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Abstract—Object detection technology aims to detect the 

target objects with the theories and methods of image processing 

and pattern recognition, determine the semantic categories of 

these objects, and mark the specific position of the target object 

in the image. This study generally aims to establish a recognition 

method for Cassava Phytoplasma Disease (CPD) real-time 

detection based on transfer learning neural networks. Several 

methods and procedures were conducted, such as the testing of 

two methods in transmitting long-distance high definition (HD) 

video capture; establishment of a compact setup for a long-range 

wireless video transmission system; the development, testing of 

the real-time CPD detection and quantification monitoring 

system, providing the comparative performance analysis of the 

three models used. We have successfully custom-trained three 

artificial neural networks using transfer learning: Faster Regions 

with Convolutional Neural Networks (R-CNN) Inception v2, 

Single Shot Detector (SSD) Mobilenet v2, and You Only Look 

Once (YOLO) v4. These deep learning models can detect and 

recognize CPD in actual environment settings. Overall, the 

developed real-time CPD detection and quantification 

monitoring system was successfully integrated into the wireless 

video receiver and seamlessly visualized all the incoming data 

using the three different CNN models. If the consideration is the 

image processing speed, YOLOv4 is better compared to other 

models. But, if accuracy is the priority, Faster R-CNN inception 

v2 performs better. However, since CPD detection is the main 

purpose of this study, the Faster R-CNN model is recommended 

for adoption to detect CPD in a real-time environment. 

Keywords—Cassava phytoplasma disease; faster regions with 

convolutional neural networks (R-CNN) inception v2; you only 
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I. INTRODUCTION 

The agricultural industry plays an important role in the 
economy. Plant illness is also caused by climatic 
circumstances, exacerbated by the exponential trend of 
population growth. The major challenges of sustainable 
development include reducing pesticide use, the expense of 
preserving the environment, and the cost of building quality. 
Exact, exact, and timely decisions may reduce pesticide use 
[1]. Cassava is a key crop that has been produced in the 
Philippines. Nowadays, innovation is commonly used for 
plant disease prediction. The concept of image processing 
combined with information mining improvements aids in 
identifying plant diseases. With the development of intelligent 

devices, the data bulk on Internet has grown with high speed. 
As an important aspect of image processing [2][3][4], object 
detection has become one of the popular international research 
fields. In recent years, the powerful ability with feature 
learning and transfer learning of Convolutional Neural 
Network (CNN) has received growing interest within the 
computer vision community, thus making a series of important 
breakthroughs in object detection [5][6]. So, it is a significant 
application to apply CNN to object detection for better 
performance. 

Real-time object detection is the task of doing object 
detection in real-time with fast inference while maintaining a 
base level of accuracy [7]. Object detection technology aims 
to detect the target objects with the theories and methods of 
image processing and pattern recognition [8][9], determine the 
semantic categories of these objects, and mark the specific 
position of the target object in the image. It is a very 
challenging task in the actual application to use computer 
technology to detect objects automatically. Complex 
background, noise disturbance, occlusion, low-resolution, 
scale, and attitude changes, and other factors will seriously 
affect the object detection performance. The conventional 
object detection method was based on the hand-crafted 
feature. It is not robust to illumination change, lacking good 
generalization ability. Using Google's TensorFlow and 
YOLOv4 as well as transfer learning, we were able to custom-
trained three separate artificial neural networks [10]. These 
deep learning models can detect and recognize CPD in actual 
environment settings. 

This study established a recognition method for Cassava 
Phytoplasma Disease (CPD) real-time detection based on 
transfer learning neural networks. Specifically, this paper is 
presented to test the two methods in transmitting long-distance 
high definition (HD) video capture. Likewise, it established a 
compact setup for a long-range wireless video transmission 
system. Furthermore, the project developed a real-time CPD 
detection and quantification monitoring system, performed a 
wireless video transmission test, and compared the test results 
in each model used. 

As compared with the recent papers and technologies 
related to plant disease detection, this paper presented a 
disease detection technology specifically for Cassava 
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Phytoplasma Disease. It demonstrated which real-time 
detection technology is the most appropriate to use, which is 
more practical and can have a great impact on society. This 
research provides a visual object identification framework 
capable of processing pictures at high detection rates while 
processing images at a fast pace. 

Hence, the authors conducted a thorough experiment on 
what innovative technology will be used. To befittingly 
implement the selected technology to our partner agency, the 
EDCOR, a cassava development cooperative located in San 
Guillermo, Isabela. Their cassava farms are situated in remote 
locations where internet connectivity is scarce. We developed 
a remote image processing server system utilizing digital 
First-Person View (FPV) [11]. This remote server can perform 
real-time image processing for CPD detection and recognition 
with a dedicated ground station for long-range high-definition 
video transmission without using the Internet. 

The next sections discussed the related works, methods, 
and results that transpired during the conduct of the study. It 
explained the details on how the entire project was done and 
the results of the undertakings. 

II. LITERATURE REVIEW 

Cassava plants exhibiting characteristic phytoplasma signs, 
such as witches' broom, general stunt, chlorosis, distortion, 
and decreased size [12], were seen in farms near San 
Guillermo, Isabela. CPD is a severe danger to cassava 
producers' food security [13]. 

Object detection is a critical computer vision problem that 
involves detecting visual objects in digital photos of a specific 
type (such as humans, animals, or autos). Object detection 
aims to create computational models and approaches that give 
one of the most fundamental bits of data required by computer 
vision applications [14]. Object detection is essential in 
identifying the disease type in the specific video sequence 
performed in agricultural farming. Object detection reduces 
computing time while increasing detection accuracy [15]. 

Several popular deep learning-based object identification 
algorithms are available that can accurately identify which 
section of a farm field is infected with Cassava Phytoplasma 
Disease. Some frameworks will need a lot of computing 
power, while some will provide less accuracy. By surveying 
several neural network frameworks, the authors identified the 
following frameworks with the best performance in object 
detecting technology. 

Transfer learning is the enhancement of learning in a new 
task by transferring knowledge from a previously learned 
related activity [16]. While most machine learning algorithms 
are designed to solve particular tasks, the development of 
algorithms that promote transfer learning is a continuing area 
of study in the machine-learning field. The following are the 
transfer learning neural networks considered in this paper: 

A. Faster Regions with Convolutional Neural Networks 

(R-CNN) Inception v2 

The Region Proposal Network (RPN) is a fully 
convolutional network that predicts object limits and 

objectness scores at each place simultaneously. RPNs are 
trained from start to finish to create high-quality region 
suggestions, which Fast R-CNN uses for detection [17]. RPN 
and Fast R-CNN may be taught to share convolutional 
features using a simple alternating optimization. RPN was 
added to the design of faster R-CNN. It means that it uses a 
quick neural network to handle a sluggish search selection 
process. 

RPN comes after the last convolution layer of a 
Convolutional Neural Network. Inception V2 was a module 
created to minimize the complexity of a convolution network. 
This module causes the convolution network to be broader 
rather than deeper. There are three types of modules in 
Inception V2 [18]. 

B. You Only Look Once (YOLO) v4 

YOLO is a cutting-edge, real-time object detecting 
technology. It is a real-time object identification system that 
recognizes several items in a single frame. YOLO takes a 
completely new approach to earlier detection methods. It uses 
a single neural network to process the entire picture. This 
network separates the picture into regions and predicts each 
bounding boxes and probabilities. The projected probabilities 
are used to weigh these bounding boxes [19]. YOLO offers 
excellent real-time performance in multi-scale object 
recognition [20]. 

C. Single Shot Detection (SSD) 

Single Shot Detection is a technique for detecting objects 
in a single shot. By capturing a single photograph, you can 
analyze many items. A single frame is used to recognize and 
analyze several items in a picture. Compared to Convoluted 
Neural Networks, this is a considerably faster analysis. For p 
channel analysis, a feature layer of m*n is obtained. For each 
of the k areas, a bounding box is generated. SSD is sometimes 
called a Multibox detector since it computes each bounding 
box and offsets relative to the initial bounding boxes [21]. 

III. METHODS 

A. Conceptual Framework 

The different processes and methodologies in the wireless 
video transmission system, its establishment, the development 
of a real-time CPD detection monitoring system, the 
performance testing were realized based on the conceptual 
framework of the study as presented in Fig. 1. The Real-time 
CPD detection and quantification Framework Model. 

B. Methods in Transmitting Long-distance High 

Definition Video Capture using the Long-Range 

Wireless Video Transmission System 

We have used two methods in transmitting long-distance 
high definition (HD) video capture. These methods involve 
using 2.4Ghz and 5Ghz frequencies. Both had their 
advantages and disadvantages. 2.4GHz offers a wide network 
coverage and is superior at bypassing substantial impediments 
like trees. However, it has a smaller data rate and is more 
susceptible to interference; more devices normally utilize this 
frequency. 5Ghz, on the other hand, offers a greater data rate 
and is less susceptible to interference; it is typically used by 
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fewer devices. However, it has a smaller coverage area and is 
not performing well when penetrating solid/thick layered 
obstacles. 

To implement the 2.4Ghz concept, we adapted the method 
called Wi-Fi Broadcast illustrated in Fig. 2. Wi-Fi-broadcast 
activates the monitor mode on the Wi-Fi cards. This mode 
allows you to transmit and receive arbitrary packets without 
having to associate them with anything. Furthermore, it is 
possible to get incorrect frames (where the checksum does not 
match). In this method, a real unidirectional connection is 
produced, simulating the benefits of an analog link. They 
comprise the following: the transmitter broadcasts data 
regardless of whether or not there are any receivers nearby. As 
a result, there's no possibility of video stalling due to a loss of 
association; the receiver gets video as long as it's within range 
of the transmitter. The video quality declines as it moves out 

of range, but it does not stall. Even if frames are incorrect, 
they will be shown rather than discarded; the classic "one 
broadcaster – numerous receivers" method will function right 
out of the box. Bystanders who wish to view the video stream 
on their devices only need to "shift to the correct channels"; 
Wi-Fi-broadcast permits the simultaneous use of numerous 
low-cost receivers and the combining of their data to enhance 
the likelihood of correct data reception. This so-called 
software diversity enables the use of identity and 
complementary receivers to increase dependability (imagine 
one reception with a 360° omnidirectional antenna and 
multiple directional antennas for long distances, all 
functioning in tandem). To archive high dependability at 
minimal bandwidth needs, Wi-Fi-broadcast employs Forward 
Error Correction. It can recover packets that have been lost or 
corrupted at the receiver. 

 

Fig. 1. The Structural Framework of Faster R-CNN(a), YOLOv4(b), SSD Mobilenet v2(c). 
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Fig. 2. Wi-Fi Broadcast Block Diagram. 

Using standard Wi-Fi dongles with Atheros AR9271 
802.11 chip for the transmitter and receiver, and a 2.4Ghz 
Yagi antenna for our ground station presented in Fig. 3 and 4. 
This setup can process camera feed from either USB Video or 
through RTSP/TCP URLs. 

The ground station uses a sturdy tripod with a height of 2.5 
meters. The Wi-Fi dongle, Yagi antenna, and a single board 
computer are securely installed on it, as shown in Fig. 5 and 6. 

 

Fig. 3. Atheros AR9271 802.11 Wi-Fi Dongle. 

 

Fig. 4. 2.4Ghz Yagi Antenna. 

 

Fig. 5. Single Board Computer; Raspberry pi 4. 

 

Fig. 6. A 2.5 Meters Tripod Stand where the Wi-Fi Dongle, Yagi. 

On the other hand, we used a commercially available FPV 
high-definition video transmitter using 5Ghz presented in 
Fig. 7, which also supports HDMI all format video input up to 
1920*1080@60fps, and output is up to 1920*1080@30fps. A 
5dB omnidirectional antenna is installed on the ground unit 
(standard). According to the manufacturer, the effective 
transmission distance is over 2km with an output delay of 
80ms/0.08s. 

 

Fig. 7. Commercially Available full HD Digital Video System. 
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The receiver/ground unit is also installed on the tripod, just 
beside the 2.4Ghz Yagi antenna. This method takes advantage 
of the commercially available HD Video TX/RX and its 
dedicated windows application. The commercially available 
video TX/RX works perfectly fine using its dedicated 
application (Insight.exe) on a windows computer. However, 
the downside is that we cannot tap on the video feed from the 
transmitter into our developed system. Given that its dedicated 
application is not open-source and there is no available 
software development kit (SDK) for this device, it is hard to 
analyze and reverse engineer. On the other hand, the RTSP 
URL that supposedly works based on its documentation turns 
out to be incorrect (or, if not, maybe they no longer support 
this feature). 

The alternative concept uses the “HD Video Capture” 
method, as illustrated in Fig. 8, which works by connecting 
the NDVI camera through HDMI into the Video TX and 
connected to the Video RX wirelessly (5Ghz band). The 
Video RX will also act as a Wi-Fi access point using the 5Ghz 
band. A lightweight, small single-board computer (SBC) 
running Windows 10 Pro x64 with Insight.exe configured will 
be linked to the Video RX over Wi-Fi (5Ghz) and display the 
live camera feed from the TX side. Then a video capture 
device will be used to mirror the preview display on the SBC 

and send it to our server computer via wired connection in 
digital HD resolution (720P - 1080P) in real-time (or near 
real-time). 

After which, our developed Demeter’s Eyes Monitoring 
System will then be able to adapt to this alternative method 
and process each frame from the incoming digital HD 
resolution camera pass through our custom-trained CNN 
model for CPD detection and quantification. These two 
different videos transmission configurations work 
independently of each other, and only one setup can be used at 
a time since there is only one camera installed to the 
transmitter. 

C. Establishment of a Compact Setup for a Long-Range 

Wireless Video Transmission System 

The long-range wireless video transmission system is 
equipped with 16 megapixels NDVI camera, GPS module, a 
single-board computer, and a swappable video transmitter 
(2.4Ghz and 5Ghz), as shown in Fig. 9. This compact setup 
also includes a portable power supply, mini-fan, and LED 
light indicators. The LED lights indicate the status of each 
component on this embedded system. It is very useful when 
conducting pre-flight checkups and during troubleshooting. 

 

Fig. 8. Video Capture System Layout. 
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Fig. 9. HD Wireless Video Transmitter System with Installed NDVI Camera 

and GPS Module. 

D. Development and Testing of the Real-Time CPD 

Detection and Quantification Monitoring System 

The real-time CPD detection [22][23] and quantification 
system work by switching on the NDVI camera, video 
transmitter and receiver (including the single-board computer 
from the ground station), GPS logging module (will 
automatically start logging time stamps and GPS coordinates 
once switched on and successfully linked to a satellite) and, 
the drone itself. After which, the video transmitter and 
receiver will automatically link each other (the green light 
indicator for data on the video receiver must be steady). 

On the server-side, the CPD real-time monitoring system 
should now be able to detect and preview incoming live 
camera feed from the video transmitter, as shown in Fig. 10. 

 

Fig. 10. Real-Time CPD Detection and Quantification System Dashboard. 
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Once the video link is established, the surveyor can now 
start hovering above the cassava field (3-5 meters above the 
cassava). While hovering over the cassava field, the CPD real-
time monitoring system performs image pre-processing 
procedures on each incoming frame. This includes applying a 
Fastie color map to visualize the NDVI values in the image. 
The pre-processed frame(s) is passed through our CNN model 
(custom trained CPD detection model using transfer learning 
with Faster RCNN for prototype 2, SSD MobileNet V2 [1] 
COCO for prototype 3, and YOLO v4 for prototype 4) for 
CPD detection and quantification based on the TensorFlow 
object detection API. The real-time CPD detection is 
displayed on the system preview window with an overlaid 
running count of CPD detected. The system also automatically 
records each CPD detected timestamp (the latency between 
the transmitter and receiver was considered; thus, an 
adjustment with the time delay was done). 

After completing the survey and the drone has returned, 
the GPS logging module will automatically connect to the 
access point located on the operator side. This will allow the 
operator to download GPS coordinates and corresponding 
timestamp Logs from the drone onboard GPS logging module 
through sFTP and upload it into the server computer. The 
system will now compare/match the CPD detection 
timestamps from the server computer and the timestamps from 
the GPS logging module. For each timestamp that matches, 
save its corresponding GPS coordinate into a .txt file. This .txt 
file will be uploaded into the web-based information system 
for visualization. These processes are illustrated in our 
conceptual framework shown in Fig. 1. 

E. Testing the Long-range Wireless Video Transmission 

System 

To verify the actual performance of the video transmission 
system, we conducted a stress test to determine the following: 

working time per battery charge of the NDVI camera; working 
time per battery charge of the video receiver; the actual 
working distance of the video TX/RX; actual latency of the 
video transmission; actual latency of the video transmission 
when adapted into the monitoring system. 

We conducted the test at an open field inside the Isabela 
State University located at San Fabian, Echague, Isabela, as 
shown in Fig. 11 and 12. The test location is ideal since it has 
an almost identical topography with the actual cassava farms. 
It has a combination of wide-open fields with surrounding 
trees in various heights and densities. 

F. Portable Handheld Prototype Field Testing 

With favorable weather, we conducted the onsite pilot 
testing of our prototype at Villa Teresita, San Guillermo 
Isabela, on a cassava farm owned by one of the EDCOR 
members between 10:00 in the morning up until 3:00 in the 
afternoon. The planted cassava was at around three months old 
at the time of testing. We used PVC pipes to hold the 
prototype steady, facing the camera down at a height of 2-3 
meters from the top-most part of the cassava. Thus, mimics 
the drone altitude and flight movement. 

Fig. 13 shows the actual field testing of the prototype. 

This was performed in the cassava farm in Villa Sanchez, San 

Guillermo, Isabela. This testing makes sure that the prototype 

works well as per its functionalities. 

G. Drone and Prototype Payload Field Testing 

After the initial test, we embedded the prototype as a 
payload into our custom-built drone and went back to the 
same site to conduct another series of tests. This milestone is 
presented in Fig. 14 and 15. 

 

Fig. 11. Testing Site. 
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Fig. 12. Actual Wireless Video Transmission Test Conducted. 

 

Fig. 13. Actual Field Testing of the Prototype. 

 

Fig. 14. Installed Prototype as Payload underneath the Drone. 
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Fig. 15. Actual Field Testing using the Drone with the Prototype Payload on 

it 

H. Comparison of the Test Results in each Model used 

The ground-truthing [24] procedure was done on a selected 
area from a cassava farm with identified CPD infection. Our 
plant pathologist selected two lanes of planted cassava by 
which our prototypes camera can cover at one pass at a height 
of 2-2.5 meters. The cassava planted on the selected test area 
was counted manually. We got a total of 40 cassava stalks, 
wherein our plant pathologist identified 18 as CPD infected, 
and 22 were healthy/normal/or with a different disease. As the 
prototype passes through each cassava plant, our plant 
pathologist verifies if it can detect CPD infected or has no 
detection. 

IV. RESULTS AND DISCUSSION 

For objective one, on testing two methods in transmitting 
long-distance high definition (HD) video capture. The wireless 
video transmission results show that the working time per 

battery charge of the NDVI camera (while installed in the 
video TX/RX) is capable of reaching three hours on preview 
mode with a remaining one bar on the battery indicator. 
Actual working distance of the Video TX/RX. Both 2.4Ghz 
and 5Ghz setups reached 900 meters in the actual ground test 
with few trees in between. Also, both setups lose connection 
after a total loss of line of sight between the TX and RX. The 
actual latency of the video transmission is at 90-100 
milliseconds. 

The second aim is to construct a small configuration for a 
long-range wireless video transmission system. The tests 
conducted between the two wireless configurations showed 
promising results with the given environmental condition 
during the field testing. However, we opt to use the 5Ghz 
setup moving forward simply because it is very 
straightforward to deploy both its transmitter and receiver. 
Also, given the fact that the end-users are not technically 
knowledgeable on setting up the 2.4Ghz configuration, which 
may be too complex for non-technical users, using it may pose 
problems during the turnover and maintenance of the system. 

The creation and testing of a real-time CPD detection and 
quantification monitoring system and wireless video 
transmission test performance are goals 3 and 4. The 
developed real-time CPD detection and quantification 
monitoring system was successfully integrated into the 
wireless video receiver and seamlessly visualized all the 
incoming data using the three different CNN models, as 
shown in Fig. 16. 

 

Fig. 16. Deploying the Three Custom Trained CNN Models (Faster R-CNN, SSD Mobilenet v2, and YOLOv4. 
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For objective 5, the comparison of the test results in each 
model used, the tabulated results using each custom-trained 
CNN model at different frame resolutions presented in 
Tables I to VI show that the Faster R-CNN model has the 
highest detection accuracy across different frame resolutions 
with a top detection rate of 13 out of 18 CPD samples. 
However, this has the lowest processing frame count among 
the three CNN models used. On the other hand, the YOLOv4 
model has a top processing speed of 25 frames per second and 
a 9 out of 18 detection rate on CPD samples. In contrast, the 
SSD Mobilenet v2 model has a top processing frame count of 
20 frames per second, which is second to the YOLOv4 model 
in terms of processing speed. However, it has the lowest 
detection rate, with just 6 out of 18 CPD samples being 
detected. 

Table I shows the detection results using Faster R-CNN 
Inception v2. The video resolution was 1080 x 720 at eight 
frames per second (FPS). Negative samples mean that during 
the detection process of the system, these are samples that are 
not infected with CPD. In contrast, those positive samples are 
samples that were infected with CPD. This particular table 
showed that from the 25 negative samples, it recognized 20 
True Negative (TN) from the samples while only 5 were False 
Negative (FN). Furthermore, the Faster R-CNN framework 
recognized 13 True Positive (TP) and 2 False Positive (FP) 
samples from 20 samples infected with CPD. 

Table II is the detection tests using Faster R-CNN 
Inception v2 960 x 640 at 11FPS. The 24 negative samples 
recognized 17 as TN and seven as FN. From the 16 positive 
samples, the result is 11 as TP and five as FP. 

Table III shows the result of tests using YOLOv4 1080 x 
720 @22FPS. From this table, 18 were detected as TN while 
nine were detected as FN from the 27 negative samples. For 
the positive samples, the system saw nine as a TP, while 4 
were FP. 

Table IV also presented the results using YOLOv4 960 x 
640 @25FPS. The result is not much desirable since from the 
26 negative samples. It only detects 14 as TN, which is close 
to detection of FN, which is 12. The same is through with its 
detection on positive samples. It detects 8 FP and 7 FP from 
15 positive samples. 

Table V presents the results using SSD Mobilenet v2 1080 
x 720 @18FPS. From this table, the detection accuracy can be 
seen as low. It has 13 TN and 12 FN from 25 negative 
samples, while 9 FP and 6 TP from 25 positive samples. 

Table VI shows the result using SSD Mobilenet v2 960 x 
640 @20FPS. Its accuracy is less good than the previous 
methods. From the 25 negative samples it detects 11 TN and 
14 FN. While from the 15 positive samples, it detects 11 FP 
and 4 TP. 

Based on these results, if the image processing speed is 
considered, YOLOv4 is better than other models. Faster R-
CNN inception v2 performs better if accuracy is a priority. 
Hence, these two models can be used depending on the 
purpose of the detection of the CPD. However, the most 
important factor to be considered must be its accuracy since 
CPD detection is the main objective of this study. 

TABLE I. FASTER R-CNN INCEPTION V2 1080 X 720 @8FPS 

 Positive Negative 

Negative FN=5 TN=20 

Positive TP=13 FP=2 

TABLE II. FASTER R-CNN INCEPTION V2 960 X 640 @11FPS 

 Positive Negative 

Negative FN=7 TN=17 

Positive TP=11 FP=5 

TABLE III. YOLOV4 1080 X 720 @22FPS 

 Positive Negative 

Negative FN=9 TN=18 

Positive TP=9 FP=4 

TABLE IV. YOLOV4 960 X 640 @25FPS 

 Positive Negative 

Negative FN=12 TN=14 

Positive TP=7 FP=8 

TABLE V. SSD MOBILENET V2 1080 X 720 @18FPS 

 Positive Negative 

Negative FN=12 TN=13 

Positive TP=6 FP=9 

TABLE VI. SSD MOBILENET V2 960 X 640 @20FPS 

 Positive Negative 

Negative FN=14 TN=11 

Positive TP=4 FP=11 

V. CONCLUSION 

During the field testing/actual testing, the 5Ghz set-up was 
used because it is straightforward to deploy both its 
transmitter and receiver. The developed real-time CPD 
detection and quantification monitoring system was 
successfully integrated into the wireless video receiver and 
seamlessly visualized all the incoming data using the three 
different CNN models. If the consideration is the image 
processing speed, YOLOv4 is better compared to other 
models. Faster R-CNN inception v2 performs better if 
accuracy is a top requirement. Hence, these two models can be 
used depending on the purpose of the detection of the CPD. 
However, the most important factor to be considered must be 
its accuracy since CPD detection is the main objective of this 
study. 

VI. RECOMMENDATION 

The test's discussed results using the three methods - SSD 
Mobilenet v2, Faster R-CNN Inception v2, and YOLOv4, 
shows that Faster R-CNN Inception v2 has the highest 
accuracy. However, the accuracy rate needs to be improved to 
achieve optimal accuracy. The suggestion is to increase the 
training datasets and modify the hyperparameters to achieve 
maximum accuracy. 
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