Metamodel for
Agile Project Management.,” 2009, pp. 367–378.

[16] “MetaObject Facility | Object Management Group.”
https://www.omg.org/mof/ (accessed Nov. 27, 2021).

[17] A. Anderson, R. Beattie, and K. Beck, “Chrysler goes to extremes,”
Distrib. Comput., 1998.

[18] K. Beck, “Embracing change with extreme programming,” Computer,
vol. 32, no. 10, pp. 70–77, Oct. 1999, doi: 10.1109/2.796139.

[19] S. Merzouk, “A Comparative Study of Agile Methods: Towards a New
Model-based Method,” vol. 9, no. 4, p. 8, 2017.

[20] S. Merzouk, A. Cherkaoui, A. Marzak, N. Sael, and F.-Z. Guerss, “The
proposition of Process flow model for Scrum and eXtreme

Programming,” Assoc. Comput. Mach., p. 6, 2021, doi:
10.1145/3454127.3457627.

[21] T. Dudziak, “Extreme programming an overview,” Methoden
Werkzeuge Softwareproduktion WS, vol. 1999, pp. 1–28, 2000.

[22] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software
development methods: Review and analysis,” 2002.

[23] K. Beck, Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[24] Jean-Louis Bénard, Laurent Bossavit, Régis Médina, and Dominic
Williams, “EXtreme Programming: project management”, EXtreme
Programming: gestion de projet. Paris: Eyrolles, 2004. [Online].
Available: https://www.eyrolles.com/Informatique/Livre/gestion-de-
projet-extreme-programming-2eme-tirage-2005-9782212115611/

[25] K. Schwaber, “SCRUM Development Process,” in Business Object
Design and Implementation, J. Sutherland, C. Casanave, J. Miller, P.
Patel, and G. Hollowell, Eds. London: Springer London, 1997, pp. 117–
134. doi: 10.1007/978-1-4471-0947-1_11.

[26] J. Sutherland and K. Schwaber, “Nut, Bolts, and Origins of an Agile
Framework,” p. 224.

[27] K. Schwaber and J. Sutherland, “The Scrum Guide The Definitive Guide
to Scrum: The Rules of the Game,” Nov. 2020, [Online]. Available:
https://scrumguides.org/scrum-guide.html

[28] S. A. Shinde, “Analysis of Agile Project Management with Scrum
Method and Extreme Programming,” IJSETR, vol. 4, p. 7, May 2015.

[29] S. Oomen, B. De Waal, A. Albertin, and P. Ravesteyn, “How can Scrum
be succesful? Competences of the scrum product owner,” 2017.

[30] A. Pham and P. V. Pham, Scrum in action: agile software project
management and development. Boston: Course Technology PTR, 2012.

[31] K. Schwaber and M. Beedle, Agile Software Development with Scrum,
Illustrée., vol. 1. Prentice Hall, 2002. [Online]. Available:
https://books.google.co.ma/books?id=BpFYAAAAYAAJ

[32] I. Jacobson, I. Spence, and P.-W. Ng, “Is There a Single Method for the
Internet of Things?,” Queue, vol. 15, no. 3, pp. 25–51, 2017, doi:
https://doi.org/10.1145/3106637.

[33] G. Görkem, T. Bedir, and T. Eray, “IoT System Development Methods,”
in Internet of things challenges, advances, and applications, Chapman &
Hall/CRC Press, 2018, pp. 141–159.

[34] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT
methodologies: comparative study,” Procedia Comput. Sci., vol. 175,
pp. 585–590, 2020, doi: 10.1016/j.procs.2020.07.084.

[35] S. Rahman, “Comparative analysis about the challenges and
implications of IoT development methodologies,” p. 55, 2018.

202 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Methodology
	IV. Metamodel Approach
	A. Definition
	B. Extreme Programming Methodology
	1) Definition: Extreme programming, or XP, is a method proposed by Kent Beck that applies the old development principles to the extreme. It divides the project into subprojects applying the traditional development steps in each subproject in an iterative w�
	2) XP Metamodel: Fig. 3 shows the metamodel of the XP method. This metamodel is based on the transformation of the method's components into metaclasses and the relationships between them into meta-associations.
	3) Component:
	a) Phases: The XP method consists of five phases viz., exploration, planning, iteration to release, productionizing, maintenance, and death. Each phase consists of a set of activities. These phases are described according to [20], [21], and [22].
	b) Roles: Furthermore, XP defines six roles viz., Customer, Consultant, Programmer, Coach, Tester, and Manager that are described according to [18], [21], and [22]. The consultant is responsible for advising and training the programmer that having communic�
	c) Practices: The method's practices are grouped into three categories, such as programming, collaboration and project management, which are described according to [21], [22], [23], and [24].

	C. Scrum Methodology
	1) Definition: The word "scrum" and the method's idea are derived from a rugby strategy that entails "bringing an out-of-play ball back into the game" through collaboration [25] [26]. The method was created in the early 1990s to manage the systems developm�
	2) Scrum metamodel: The Fig. 6 shows the metamodel of the Scrum method. This metamodel is based on the transformation of the method's components into metaclasses and the relationships between them into meta-associations.
	3) Component:
	a) Phases: Scrum process consists mainly of three phases viz; Pre-Game, Development and Post-Game, which are described according to [20] and [22].
	b) Roles: Scrum defines the roles, described according to [28], which are Scrum Master, Product Owner, Team, and Stakeholders.
	c) Practices: It also defines seven practices divided into two categories, events, and artifacts to be applied in different phases to avoid chaos caused by the unpredictability and complexity. The practices, which are described according to [22], [27], and�

	D. Ignite Methodology
	1) Definition: Originally from industry. The founders of this methodology are based on the analysis of manufacturing and industry, connected vehicles, Smart Energy and Smart Cities. Through collecting best practices of IoT strategy management and project e�
	2) Ignite metamodel: Fig. 7 shows the metamodel of the Ignite method. This metamodel is based on the transformation of the method's components into metaclasses and the relationships between them into meta-associations.
	3) Component: All components of this methodology are described according to [9].
	a) Phases: Two activities make up the Ignite process (as shown in Fig. 8). The first is to define the strategy and prepare the organization to adopt IoT, then create and manage the portfolio of IoT projects to support the IoT Strategy. This activity is cal�

	V. Discussion and Conclusion
	References

