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Abstract—Stroke is the second leading cause of death 
globally. Computed Tomography plays a significant role in the 
initial diagnosis of suspected stroke patients. Currently, stroke is 
subjectively interpreted on CT scans by domain experts, and 
significant inter- and intra-observer variation has been 
documented. Several methods have been proposed to detect 
ischemic brain stroke automatically on CT scans using machine 
learning and deep learning, but they are not robust and their 
performance is not ready for clinical practice. We propose a fully 
automatic method for acute ischemic stroke detection on brain 
CT scans. The system’s first component is a brain slice 
classification module that eliminates the CT scan’s upper and 
lower slices, which do not usually include brain tissue. In turn, a 
brain tissue segmentation module segments brain tissue from CT 
slices, followed by tissue contrast enhancement using the 
Extreme-Level Eliminating Histogram Equalization technique. 
Finally, the processed brain tissue is classified as either normal 
or ischemic stroke using a classification module, to determine 
whether the patient is suffering from an ischemic stroke. We 
leveraged the use of the pre-trained ResNet50 model for slice 
classification and tissue segmentation, while we propose an 
efficient lightweight multi-scale CNN model (5S-CNN), which 
outperformed state-of-the-art models for brain tissue 
classification. Evaluation included the use of more than 130 
patient brain CT scans curated from King Fahad Medical City 
(KFMC). The proposed method, using 5-fold cross-validation to 
validate generalization and susceptibility to overfitting, achieved 
accuracies of 99.21% in brain slice classification, 99.70% in brain 
tissue segmentation,  87.20% in patient-wise brain tissue 
classification, and 90.51% in slice-wise brain tissue classification. 
The system can assist both expert and non-expert radiologists in 
the early identification of ischemic stroke on brain CT scans. 
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I. INTRODUCTION 
Globally, stroke is a leading cause of death, accounting for 

around 15 million deaths annually [1], [2]. Even in low-income 
and middle-income countries, stroke is a major cause of 
mortality, and in the Kingdom of Saudi Arabia (KSA), annual 
stroke incidence has increased to 29.8 per 100,000 [3]. 
Notably, 87% of all stroke incidents result from ischemic 
stroke, whereas the remaining 13% are hemorrhagic [4]. 
Andersen et al. [5]  investigated 39,484 stroke patients, 
reporting that 35,491 (89.9%) suffered from ischemic stroke 
and 3,993 (10.1%) experienced hemorrhage stroke. Generally, 
stroke arises from the sudden interruption of blood flow to 

neuronal tissue; a blockage within blood vessels leads to 
ischemic stroke, while blood vessel rapture causes hemorrhagic 
stroke [2]. To manage ischemic stroke, anti-thrombolytic 
therapy (removing the blockage by clot breaking) and 
thrombectomy (removing the clot mechanically) are used, 
while decompression and blood pressure reduction are used for 
hemorrhagic stroke [2]. 

Diagnostic imaging is essential in routine clinical practice 
to confirm early-stage ischemic stroke. Computed Tomography 
(CT) is regarded as the front-line modality to evaluate patients 
with suspected stroke due to its accessibility and cost-
effectiveness, which is not the case with Magnetic Resonance 
Imaging (MRI) [6], [7]. Typically, suspected stroke patients are 
handled by emergency room physicians, and the condition is 
often misdiagnosed or diagnosed late due to difficulties in 
arranging urgent assessments with experienced neuro-
radiologists. This often negatively influences stroke 
management [8]. 

State-of-the-art methods in computer science are assisting 
clinicians and neurologists, including for the application of 
image processing techniques to digital medical images [9], 
[10], [11]. For example, Chung et al. [12] developed a system 
to detect hyperacute ischemic stroke in CT images, achieving 
an accuracy of 81% in classifying stroke and non-stroke 
images. Methodologically, the authors extracted ranklet 
features from pre-processed CT images and identified 23 
important features for stroke detection, 8 of which were used to 
establish the prediction model. Guoqing et al. [13] developed a 
system based on asymmetric image patch classification to 
detect ischemic stroke signs on non-contrast CT images, 
achieving an accuracy of 76.84% on 108 stroke cases that 
trained radiologists did not detect. 

Chin et al. [14] developed a CNN model for automatic 
ischemic stroke diagnosis. Model training and testing involved 
256 patch images of size 32×32 extracted manually from CT 
images. Their system achieved testing and training accuracies 
of 92% and 97%, respectively. Pereira et al. [15] used two 
CNNs, one with a 50/50 protocol and another with 75/25, for 
training and testing with 300 CT images (100 healthy, 100 
ischemic, 100 hemorrhagic). Contrasting architectures were 
used, with the most effective results being 97.5%, 100%, and 
99.1% classification accuracies for hemorrhagic, ischemic, and 
healthy images, respectively, using the 75/25 protocol on their 
second model. Anis et al. [16] applied deep transfer learning 
for ischemic stroke detection on CT images, using 400 images 
with data augmentation (specifically, horizontal flipping) to 
compare the results to ResNet50, GoogleNet, and VGG-16 pre-
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trained CNNs. Using 5-fold cross-validation, they reported that 
ResNet50, GoogleNet, and VGG-16 achieved 100%, 99.4%, 
and 92.2% accuracies, respectively, on their training set, while 
accuracies of 100%, 98.8%, and 90% were reported on the 
validation set. 

Gautam and Raman [17] developed a 13-layer CNN model 
to classify ischemic and hemorrhagic stroke. Their CT image 
dataset (300 healthy, 300 ischemic, 300 hemorrhagic) was pre-
processed using quadtree-based multi-focus image fusion [18]. 
Two copies were created for each image, after which contrast 
adjustment was applied to the first and filtering to the second 
using a 3×3 averaging filter. The copies were fused and passed 
to the CNN model, which consisted of an input layer 
(512×512×1) and two convolutional layers, each followed by a 
Rectified Linear Unit (ReLU) activation and max-pooling 
layer, two fully connected layers with a ReLU activation and 
dropout layer after the first fully connected layer, and a 
softmax classification layer. Two datasets were established, 
one containing stroke images only and another containing both 
stroke and healthy images, and an 80/20 data split protocol 
with 10-fold cross-validation was applied in each case. They 
achieved 98.33% and 98.77% classification accuracies on the 
first dataset, respectively, whereas 92.22% and 93.33% were 
achieved for the second dataset. The model significantly 
outperformed fine-tuned AlexNet and ResNet50. 

These results highlight the clinical value of computational 
techniques in stroke detection [19], [20]. However, there is 
room for improvement, which has caused researchers to 
leverage Deep Learning (DL) techniques. DL is a subfield of 
artificial intelligence wherein algorithms learn to make 
accurate predictions without explicit programming [9], [11], 
[19]. Convolutional Neural Network (CNN) is a biologically 
inspired DL paradigm that holds promise in diagnostic 
medicine due to its ability to outperform humans in image and 
speech recognition/translation tasks [21]. 

This research proposes a DL system for acute 
ischemic  stroke classification on brain CT scans. The system 
determines whether a brain CT slice contains brain tissue, 
segments the brain tissue, enhances the contrast of the 
segmented brain tissue, and identifies signs of acute ischemic 
to determine stroke incidence. CNN-based techniques are 
adopted in the first two tasks, whereas an efficient multi-scale 
CNN model – the 5-Scale CNN model (5S-CNN) – is proposed 
to resolve difficulties associated with distinguishing between 
normal/abnormal brain regions. A dataset from King Fahad 
Medical City (KFMC) containing over 130 annotated patient 
records is used to design, develop, and validate the system, and 
cross-validation is performed to evaluate the CNN models. 

II. PROPOSED METHOD 
The main technical objective of this research is to develop a 

robust and intelligent method for the diagnosis of ischemic 
stroke on brain CT scans, which will assist the clinical 
decision-making of neurologists. In routine clinical practice, 
brain CT scans are manually interpreted by professionals, 
expert operators, or both. This process involves the manual 
scanning of each slice of the patient’s brain CT scan for the 
presence of stroke. Each patient’s CT scan contains 35 to 45 

CT slices on average (based on the collected dataset). Manual 
scanning also includes manual adjustment and enhancement of 
the contrast of the scanned slice for better visualization. 

To formulate such a process, let 𝐶 = {𝑆𝑖}𝑖=1𝑛  represent a 
patient’s CT scan, which consists of 𝑛  slices 𝑆𝑖  of size 
512×512×1, as shown in Fig. 1. 

Ischemic stroke can appear in any slice within a patient’s 
CT scan; it can also appear at any location in the brain tissue 
within a slice. Ischemic stroke changes the texture of the 
affected region of brain tissue, as indicated by comparing the 
left panel of Fig. 2, which shows a normal brain CT slice, to 
the right panel, which shows an example of acute ischemic 
stroke. 

Fig. 2 reflects the fact that ischemic stroke can affect any 
region of the brain tissue. Additionally, the affected area can 
have any regional size. The affected area becomes darker in 
texture as the time from its occurrence increases [22]. 

To determine whether a patient is experiencing an ischemic 
stroke, it is necessary for a sign of the ischemic stroke to 
appear on at least one slice of the patient’s CT scan. Therefore, 
each slice must be processed individually, which can be 
categorized as a classification problem. In any given brain CT 
slice, there are usually parts that are irrelevant (e.g., scalp, 
skull, and unrelated background objects) because they do not 
contribute to the diagnosis. Such parts must be removed, 
enabling only the brain tissue region to be segmented and 
separated, which can be categorized as a segmentation 
problem. Additionally, certain slices in the upper and lower 
parts of the CT scan do not include brain tissue, and so these 
slices must be excluded before any processing occurs. This 
also is categorized as a classification problem, the objective of 
which is to identify whether a given CT slice contains brain 
tissue. 

 
Fig. 1. Brain CT Scan of a Patient . 

 
Fig. 2. Normal Brain CT Slice  (Left) and Acute Tschemic Stroke    (Right)  . 
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Fig. 3. The Architecture of the Proposed Method  . 

Given the above discussion, the development of an 
intelligent method for the automated diagnosis of a patient’s 
brain CT scan involves four main components, which 
collectively process each slice of a given brain CT scan and 
systematically determine whether the patient is experiencing an 
ischemic stroke. As shown in Fig. 3, these components are the 
Brain CT Slice Classification Model, Brain Tissue 
Segmentation Model, Brain Tissue Contrast Enhancement 
Component, and Brain Tissue Classification Model. 

The proposed method begins by reading an input CT slice 
to determine whether the slice should be considered for 
processing. In any brain CT scan, it is common for the first and 
last few slices not to contain brain tissue; these slices must be 
removed prior to any further processing. Also, since some of 
these CT slices do not contain brain tissue, despite having 
textural similarities to slices with brain tissue (see Fig. 4), it is 
necessary to leverage a classification model to determine 
whether a given slice contains brain tissue. 

Before developing this model, a dataset was prepared 
containing labeled images of CT scan slices with and without 
brain tissue. Fine-tuning, training, and evaluation of the pre-
trained networks were performed. Fine-tuning involves 
updating each model’s input layer to match the size of brain 
CT slices, which are fixed at 512×512×1. Also, the first 
convolutional layer’s kernels, which are 3-dimensional (spatial 
× depth) kernels 𝑘(𝑥,𝑦, 3) , are updated to 2-dimensional 
kernels 𝑘′(𝑥,𝑦)  using the mapping 𝐾: 𝑘(𝑥,𝑦, 3) → 𝑘′(𝑥,𝑦) 
such that 

𝑘′(𝑥,𝑦) = 𝐾(𝑘(𝑥,𝑦, 3)) =  1
3
∑ 𝑘(𝑥,𝑦,𝑑)3
𝑑=1           (1) 

The final classification layer was also replaced with a new 
classification layer consisting of two neurons. This is because 
CT slice classification is a two-class problem (i.e., slice 
with/without brain tissue). Fig. 5 shows the concept of 
updating a pre-trained network to be re-trained for brain CT 
image classification. Training and evaluation included the use 

of K-fold cross-validation, which increased reliability and 
generalization and enabled the selection of the model with the 
best results. 

After confirming the existence of brain tissue within the 
input CT slice, the brain tissue segmentation component 
detects and segments the brain tissue. In this process, irrelevant 
parts are removed and only the brain tissue is retained. It 
begins with an original input slice, as shown in Fig. 6(a). A 
trained semantic segmentation model is then applied, resulting 
in an image segmented by class, as in Fig. 6(b). Finally, 
morphological image analysis is implemented by maintaining 
the largest segmented group of pixels and filling its holes  to 
obtain the segmented brain tissue [25], as shown in Fig. 6(c). 

 
Fig. 4. CT Image with No Brain Tissue (Left) and CT Image with  Brain 

Tissue (Right)   . 

 
Fig. 5. Adopting a Pre-trained CNN Model for CT Slice Classification . 
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Fig. 6. Brain Tissue Segmentation: (a) Original Image, (b) 

Applying  Semantic Segmentation Model, and (c) Maintaining the Largest 
Segmented Group of Pixels and Filling its Holes  . 

DL-based segmentation methods have shown promising 
results for the segmentation of medical images [26], [27], [28]. 
The state-of-the-art DL-based framework, namely Fully 
Convolutional Networks (FCNs) [29], has been used for brain 
tissue segmentation. FCNs implement a pixel-wise 
classification process using a CNN model as a classification 
backbone, which classifies each pixel within an image and 
assigns it to a particular class, thereby resulting in an image 
segmented by class. We employed the FCN-8 architecture and 
tested the four widely-used state-of-the-art pre-trained CNN 
models as a classification backbone: AlexNet, GoogleNet, 
ResNet18, and ResNet50. As in brain CT slice classification, 
ResNet50 yielded the best segmentation results compared to 
the other models. 

Before developing this model, an annotated dataset was 
prepared by manually annotating the pixels of each CT slice. 
Each pixel value in every image of this dataset represents a 
categorical label (either a brain tissue pixel or not). Fine-tuning 
involved updating the backbone model’s input layer to take a 
CT slice of size 512×512×1 as input and, in turn, updating the 
first layer’s kernels from 3D to 2D, as implemented for slice 
classification. In addition to this update, all pre-trained models 
were modified according to the FCN-8 up-sampling structure 
of the FCNs approach [29]. For training and evaluation, K-fold 
cross-validation was also used to select the most reliable and 
generalized segmentation model. Fig. 7 illustrates the concept 
of updating a pre-trained network according to the FCN-8 
architecture to be re-trained for brain tissue segmentation. 

Although the optimal segmentation model may lead to high 
segmentation accuracy, it is common for certain pixels or 
groups of pixels to be misclassified. This is shown in Fig. 6(b), 
where some pixels are classified as brain tissue while they are 
not, and vice versa. Therefore, post-processing is needed, 
which involves removing small connected components of 
pixels, and retaining the largest connected group of pixels 
(which usually represents brain tissue). This is followed by 
filling in the holes [30], [25] if there is a sufficient ischemic 
stroke identification area size. Based on recommendations 
from a medical team, the final segmented brain tissue must be 
sufficiently large in terms of its area to contribute to the 
identification of an ischemic stroke. Thus, to make decisions 
about whether to include or exclude the segmented brain tissue 
for further  processing, the area of the segmented brain tissue 
(in pixels) is compared to a fixed threshold recommended by 
the medical team. This comparison excludes any insufficient 
and small, segmented brain tissue that has an area smaller than 
the fixed threshold. 

 
Fig. 7. Adjusting a Pre-Trained Network for Brain CT Image Ssegmentation 

using FCN-8 Structure  . 

Due to the low contrast of brain CT slices, multiple image 
contrast enhancement techniques have been proposed, 
particularly for medical images [31], [32], [33], [34]. These 
techniques are used to boost the interior details within brain 
tissues for visibility, classification, and ultimately 
interpretation. The Extreme-Level-Eliminating Histogram 
Equalization (ELEHE) method, proposed by Tan et al. [35], 
was developed mainly to improve ischemic stroke detection on 
brain CT images. ELEHE ensures that substantial differences 
in the distribution of the input CT image histogram are 
eliminated, resulting in a stretched histogram containing every 
intensity level value other than the unnecessary two extreme 
levels that result from regular Histogram Equalization (HE) 
[30]. 

Before enhancement, each slice is normalized by stretching 
the grey-level values within the range of 0 to 216. To enhance 
a CT slice using ELEHE, the first step calculates the 
Probability Density Function (PDF) of the slice’s grey-level 
values. The next step involves eliminating the two extreme 
levels of the resulting PDF, thereby ensuring the 
maintainability of those levels while stretching the remaining 
grey levels. Following this, the Cumulative Density Function 
(CDF) is computed, after which a Transfer Function (TF) is 
applied to the values of the resulting CDF. Fig. 8 shows a brain 
CT image enhanced with ELEHE contrast enhancement. 

 
Fig. 8. Brain CT Image (Left) and Brain CT Image after applying ELEHE 

(Right)  . 

After segmenting the brain region and applying contrast 
enhancement, the resulting brain tissue is classified to 
determine whether the CT slice is a case of normal or  ischemic 
stroke, the latter of which indicates that the patient is suffering 
from ischemic stroke. If the classification of every processed 
slice of the CT scan is normal, then the patient is regarded as 
not suffering from ischemic stroke. Since there are two classes 
to consider (i.e., ischemic stroke or normal), the dataset 
preparation for this classification included labeled CT slices 
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indicating an incidence of ischemic stroke or not. All slices 
with ischemic stroke incidence were labeled as acute, while 
slices with no stroke incidence were labeled as normal. 

Ischemic stroke can manifest with any regional size and it 
can appear at any location within the brain tissue visualized by 
CT. Given this, a multi-scale analysis of brain tissue is needed 
to determine whether there is an instance of ischemic stroke. 
State-of-the-art pre-trained CNN models such as AlexNet, 
GoogleNet, ResNet18, and ResNet50 deal with only one scale, 
therefore the performance of these models is unsatisfactory. To 
overcome this issue, a lightweight multi-scale CNN model 
named the 5-Scale CNN model (5S-CNN) is proposed. After 
segmentation and contrast enhancement of the input CT brain 
tissue image, 5S-CNN uses a 5-branch architecture wherein 
each branch applies a different filter size to learn features at 
different scales. 

5S-CNN consists of 77 layers, as shown in Fig. 9. Within 
this model, a total of 16 convolutional (Conv) blocks are used, 
where each block starts with a Conv layer followed by Batch 
Normalization (BN) and Rectified Linear Unit (ReLU) layers. 
The ReLU layers introduce non-linearity into the model in a 
very simple way of applying a thresholding operation to the 
pixels resulting from the BN layers, in which positive pixels 
are retained, and negative ones are assigned to zero. A max-
pooling layer is positioned after each Conv block, resulting in a 
total of 16 pooling layers in the proposed model. The use of 
max-pooling layers enables the selection of only one pixel 
whose value is the highest compared to the other pixels within 
the pooling receptive field. This leads to the extraction of 
relevant features as well as a reduction in image size. 

Within the first Conv layer of the proposed model, 16 
filters with a size of 4×4 and stride of 2×2 are used, which 
down-samples the CT input image from 512×512×1 to 
255×255×16. Thereafter, max-pooling with a size of 3×3 and 
stride of 2×2 is applied, which reduces the first Conv output 
size to 127×127×16. It is then passed to 5 branches having 
three consecutive Conv blocks in each branch. The first Conv 
blocks in these branches contain 32 filters in each branch with 
sizes of 11×11, 9×9, 7×7, 5×5, and 3×3 in order to extract and 
learn features at different scales. After the first Conv block of 
each branch, two Conv blocks are used with 64 and 128 filters, 
respectively, of size 3×3 and stride 1×1; in these Conv blocks, 
a 3×3 filter size is used to reduce the number of learnable 
parameters as well as the model’s computational cost. 
Additionally, each Conv block within each branch is followed 
by a max-pooling layer with a receptive field size of either 3×3 
or 2×2 depends on whether the previous output feature map is 
odd or even in terms of its width and height. 

At the end of each branch, a Global Average Pooling (GAP) 
layer is used to generate a channel descriptor for that branch. 
The resulting 5 GAP descriptors are combined using a 
concatenation layer and, in turn, for fusion, the output is used 
as an input to a Fully Connected (FC) block that has an FC 
layer with 256 filters, followed by a BN layer and ReLU layer, 
respectively. In the end, a single FC layer with two neurons 
and a softmax are used as a classifier. The number of neurons 
in this FC layer is targeted at the number of classes of interest 
(i.e., ischemic stroke or normal). 

 
Fig. 9. The Proposed 5-Scale CNN Model (5S-CNN) Architecture for 

Ischemic Stroke Classification. 

For comparison, the pre-trained models for tissue 
classification were fine-tuned using the approach adopted in 
the first and second components (i.e., CT slice classification 
and brain tissue segmentation). Specifically, the input layer of 
each pre-trained model was updated to match the DICOM 
brain CT image size of 512×512×1. Additionally, the filters’ 
weights for the first convolutional layer were updated from 3-
dimensional kernels to 2-dimensional kernels, which was 
achieved by taking the mean of each filter value across the 
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depth dimension, as in (1). The final classification layer was 
replaced with new classification layers targeted at brain tissue 
classification. 

The same training and evaluation procedures were 
performed on each model, including the 5S-CNN, and each 
segmented CT slice was contrast-enhanced using ELEHE 
before being passed as an input to any model. As in the first 
and second components, K-fold cross-validation was used to 
validate the reliability and generalization of each model. 

III. DATASET COLLECTION, ANNOTATION, AND 
PREPARATION 

The dataset used to develop and validate the proposed 
method was collected from King Fahad  Medical City (KFMC) 
under Institutional Review Board (IRB) approval with log 
number (17-031). The dataset contains brain CT scans from 
more than 130 patients, consisting of proven cases  of both 
normal and acute ischemic stroke scans. The collection process 
involved compiling a shortlist from  clinical and radiologic 
databases of patients who presented at emergency rooms or 
clinics between January 2015  and January 2018 with 
symptoms and signs of stroke. Revision for inclusion and 
exclusion of the selected patients was performed, in which 
scans with artifacts (e.g., motion and metal) and findings of 
hemorrhagic stroke were excluded. The remaining scans were 
included for analysis  and modeling.  During the medical team’s 
annotation process, records of included patients were annotated 
and categorized  into either normal or acute based on review 
findings. Each scanned record was further annotated by 
specifying the slices of the patient’s CT scan that were affected 
by the ischemic stroke. 

Dataset preparation for the Brain CT Slice Classification 
Model included a subset of 1,130 CT images selected 
randomly from 100 patients. The dataset contained 570 images 
labeled as Brain CT Slice from 50 patients, and 560 images 
labeled as Not Brain CT Slice from 50 patients. For the Brain 
Tissue Segmentation Model, another subset of the collected 
dataset was prepared that included 365 CT images from 18 
randomly selected patients. This subset was manually labeled 
using MATLAB Image Labeler under the supervision of the 
medical team. Pixel-wise labeling was used to label each 
selected image, wherein each pixel in every image was labeled 
as either Brain Tissue or Not Brain Tissue. In the Brain Tissue 
Classification Model, the collected dataset included 63 patients 
with an acute diagnosis, having 300 CT images labeled as 
Acute. For data balancing and cross-validation, 62 patients 
with a normal diagnosis were selected, having 300 CT images 
labeled as Normal. 

IV. DATA AUGMENTATION 
A large number of training images is required to train deep 

learning models, especially for image classification tasks. 
When only a small number of training images is available, 
model overfitting to the training images arises, which weakens 
the model’s ability to adapt to new data. Different image 
augmentation techniques exist that can be used to improve the 
performance and generalization of deep learning models. These 
techniques rely on the creation of different forms of the 
original images used for training [36]. 

In our case, five augmentation techniques were used in the 
training of all models, including random reflection in both 
horizontal and vertical axes. The horizontal reflection applies 
the random reflection in the left-right direction of the image, 
while the vertical reflection applies the random reflection in the 
top-bottom direction. The other two techniques used were 
image translation on both directions of the input image, 
including the x-axis direction (horizontally) and the y-axis 
direction (vertically). It is necessary to specify a pixel range for 
this translation technique, which was set at 10 pixels for both 
translation directions. The fifth augmentation technique was 
random rotation, which was set in the range of 10º image 
rotation clockwise and anticlockwise. 

V. EXPERIMENTS AND RESULTS 
All experiments were performed on a machine running the 

64-bit Windows 10 operating system. The machine had an 
Intel® Core™ i7-8750H CPU @ 2.20GHz and 32GB of RAM, 
and it was equipped with an NVIDIA GeForce 1070 with 8GB 
of GPU memory. Model training and testing were implemented 
and evaluated using the 64-bit version of MATLAB R2020b. 

To increase the generalization and reliability of the results, 
as well as due to data limitations, 5-fold cross-validation was 
used to validate the trained models. Depending on the type of 
model and its dataset, as in Table I, each model was trained 
and tested five times; every time, one-fold was used for testing, 
while the other four folds were used for training and validation. 
The data splitting approach was 70%, 10%, and 20% for 
training, validation, and testing, respectively. 

TABLE I. DATASET PREPARATION FOR EACH MODEL 

Model Labeling 
Type 

Labeling  
As 

No. 
Images 

No. 
Patients 

Brain CT Slice 
Classification 

Image  
as a class 

Brain CT Slice   570 50 

Not Brain CT Slice 560 50 

Brain Tissue 
Segmentation 

Pixel  
as a class 

Brain Tissue  
365 18 

Not Brain Tissue  

Brain Tissue 
Classification 

Image  
as a class 

Acute 300 63 

Normal 300 62 

In the Brain CT Slice Classification Model, 5-fold cross-
validation was used to evaluate each of the fine-tuned pre-
trained models (i.e., AlexNet, GoogleNet, ResNet18, and 
ResNet50). In each run of this approach, 226 images were used 
as a testing fold, while from the remaining images, 814 and 90 
images were used for training and validation, respectively. For 
the Brain Tissue Segmentation Model, the adjustments to the 
pre-trained models, which included updating their structures to 
match the FCN-8 structure, were also evaluated using 5-fold 
cross-validation. In this case, each fold included 263, 29, and 
73 images for training, validation, and testing, respectively. 

Evaluation of the Brain Tissue Classification Model 
included evaluating the classification performance of the fine-
tuned pre-trained models as well as the proposed 5S-CNN 
model in slice-level and patient-level classifications. Slice-
level evaluation, considering that the same patient’s slices are 
in only the training, validation, or testing dataset, demonstrates 
the slice-wise classification performance. However, patient-
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level classification analyzes the performance for every slice of 
a patient and reports a single resulting class for that patient. 
Although patient-wise evaluation is the standard approach in 
the medical field [37], slice-level evaluation was also 
performed because a patient should be diagnosed with 
ischemic stroke if at least one slice of the patient’s CT scan 
shows a sign of the ischemic stroke. The slice-level dataset 
splitting approach does not strictly comply with the 70%, 10%, 
and 20% method, especially when considering the use of cross-
validation. The reason is that every patient will have a different 
number of CT slices that are affected by ischemic stroke. The 
patient-level acute vs. normal classification included 125 
patients, and it was validated using 5-fold cross-validation. In 
each run of this approach, 25 patients were used as a testing 
fold, while from the remaining 100 patients, 90 were used for 
training and 10 for validation. ELEHE contrast enhancement 
was applied to each input image prior to Brain Tissue 
Classification. 

Among the available optimization algorithms, the Adam 
optimization algorithm has been shown to outperform its 
counterparts. Therefore, all trained models were trained using 
the Adam optimization algorithm with a gradient decay factor 
of 0.9. The initial learning rate was set to 0.001 while the 
regularization factor was set to 0.0001. Each model was trained 
for 100 epochs with a minibatch size of 16 due to memory 
limitations. 

For evaluation, the commonly employed performance 
measurements of accuracy, sensitivity, specificity, precision, 
and F1 score are used. However, the performance of 
segmentation models was evaluated in terms of pixel global 
accuracy, mean recall, mean Intersection over Union (IoU), 
Weighted Intersection Over Union (wIoU), and mean 
Boundary F1 (BF) score. Using 5-fold cross-validation, the 
mean and standard deviation of the resulting measurements 
over the five testing folds were reported. Performance 
measurements of the classification models were derived based 
on the concepts of True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN), as in (2–7). 

For the evaluation of segmentation models, the pixel global 
accuracy measurement indicates the percentage of correctly 
identified pixels corresponding to the total number of pixels, 
regardless of the class type, as in (2). Mean recall measures the 
ratio of accurately classified pixels to the total number of pixels 
based on class type, which is averaged across both classes (see 
(3)). IoU computes the ratio of accurately classified pixels to 
the total number of ground truth and predicted pixels based on 
class type, as shown in (7). By averaging the resulting IoU over 
classes, the mean IoU can be obtained. In wIoU, the average 
IoU of each class is weighted by the total number of pixels in 
its corresponding class. The BF score calculates the predicted 
boundary of each class relative to its true boundary, as shown 
in (6). The mean BF score can then be obtained by averaging 
the resulting BF scores over classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

(× 100%)           (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐹𝑃+𝐹𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

(× 100%)           (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

(× 100%)            (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑁
𝐹𝑃+𝑇𝑁

(× 100%)            (5) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

(× 100%)            (6) 

IoU = 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

(× 100%)            (7) 

A. Experimental Results for Brain CT Slice Classification 
The experimental results for the brain CT slice 

classification task, which is the first step of the proposed 
methodology (as shown in Fig. 3), are given in Table II. Each 
in Table II presents the evaluation results for each of the fine-
tuned pre-trained CNN models (i.e., AlexNet, GoogleNet, 
ResNet18, and ResNet50). For each evaluated model, the mean 
and standard deviation of the resulting measurements are 
computed using 5-fold cross-validation. 

Based on the obtained results (see Table II), the selected 
model for the brain CT slice classification task was the fine-
tuned ResNet50. This decision was made because 
ResNet50outperformed other models on each metric except 
sensitivity which was equal to ResNet18 but better in terms of 
standard deviation. 

B. Experimental Results for Brain Tissue Segmentation 
The brain tissue segmentation results, using FCN-8 with 

different fine-tuned backbone models, are shown in Table III. 
In this experiment, 365 images were used, in which every pixel 
within each image was labeled as either a brain tissue pixel or 
not a brain tissue pixel. The results of Table III show that both 
ResNet18 and ResNet50 produced similar results, but both 
outperformed other models. 

FCN-8 with fine-tuned ResNet50 performed excellently in 
segmenting brain tissue pixels, achieving 99.70% global 
accuracy with a standard deviation of 0.04% (see Table III). 
However, certain pixels were misclassified. Therefore, as 
explained in section II, post-processing was applied after brain 
tissue segmentation; the area of the largest segmented 
connected group of pixels in the CT slice (which usually 
represents brain tissue) was compared to a threshold fixed at 
1,000 pixels to either include or exclude the brain CT slice for 
further processing. The threshold was fixed based on the 
recommendations of the medical team. This comparison 
ensures that the area of the segmented brain tissue is 
sufficiently large for the subsequent brain tissue classification 
task. After this, it is necessary to fill the holes within the 
segmented brain tissue to ensure that misclassified brain tissue 
pixels are included in the largest segmented connected group of 
pixels. Fig. 10 shows experimental examples of segmented 
brain tissues using FCN-8 with fine-tuned ResNet50 followed 
by post-processing. 

C. Experimental Results for Brain Tissue Classification 
After brain tissue segmentation, the final task is to classify 

the segmented brain tissue as ischemic stroke or normal. 
Patient-wise and slice-wise classification experiments were 
performed for validation in this experiment. Each input image 
was enhanced using the ELEHE contrast enhancement 
technique prior to the training and testing of the fine-tuned pre-
trained models and the 5S-CNN. As shown in Table IV, the 
5S-CNN model with ELEHE contrast enhancement 
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outperformed the other models for every scenario, reflecting its 
power in terms of multi-scale feature learning. In addition, the 
decision made regarding the number of branches used in the 
proposed multi-scale CNN model (5S-CNN) was based on 

experimenting with the multi-scales of 2, 3, 4, and 5 branches. 
Five branches were found to yield the best results in all 
scenarios (patient-wise and slice-wise classification), as shown 
in Table V. 

TABLE II. BRAIN CT SLICE CLASSIFICATION RESULTS  (MEAN ± STANDARD DEVIATION) AVERAGE OVER THE FIVE FOLDS OF EACH MODEL 

Model Accuracy Sensitivity Specificity Precision F1 Score 

AlexNet 98.31 ± 0.63 98.33 ± 0.47 97.01 ± 1.45 97.99 ± 0.67 98.79 ± 0.53 

GoogleNet 98.59 ± 0.41 98.80 ± 0.48 98.17 ± 0.74 98.21 ± 0.45 98.95 ± 0.65 

ResNet18 99.04 ± 0.38 99.17 ± 0.88 98.92 ± 1.24 98.94 ± 1.20 99.04 ± 0.37 

ResNet50 99.21 ± 0.31 99.17 ± 0.42 99.25 ± 0.68 99.25 ± 0.68 99.21 ± 0.31 

TABLE III. BRAIN TISSUE SEGMENTATION RESULTS (MEAN ± STANDARD DEVIATION) AVERAGE OVER THE FIVE FOLDS OF EACH MODEL 

Model Global  Accuracy Mean Sensitivity Mean IoU Weighted  IoU Mean F1 Score 

AlexNet 97.97 ± 2.60 98.43 ± 1.91 94.41 ± 6.81 96.32 ± 4.43 87.44 ± 13.69 

GoogleNet 97.58 ± 3.28 98.23 ± 1.87 93.58 ± 8.04 95.72 ± 5.41 84.44 ± 19.43 

ResNet18 99.63 ± 0.08 99.69 ± 0.04 98.85 ± 0.28 99.26 ± 0.15 98.87 ± 0.50 

ResNet50 99.70 ± 0.04 99.75 ± 0.04 99.06 ± 0.15 99.40 ± 0.08 98.93 ± 0.18 

 
Fig. 10. Examples of Segmented Brain Tissues using FCN-8 with Fine-Tuned ResNet50 Followed by Post-processing: Original Image (Top), Segmented Image 

(Bottom)  . 

TABLE IV. PATIENT-WISE AND SLICE-WISE BRAIN TISSUE CLASSIFICATION RESULTS  (MEAN ± STANDARD DEVIATION) AVERAGE OVER THE FIVE FOLDS OF 
EACH MODEL 

Scenario Model Accuracy Sensitivity Specificity Precision F1 Score 

Patient-wise 
classification 

AlexNet 74.40 ± 8.29 84.57 ± 4.95 70.27 ± 9.25 56.67 ± 17.08 66.95 ± 12.94 
GoogleNet 75.20 ± 7.16 81.95 ± 11.07 74.36 ± 10.11 65.00 ± 22.36 69.80 ± 14.03 
ResNet18 79.20 ± 6.57 82.98 ± 6.39 77.59 ± 9.10 71.67 ± 13.94 76.30 ± 8.68 
ResNet50 81.60 ± 6.69 86.79 ± 7.58 79.35 ± 8.91 73.33 ± 14.91 78.68 ± 9.72 
5S-CNN  87.20 ± 5.93   88.95 ± 3.67   87.44 ± 8.89   85.00 ± 12.36   86.19 ± 6.65  

Slice-wise 
classification 

AlexNet 76.61 ± 6.34 78.11 ± 7.66 76.43 ± 12.17 70.73 ± 16.52 73.39 ± 9.04 
GoogleNet 79.30 ± 6.84 80.37 ± 8.35 79.09 ± 10.00 77.82 ± 9.87 78.57 ± 6.42 
ResNet18 82.61 ± 6.27 80.44 ± 5.79 85.50 ± 12.93 84.35 ± 15.78 81.40 ± 6.68 
ResNet50 84.14 ± 4.09 83.18 ± 6.01 85.34 ± 5.39 85.08 ± 5.04 83.96 ± 3.81 
5S-CNN  90.51 ± 2.22  90.72 ± 5.38   91.38 ± 5.71   90.15 ± 7.77   90.11 ± 2.78  
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TABLE V. IMPACT OF SCALES ON THE PROPOSED MULTI-SCALE CNN FOR PATIENT-WISE AND SLICE-WISE CLASSIFICATIONS  (MEAN ± STANDARD 
DEVIATION) AVERAGE OVER THE FIVE FOLDS OF EACH MODEL 

Scenario Model Accuracy Sensitivity Specificity Precision F1 Score 

Patient-wise 
classification 

2S-CNN 73.60 ± 6.07 80.23 ± 7.71 71.90 ± 8.45 61.67 ± 19.18 67.81 ± 12.31 

3S-CNN 71.20 ± 11.10 80.42 ± 5.63 68.82 ± 13.75 51.67 ± 25.95 60.51 ± 19.73 

4S-CNN 78.40 ± 6.69 78.36 ± 8.15 79.59 ± 8.68 76.67 ± 13.36 77.05 ± 8.08 

5S-CNN  87.20 ± 5.93   88.95 ± 8.67   87.44 ± 8.89   85.00 ± 12.36   86.19 ± 6.65  

Slice-wise 
classification 

2S-CNN 83.42 ± 4.73 86.46 ± 3.57 81.45 ± 8.15 78.82 ± 9.60 82.11 ± 5.07 

3S-CNN 82.44 ± 5.65 84.47 ± 9.43 82.08 ± 10.49 79.91 ± 13.25 81.19 ± 6.83 

4S-CNN 86.34 ± 3.29 88.08 ± 4.24 85.27 ± 7.32 83.48 ± 9.59 85.35 ± 4.55 

5S-CNN  90.51 ± 2.22  90.72 ± 5.38   91.38 ± 5.71   90.15 ± 7.77   90.11 ± 2.78  

VI. DISCUSSION 
The first two tasks (i.e., CT slice classification and brain 

region segmentation) are relatively easy problems; ResNet50 
and FCN-8 based on ResNet50 work adequately in both cases. 
However, the third task (i.e., classification of brain tissue as 
normal or ischemic stroke) is comparatively difficult due to the 
textural similarity between the normal region and the region 
affected by ischemic stroke. For this purpose, the 5S-CNN 
model is proposed. In this section, we discuss the classification 
results for fine-tuned pre-trained networks as well as the 
proposed 5S-CNN regarding the task of classifying ischemic 
stroke against normal cases in patient-wise and slice-wise 
classifications, the results for which are given in Table IV. 

In brain tissue classification, AlexNet and GoogleNet 
achieved the lowest performance in both patient-wise and 
slice-wise classifications. Mean accuracies of 74.40% and 
75.20% and standard deviations of 8.29% and 7.16% resulted 
from both fine-tuned models in patient-wise classification, 
while slice-wise classification achieved mean accuracies of 
76.61% and 79.30% and standard deviations of 6.34% and 
6.84%. For patient-wise classification using AlexNet, the 
values for average sensitivity, specificity, precision, and F1 
score were 84.57%, 70.27%, 56.67%, and 66.95%, respectively, 
while GoogleNet achieved 81.95%, 74.36%, 65%, and 69.80% 
for these metrics. However, slice-wise classification resulted in 
an average sensitivity of 78.11%, specificity of 76.43%, 
precision of 70.73%, and F1-score of 73.39%, while 
GoogleNet achieved 80.37%, 79.09%, 77.82%, and 78.57% for 
these metrics, respectively. The standard deviation of 
sensitivity for AlexNet was 4.95% in the patient-wise scenario 
and 7.66% in the slice-wise scenario, while for GoogleNet, the 
values were 11.07% and 8.35%, respectively. Notably, the 
accuracy difference of 2.69% in the patient-wise scenario and 
0.8% in the slice-wise scenario indicates the favorable 
generalization performance of GoogleNet. Compared to 
GoogleNet, ResNet18 and ResNet50 were associated with 
better performance, achieving mean accuracies of 79.20% and 
81.60% in patient-wise classification and 82.61% and 84.14% 
in slice-wise classification, respectively. 

For ResNet18, the average values for sensitivity, specificity, 
precision, and F1 score were 82.98%, 77.59%, 71.67%, and 
76.30%, respectively in the patient-wise scenario, while the 
values for the same metrics were 80.44%, 85.50%, 84.35%, 
and 81.40% in the slice-wise scenario. ResNet50 yielded better 

performance values with an average sensitivity of 86.79%, 
specificity of 79.35%, precision of 73.33%, and F1 score of 
78.68% in the patient-wise scenario, while the slice-wise 
scenario resulted in 83.18%, 85.34%, 85.08%, and 83.69%, 
respectively. Only in the slice-wise scenario, ResNet50 
outperformed ResNet18 in all performance metrics except 
specificity, where the results indicated a specificity difference 
of 0.16% for ResNet18. 

The proposed model, 5S-CNN, outperformed the other 
models on every metric in both patient-level and slice-level 
classification. Values of 87.20%, 88.95%, 87.44%, 85.00%, 
and 86.19% were achieved in the patient-wise scenario with 
respect to sensitivity, specificity, precision, and F1 score, while 
values of 90.51%, 90.72%, 91.38%, 91.15%, and 90.11% were 
achieved for slice-wise classification. Also, the standard 
deviation of the proposed model outperformed the other 
models on all metrics except specificity and precision, only in 
the slice-wise scenario. In this case, the standard deviation of 
5S-CNN was 5.71% and 7.77% in these two metrics, whereas 
the specificity and precision of ResNet50 were 5.39% and 
5.04%, respectively. Acute stroke is an early sign of ischemic 
stroke, and it is very difficult to identify due to the subtle 
differences that exist between normal brain regions and those 
affected by acute ischemic stroke. However, in this case, 5S-
CNN yielded an excellent performance overall. 

Table VI shows a comparison of model complexity for the 
ischemic stroke classification models based on the number of 
parameters and Floating-Point Operations (FLOPs). The 
number of parameters is the sum of all learnable weights and 
biases of all Conv and FC layers within a CNN model. By 
contrast, the number of FLOPs reflects the computations 
required for a single forward pass within the model. After 
adopting the pre-trained networks for brain CT images, 
AlexNet had the greatest number of parameters (approximately 
57.7 million) and around 7.6 billion FLOPs. GoogleNet 
consisted of approximately 5.1 million parameters and 7.7 
billion FLOPs. Notably, despite the substantial difference in 
the number of parameters, AlexNet and GoogleNet had almost 
the same number of FLOPs. This is attributable to the small 
kernel sizes and feature maps of GoogleNet, which contributed 
to the similar computational cost of AlexNet and GoogleNet. 
ResNet18 had approximately 11.2 million parameters and 9.1 
billion FLOPs, meaning that its computational cost exceeds 
AlexNet and GoogleNet. ResNet50 had the largest number of 
FLOPs compared to the other models, amounting to 
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approximately 19.8 billion FLOPs, along with 23.2 million 
parameters. The significant number of FLOPs means that 
ResNet50 is substantially more computationally expensive and 
consumes more training time compared to its counterparts. The 
proposed model, 5S-CNN, has the lowest number of 
parameters (approximately 0.8 million) and FLOPs 
(approximately 0.6 billion). Therefore, in addition to 
outperforming the other models in terms of classification 
results, 5S-CNN is also more computationally efficient. 

TABLE VI. COMPLEXITY OF MODELS USED FOR STROKE CLASSIFICATION 

Model Parameters 
(Millions) 

FLOPs 
(Billions) 

AlexNet 57.5 7.6 

GoogleNet 5.1 7.7 

ResNet18 11.2 9.1 

ResNet50 23.5 19.8 

 5S-CNN 0.8 0.6 

It is worth comparing the proposed method to those of 
Pereira et al. [15], Anis et al. [16], and Gautam et al. [17]. Each 
of these researchers also leveraged DL methods for ischemic 
stroke detection using brain CT images. The performance of 
these methods, as reported in the introduction, was determined 
based on each research group’s private datasets. Therefore, to 
facilitate a fair comparison, we implemented these methods 
and trained them on the collected dataset based on the authors’ 
recommendations. Both patient-wise and slice-wise brain tissue 
classification experiments were performed. The results and 
confusion matrices are shown in Table VII, as well as Fig. 11. 

For the classification of acute ischemic stroke against 
normal cases, the results in Table VII show that 5S-CNN 
outperformed the other three methods on all performance 
metrics in both the patient-wise and slice-wise scenarios. 
Furthermore, the confusion matrices in Fig. 11(a) show the 
decisions that each method made regarding the optimal testing 
fold across the five  cross-validated folds. In this fold, a total of 
25 patients with 136 CT images were used for testing. Among 
those, 13 patients with 73 images had acute ischemic stroke, 
while 63 images were normal from the remaining normal 
patients. 

In the patient-wise scenario, 5S-CNN correctly classified 
all acute patients as having acute ischemic stroke, whereas the 
other methods misclassified at least one acute patient as a 
normal patient. In this case, the classifier determines that a 
patient has acute ischemic stroke if one of the patient’s CT 
slices is classified as having acute stroke. Due to this, the 
methods of Pereira et al. [15] and Anis et al. [16] were able to 
correctly classify 4 normal patients, while 8 were misclassified 
as having acute ischemic stroke. Also, the method proposed by 

Gautam et al. [17] misclassified 9 normal patients as having 
acute ischemic stroke. In the case of 5S-CNN, only 2 normal 
patients were misclassified as having acute ischemic stroke. As 
such, 5S-CNN outperformed all other models in this area. 

A similar trend is seen in the scenario of slice-wise 
classification, as shown in Fig. 11(b). 5S-CNN correctly 
classified 69 acute stroke slices out of 73 images, while 21, 11, 
and 38 images were misclassified in Pereira et al. [15], Anis et 
al. [16], and Gautam et al. [17], respectively. In the 
classification of normal images, the compared methods 
misclassified more than 14 normal images as acute ischemic 
stroke, while 5S-CNN misclassified only 6 images out of the 
63 normal tested images. Although our model misclassified 4 
images as normal from the acute patients in slice-wise 
classification, it correctly classified all patients as suffering 
from acute ischemic stroke in the patient-wise scenario. The 
encoding of multi-scale information from the CT scans proves 
the potential of the 5S-CNN model to improve clinical 
decision-making. 

Compared to state-of-the-art models, as well as similar 
works, the proposed method uses a fully automated approach 
to analyze brain CT images and determine whether it includes 
brain tissue or not. In turn, through the segmentation of brain 
tissue within the CT image, the method enables irrelevant 
objects and background to be eliminated, as well as ensuring 
the accurate segmentation of all brain tissue pixels using 
morphological operations. Following this, the method applies 
the ELEHE contrast enhancement technique to boost the 
interior details of the segmented brain tissue, thereby 
facilitating more effective classification. Finally, classification 
of the resulting brain tissue using the proposed model 
outperformed state-of-the-art CNN models, as well as models 
proposed in similar previous methods. All CT slices in the 
collected dataset were used without altering their original 16-
bit greyscale range, thereby ensuring the stability of the 
original pixel values. Additionally, rather than resizing original 
images to fit the pre-trained networks, the pre-trained networks 
were fine-tuned to fit the original size of CT brain images. 
Taken together, the use of 5-fold cross-validation shows the 
generalization of the proposed 5S-CNN model, as well as its 
low susceptibility to overfitting. 

Nevertheless, the 5S-CNN model is limited to deciding 
whether a brain tissue shows any signs of ischemic stroke 
without any localization of the stroke lesion within the brain 
CT slice. Another limitation of the proposed model is the 
possibility of misdiagnosing ischemic stroke in slices with 
three brain tissue areas separated by bones, which usually 
occur at the lower part of a brain CT scan. The developed 
segmentation module preserves the largest brain tissue area for 
further analysis and removes the rest. This decision was taken 
based on the medical team’s recommendation for the current 
study, and it is a potential area for investigation in future works. 
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TABLE II.  COMPARISON TO RELATED METHODS APPLIED ON THE COLLECTED DATASET IN PATIENT-WISE AND SLICE-WISE CLASSIFICATIONS (MEAN ± 
STANDARD DEVIATION) AVERAGE OVER THE FIVE FOLDS OF EACH MODEL 

Scenario Model Accuracy Sensitivity Specificity Precision F1 Score 

Patient-wise 
classification 

Pereira et al. [15] 63.20 ± 7.16 79.89 ± 12.33 60.43 ± 6.36 33.33 ± 21.25 43.16 ± 21.76 

Anis et al. [16]   81.60 ± 6.69 86.79 ± 7.58 79.35 ± 8.91 73.33 ± 14.91 78.68 ± 9.72 

Gautam et al. [17]  53.60 ± 3.58 63.33 ± 22.31 53.38 ± 2.16 21.67 ± 9.50 29.81 ± 9.81 

 Proposed (5S-CNN)  87.20 ± 5.93   88.95 ± 3.67   87.44 ± 8.89   85.00 ± 12.36   86.19 ± 6.65  

Slice-wise 
classification 

Pereira et al. [15] 67.78 ± 5.60 69.76 ± 12.34 68.00 ± 6.90 65.26 ± 8.25 66.26 ± 4.85 

Anis et al. [16]   84.14 ± 4.09 83.18 ± 6.01 85.34 ± 5.39 85.08 ± 5.04 83.96 ± 3.81 

Gautam et al. [17]  56.18 ± 3.87 54.02 ± 6.67 59.83 ± 5.31 70.42 ± 12.31 60.51 ± 6.76 

 Proposed (5S-CNN)  90.51 ± 2.22  90.72 ± 5.38   91.38 ± 5.71   90.15 ± 7.77   90.11 ± 2.78  

  
             (a)              (b) 

Fig. 11. Confusion Matrices of the Optimal Testing Fold from the Five Cross-Validated Folds: (a) Patient-Wise Confusion Matrices; (b) Slice-Wise Confusion 
Matrices  .

VII. CONCLUSION 
This paper proposed a novel, automated approach for acute 

ischemic stroke classification in brain CT images. A pre-
processing technique that can be applied to the CT scans of 
patients with suspected ischemic stroke was presented, 
including the removal of CT slices that do not contain brain 
tissue, segmentation of brain tissue within the remaining slices, 
ELEHE contrast enhancement of the segmented brain tissue, 
and classification of brain tissue as an ischemic stroke or 
normal. A lightweight multi-scale CNN model (5S-CNN) was 
proposed for brain tissue classification on CT slices, to 
determine whether the patient is experiencing an ischemic 
stroke. Notably, this novel model outperformed state-of-the-art 
models. The model uses a 5-branch architecture, with different 
filter sizes for each branch, to learn features at different scales, 
which is crucial because ischemic stroke can have any regional 
size and appear at any location within brain tissue. A 

comparison with similar methods revealed that the proposed 
method outperforms the best-known current methods. The 
main focus of this research is to identify the presence of acute 
ischemic stroke on CT slices automatically. However, stroke 
lesion segmentation is essential for treatment decisions and 
management. We intend to investigate this area further in the 
future, ideally exploiting an expansion in the size of the 
existing collected datasets and samples. 
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