
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Adding Water Path Capabilities to QWAT Databases
Bogdan Vaduva, Honoriu Valean

Automation Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Abstract—The main purpose of this article is to show how to
extend an existing open source database, namely QWAT
(Acronym from Quantum GIS Water Plugin), by using
pgRouting (PostgreSQL routing extension) in order to achieve
the ability to find the water flow in a water network. The water
path in a water network is a key information needed by any
water supplying company for different activities such as
customer identification, meter the water flow or isolating areas of
the water network. In our environment an open source database
was used and that database didn’t have any means to identify the
water path, so our research is intended into that direction. Once
a water path is found, our next goal was to show that identifying
customers for a water supplying company is just a click away (by
using no directional graphs). Another key information needed by
the water supplying companies is to know which valves should be
closed in order to shut off the water for an area of the water
network. As result, the second purpose of the article is to show
how to identify the necessary valves, to be closed or open, in
order to shut off or on the water (within the pipe network).

Keywords—Relational database; graphs; water network; water
path; open source; QWAT

I. INTRODUCTION
Water supplying companies all over the world needs to

know who their customers are and this task is a very important
one, for reasons like: knowing to whom they will invoice,
knowing how much water was used and if a leak occurs to
identify which valves needs to be closed in order to shut off the
water. In a previous paper we presented a way of predicting
leakage in QWAT1 databases, but identifying and predicting
leakage is not enough, because, any existing or future leakage
has a negative impact on the water supplying company’s image
[1].

QWAT databases are relational databases [2] that models
water network pipes, by keeping information like: pipe
attributes and geographical position, valve attributes and
geographical position, meters, hydrants, network elements,
subscribers, leaks. Pipes are kept in a table (within a schema
called qwat_od) and have a set of attributes from whom we
will focus on two, first node (fk_node_a) and second node
(fk_node_b).

In the abstract of this paper, we said that we want to show a
way of finding the water path within QWAT databases, but if
the pipe table does have a first and a second node, why QWAT
model doesn’t have a water path function until the final
consumer? Or does it? The answer is given by QWAT
designers, into their documentation, where they presented how
the QWAT model should be used. In that documentation they
recommend that pipes should be broken whenever the pipes

1 QWAT – Acronym for QGIS Water Plugin – http://www.qwat.org

change their material, function, type or diameter. Other
recommendations are:

• Pipes should only be coupled to the right of each
intersection with another pipe (Fig. 1).

• Pipes should only be coupled to the right of each
intersection with a branch (Fig. 1).

• Pipes should not be coupled in any case to the right of a
private branch (Fig. 1).

Those recommendations were put into a picture as in Fig. 1.

If a QWAT database is filled the way described above, the
water path should be available, but not actually to the final
user/consumer, because, usually, water supplying companies
have their own software for customer management and
invoicing. We have to outline that, at the time this article was
written, there wasn’t any function within QWAT database, that
allowed to find the water path or extracts the customers for
some parts/sections of the water network and we came up with
some proposals formulated into a document in 2017. [3].

When it comes to valves they also did some
recommendations (Fig. 2):

• Do not cut the pipe on the right of each valve.

• Place the valves on the vertices of the pipe line.

Fig. 1. Example of How to Break Pipes at Intersections in QWAT

Databases.

Fig. 2. Example of How to Place Valves in QWAT Databases.

In our case we begin using the QWAT model and we start
entering data into that model, which uses a PostgreSQL [4]

342 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

database server. After a few months, we found that even if we
somehow link customers, to a water distribution pipe, we can’t
actually differentiate between customers and all of that,
because of the initial recommendations and the way our water
network was drew. In our case, the colleagues from GIS
(Geographic Information Systems) department, responsible
with drawing the water network, were not splitting the pipes
every time a pipe intersects a private branch.

We have to clarify what an intersection means from a GIS
standing point: two or more pipes that actually connect to each
other and not pipes that traverse other pipes (on top or under).

On other hand, getting outside on the field and looking at
an actual private branch connection, we found that private
branches are directly coupled to the distribution pipe (Fig. 3).

Fig. 3. Example of How a Private Branch is Actually Connected to the

Distribution Pipe.

The current paper will continue with the following
chapters: Database Background, Database Proposed Changes,
Applied Research, Results and Conclusions.

II. DATABASE BACKGROUND
We started to study the QWAT model and see how and if,

can be changed in order to accommodate our needs.

The QWAT model has a table called “pipe” which holds
information for each water pipe. That information refers to
attributes like: pipe id, pipe function, install method, material,
bedding, precision, installation year, node a, node b, parent id,
geometry and a few other that are not relevant to our paper.
Let’s consider a real street, which has a distribution pipe and
each private branch is connected to that distribution pipe the
way presented in Fig. 3. From a QWAT database standing
point, the data is as in Fig. 4 and Table I.

Fig. 4 presents a distribution pipe, on which we placed, one
node of the private branches, on its vertices (distribution pipe’s
vertices). That means that distribution pipe is not fragmented as
in Fig. 1 right section and it means that we can’t have a path
(water flow) from node 38578 (placed on a private branch) to
node 38529 (placed on distribution pipe), for example. In order
to be able to do that a parallel water network should be created
and kept within QWAT database. By having that parallel water
network, we will actually create a graph that will contain nodes
and edges for describing the water flow.

Fig. 4. Example of How a Private Branch is Actually Connected to the main

Pipe.

TABLE I. EXAMPLE OF DATA KEPT IN THE PIPE TABLE

Pipe
ID

Pipe Table

Function Material Node A Node B …

16470 Distribution
pipe Steel 38529 37719 …

18900 Private branch Polyethylene 38580 38560 …

17898 Private branch Polyethylene 38579 38557 …

14567 Private branch Polyethylene 38578 38554 …

….

In the current database model, we can achieve this water
path goal only by fragmenting the distribution pipe every time
it intersects a private branch. Doing so in a real-life scenario is
unrealistic because of the amount of work and can’t be
achieved.

III. DATABASE PROPOSED CHANGES
Analyzing the above data, we came with some initial

conclusions and to do list, such as:

1) We need to (somehow) connect private branches to the
distribution pipe without redrawing the water network pipes.

2) We need to know/change the valve state in order to be
able to have a water path to the final consumer.

3) We need to match a private branch to a consumer.
4) We need to be able to show the water path from the

source(s) to any consumer. Knowing that, we will be able to
determine which valves should be closed in order to shut off or
on the water to a specific customer.

We stated above that we need to address at least four
database improvements in order to make it water path friendly.
The first improvement on that list: “connect private branches to
the distribution pipe without redrawing the water network
pipes”, it is the one that will allow us to determine the water
flow within the water network and further to achieve the other
goals on our list.

The first thought we had was to somehow split the
distribution pipe, but in real world those distribution pipes are
not split (Fig. 3) and our next idea was to build a parallel water

343 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

network that will have the desired format. The newly parallel
water network will be fragmented as in Fig. 5. Furthermore,
that parallel network should be created without asking the user
to redraw the network in the format presented in Fig. 1.

Fig. 5. Example of How we want to Build the Parallel Water Network. We

used different Colors just to show that we will have Different Segments.

The parallel network should be built at the same time the
user draws the water network in it’s usually way, Fig. 4 and 5,
where the user does not split the distribution pipe every time it
intersects a private branch but places one end of a private
branch on the vertices of the distribution pipe. In addition to
this goal we figured out that a refresh button that creates that
parallel water network for the current bounding box is
acceptable and probably necessary.

Once the parallel network will be built we planned to add
an existing PostgreSQL extension, called pgRouting [5] to
QWAT database.

The first change to the QWAT model was to add a new
table, which we called it “pipe_reference” and has the
following fields:

• id, integer – an id for each pipe segment that will be
generated/created,

• fk_pipe, integer – a reference to the initial pipe,

• fk_node_a, integer – a reference to the first node of the
new segment,

• fk_node_b, integer – a reference to the second node of
the new segment,

• geometry, geometry – the geometry of the newly
created segment.

The reason behind the “pipe_reference” table is to keep the
parallel water network saved, for a later use. At this point, we
designed the “pipe_reference” table, but that one needed data
and we planned to populate it with the help of a new function,
called “fn_pipe_reference_update”. Further we will present
what that function does.

We imagined the function to have as input parameter the ID
of the pipe (distribution pipe) that we want to split (ex. 16470 –
Table I, Fig. 5). The function works as follow:

• For the input ID we delete all the records from
“pipe_reference” having the fk_pipe field equal to the
input parameter.

• We select all the pipes (usually private branches) that
have one end placed on or near the vertices of the
inputted pipe. For all the selected pipes we keep only
the nodes placed on the vertices of the inputted pipe.

• Using all the nodes placed on the inputted pipe
(distribution pipe), together with the first and second
node of it (distribution pipe), we insert the missing rows
into “pipe_reference” table (Table II).

TABLE II. EXAMPLE OF WHAT THE PIPE_REFERENCE TABLE WILL HOLD

Pipe
Reference
ID

Pipe Reference

Fk_pipe Node A Node B Geometry

1 16470 38529 38577 …

2 16470 38577 38578 …

3 16470 38578 38579 …

4 16470 38579 38580 …

5 16470 38580 38581 …

6 16470 38581 38582 …

7 16470 38582 42086 …

8 16470 40286 37719 …

…

The next envisioned step was to make a union between the
content of the “pipe_reference” table with the records from the
“pipe” table for whom the ids cannot be found in any of
“fk_pipe” values of “pipe_reference” table. By doing so, we
will have the parallel water network (automatically generated),
labeled in green, that will be pgRouting friendly (Fig. 6).

Fig. 6. Example of How the Parralel Water Network was Overlapped with

the Pipe Table. Observe the Green Labels in between Orange Brackets on Top
of some Pipes.

344 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

IV. APPLIED RESEARCH
After envisioning the parallel water network design, we

moved forward by adding the new “pipe_reference” table into
the QWAT database and the function named
“fn_pipe_reference_update” that will construct / fill the parallel
network. At the same time, we installed pgRouting in our
database server. The new extension, gave us some new routing
functions, from which we used “pgr_dijkstra”. This function
returns the shortest path using Dijkstra algorithm. In 1956
Edsger Dijkstra created a graph search algorithm (graph with
non-negative edge path costs) for determining the shortest path
[6]. Because the function works on graphs with non-negative
edge path costs and because there are valves on pipes (which
could be open or closed) we also added a function which we
called “fn_element_valve_status”. This function checks, if
there are valves on a pipe and if one valve is closed on that
pipe we consider the cost as being negative.

The example of running the function between node 38557
and node 38529 can be viewed in Fig. 7.

To this point, we addressed only the first and second item
on our to do list, but we said that we want have a match
between a private branch and a consumer and thus the path
from the water source to the final user.

On our map (Fig. 7), we have outlined that each private
branch serves a household. At some point the owners can
change and we have to take that into consideration. On other
hand the information about consumers is kept in a different
database that is not by default accessible to QWAT database.

One of the last changes done to our QWAT database was to
link the data about consumers into QWAT by adding a new
table called “qwat_od_subscriber_location” which has two
fields fk_subscriber and fk_location. The first field is a foreign
key to “subscriber” table, which is native to QWAT model.
The second field is a foreign key to “location” view, in a
foreign database that keeps the consumer information and
invoices. Regarding the foreign databases that keeps the
consumer information and could be linked to QWAT, the only
restrictions are related to the fact that those databases should be
addressable by a PostgreSQL feature called Foreign Data
Wrappers. The “location” view should always give us the
information about the current consumer for a specific location.

We built that function that displays basic information about
the current consumer at a specific location and the result can be
seen in Fig. 7.

We succeed in solving another point in our to do list, but
one item was still on that list. It is about the ability to find out
if the water flows from one source of the water network to one
final consumer.

Knowing which the clients are will allow the water
supplying company, to send customized information, to its
customers and thus improving its image. Water can flow in
either directions on a pipe and as result, we have a no
directional graph when it comes to water network pipes. We
have implemented the extraction of this graph, in JAVA, on the
server side of our web-based application. The result of this tool
can be seen in Fig. 8.

Fig. 7. Example of the Path between Node 38557 and 38529.

Fig. 8. Example of Determing/Identifying Clients/Customers.

To solve the last item in our to do list, we created a new
function within QWAT database that we called
“fn_valve_to_close”. The new function takes as input
parameter, the subscriber, which translates as the end node of
consumer’s private branch and determines all the water paths
from the sources, defined for that water network, to that
subscriber/consumer. For all the paths we outline the valves
and we color the closest one with green. The result of running
the function, on subscriber corresponding to the node 38557
can be seen in Fig. 9.

Fig. 9. Example of the Valves that Needs to be Closed for Node 38557.

345 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

We have to make a note here, related to “pipe_reference”
table. The “pipe_reference” table has to be kept in
synchronization with the “pipe” table, which means, that every
time a user makes changes, to a pipe geometry, the
“pipe_reference” table has also to be updated, to keep up with
the modifications.

Regarding the hydraulic analysis that can be done on the
water network [8] we have to note that are applications that
already do that very well. From those applications we will
mention the one called EPANET2 (software application used
throughout the world to model water distribution systems)
given freely by the government of USA [9] [10].

V. RESULT
We showed in our article how an existing open source

water network model (QWAT model) can be changed in order
to accommodate new requirements, but it was only one of the
steps we’ve done to improve the QWAT model.

Our way of extending the open source model, namely
QWAT, it’s not the only way, and other persons embraced our
ideas and extended QWAT model in a slightly different way,
which brought us joy to see that our work has been appreciated
[7].

Lately, another idea came to our attention, which is the
possibility to use graph databases for our processes [11] [12].
We know that graph databases are suitable for recommendation
engines and those can be used in our environment, namely
QWAT. Before presenting our envisioned workflow, we have
to outline that our relational database data is already in a
friendly graph format and already uses a graph extension called
pgRouting. All these will probably allow us in the future, to
export our data to graph databases and to extract more
information out of it. At this point and this time, we formulated
the following algorithm to be used to export data to a graph
database [13]:

• choose a graph database – only once.

• define case scenarios.

• specify relations or define new views to be exported.

• export the data to graph databases.

• run case scenarios to find out results.

• import results into the relational database and make use
of them.

By doing the above steps in an automated fashion we will
allow users to focus onto the results and thus maximizing the
amount of information extracted from a relational database. We
plan to test our proposed use of graph databases in the nearest
future and see how much we can benefit out of it.

The work presented in the current paper shows how to find
the water path in a water network, modeled in an open source
database (QWAT), but there are commercial databases that
also do that. One of those commercial databases is proposed by
ESRI (Environmental Systems Research Institute). Regarding

2 Internet – https://www.epa.gov

the performance of our model compared to ESRI’s model we
can’t tell much because of the costs involved in installing the
ESRI application.

We used our model for identifying the customers in a
Romanian city called Sighetu Marmatiei located in the
northern part of Romania. The city of Sighetu Marmatiei has
about 20000 customers and from those customers only about
9000 are placed on the map and linked to private branches. The
time to extract those city customers using our model is around
2-3 minutes which is a reasonable time.

VI. CONCLUSION
The current paper shows that an open source database

model of a water network can be extended to accommodate
new functions and those are similar to the functions from a
commercial database. We achieved that purpose by adding
tables, functions to an existing relational database, namely
QWAT. The new tables and functions allowed us to identify
the basic water flow of a water network but that flow did not
take in consideration pressure zones or pumps [14]. On other
hand our paper didn’t go into the hydraulic analysis of the
water network.

An improvement that easily can be done by any water
supplying company, is to add electric valve actuators, either to
every consumer or to valves within the water network and to
each actuator add a Wi-Fi circuit breaker. Connecting those
circuit breakers to the Internet and further to QWAT model, the
water supplying companies will be able to shut on or off water
to its clients, remotely [15].

In conclusion our paper presented a way of solving a
problem for a water supplying company by using open source
databases and their features.

REFERENCES
[1] Bogdan Vaduva, Honoriu Valean - Water pipes leak prediction in

QWAT databases, ICSTCC 2021, Iasi, Romania, 2021.
[2] H. Darwen, An Introduction to Relational Database Theory, United

Kingdom: Bookboon. com, 2010.
[3] Internet - https://github.com/qwat/qwat-data-model/issues/171 - 2017.
[4] Hans-Jurgen Schonig - Mastering PostgreSQL 11: Expert Techniques to

Build Scalable, Reliable, and Fault-tolerant Database Applications, 2nd
Edition.

[5] Internet – www.pgrouting.org – last access in September 2021.
[6] Schulz, Frank & Wagner, Dorothea & Weihe, Karsten. (1999).

Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public
Railroad Transport. Algorithm Engineering.

[7] Internet - https://github.com/benoitblanc - last accessed in October 2021.
[8] Naser Moosavian, Mohammad Reza Jaefarzadeh, "Hydraulic Analysis

of Water Distribution Network Using Shuffled Complex Evolution",
Journal of Fluids, vol. 2014, Article ID 979706, 12 pages, 2014.
https://doi.org/10.1155/2014/979706.

[9] G. VenkataRamanaDr.aCh.V.S.S.SudheerbB.Rajasekhar - Network
Analysis of Water Distribution System in Rural Areas using EPANET -
Procedia Engineering, Volume 119, 2015, Pages 496-505.

[10] Rai, R. K. and Lingayat, Prashant, Analysis of Water Distribution
Network Using EPANET (February 22, 2019). Proceedings of
Sustainable Infrastructure Development & Management (SIDM) 2019,
Available at SSRN: https://ssrn.com/abstract=3375289 or
http://dx.doi.org/10.2139/ssrn.3375289.

[11] R. De Virgilio, A. Maccioni, and R. Torlone. Converting relational to
graph databases. In GRADES, 2013.

346 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

[12] Konstantinos Xirogiannopoulos, Udayan Khurana, Amol Deshpande -
GraphGen: Exploring Interesting Graphs in Relational Data,
Proceedings of the VLDB Endowment, Volume 8, 2014-2015.

[13] Ahmad Shahzad, Frans Coenen - Automated Generation of Graphs from
Relational Sources to Optimise Queries for Collaborative Filtering –
2020.

[14] Mrs. Vaidya Deepali R., Mali Sandip T. - Pressure driven approach in
water distribution network analysis: A Review - The International
journal of analytical and experimental modal analysis, Volume XI, Issue
VII, July/2019, ISSN NO: 0886-9367.

[15] Rosiberto Gonçalves, Jesse J. M. Soares and Ricardo M. F. Lima - An
IoT-Based Framework for Smart Water Supply Systems Management -
Future Internet 2020, 12, 114; doi:10.3390/fi12070114.

347 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Database Background
	III. Database Proposed Changes
	1) We need to (somehow) connect private branches to the distribution pipe without redrawing the water network pipes.
	2) We need to know/change the valve state in order to be able to have a water path to the final consumer.
	3) We need to match a private branch to a consumer.
	4) We need to be able to show the water path from the source(s) to any consumer. Knowing that, we will be able to determine which valves should be closed in order to shut off or on the water to a specific customer.

	IV. Applied Research
	V. Result
	VI. Conclusion
	References

