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Abstract—Cognitive diagnosis models (CDMs) have been 
shown to provide detailed evaluations of students’ achievement in 
terms of proficiency of individual cognitive attributes. Attribute 
hierarchy model (AHM), a variant of CDM, takes the 
hierarchical structure of those cognitive attributes to provide 
more accurate and interpretable measurements of learning 
achievement. However, advantages of the richer model come at 
the expense of increased difficulty in designing the hierarchy of 
the cognitive attributes and developing corresponding test sets. 
In this study, we propose quantitative tools for validating the 
hierarchical structures of cognitive attributes. First, a method to 
quantitatively compare alternative cognitive hierarchies is 
established by computing the inconsistency between a given 
cognitive hierarchy and students’ responses. Then, this method is 
generalized to validate a cognitive hierarchy without real 
responses. Numerical simulations were performed starting from 
an AHM designed by experts and responses of elementary school 
students. Results show that the expert-designed cognitive 
attribute explains the students’ responses better than most of 
alternative hierarchies do, but not all; a superior cognitive 
hierarchy is identified. This discrepancy is discussed in terms of 
internalization of cognitive attributes. 
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I. INTRODUCTION 

A. Cognitive Diagnostic Models 
Learning analytics has attracted much attention recently, as 

more data become available for educators and learners [1]. 
Vast amounts of data are generated in the field of education, 
due to the widespread adoption of online education systems, 
such as massive open online courses [2]. By utilizing more 
data, a more accurate and detailed assessment of learning 
achievement is possible [3], resulting in enhanced learning 
experience [4]. For instance, teachers could offer 
individualized learning strategies tailored to needs of the 
target students, such as university students [5], under-
represented students [6] or foreign language learners [7]. 

Cognitive diagnosis models (CDMs) have been actively 
studied as a useful tool for assessing students’ knowledge 
states in terms of multiple cognitive attributes [8]. CDMs 
incorporate multiple cognitive attributes that are required to 
understand a concept or to perform a task. Items that require 
different combinations of cognitive attributes are developed, 
and the degree of proficiency for each cognitive attribute is 
estimated from the students’ responses to these items. The 
quantitative assessment of a student’s proficiency of 

individual cognitive attributes allows a more detailed 
evaluation of a student’s achievement, compared to a total 
score-based learning diagnosis. 

CDMs are largely divided into two groups: compensatory 
models and non-compensatory models [9]. Compensatory 
models assume that one cognitive attribute could compensate 
for another. Thus, even if a particular cognitive attribute is not 
mastered by the examinee, they may solve an item by using 
other cognitive attributes. For instance, reading 
comprehension requires numerous cognitive attributes, such as 
grammar and vocabulary. Even if there are a few words that a 
reader is not familiar within a given text, the reader could 
postulate the meanings of the words from the grammatical 
structure and solve related items correctly. In such cases, 
grammar plays a compensatory role for vocabulary. 

In contrast, non-compensatory models assume that the lack 
of a cognitive attribute is not compensated for by other 
cognitive attributes [10]. Therefore, if one fails to master any 
of the cognitive attributes required, an item cannot be solved. 
For example, according to the non-compensatory model, an 
item requiring the concepts of logarithmic function and 
algebraic function could only be correctly solved by those 
who have mastered both concepts. If any one of the two 
concepts is lacking, they will not be able to correctly solve the 
item. 

B. Related Work 
Among early non-compensatory models, the rule-space 

model (RSM) was explored and established by Tatsuoka [11]. 
The relationship between an item and the cognitive attributes 
required to solve the item is represented by a matrix, called the 
Q-matrix. Each row of the Q-matrix corresponds to an item, 
while each column corresponds to a cognitive attribute; 𝑄𝑖𝑗 is 
one if the 𝑗𝑡ℎ  cognitive attribute is required to solve the 𝑖𝑡ℎ 
item. Otherwise, 𝑄𝑖𝑗  is zero. The RSM was developed to 
estimate students’ knowledge states from their item responses 
and a corresponding Q-matrix. 

In this study, we adopt a variant of the RSM, called the 
attribute hierarchy model (AHM) [12] to quantify elementary 
school students’ learning achievements in arithmetic 
operations. Similarly to CDMs, the AHM aims to represent 
the relationship between items and cognitive attributes. 
Furthermore, the AHM includes hierarchical relationships 
between the cognitive attributes in the model. This 
hierarchical structure of cognitive attributes is represented by 
a graph, in which each node corresponds to a cognitive 
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attribute, and an edge between two nodes implies that one 
cognitive attribute is a prerequisite for the other cognitive 
attribute. Therefore, the AHM is suitable for evaluating the 
achievement of mathematics subjects, where the hierarchy of 
cognitive attributes is important [13]. 

A precise relationship between cognitive attributes and 
items is crucial for the accurate measurement of learning 
achievement. However, in practice, developing a Q-matrix and 
corresponding items, requires months of intensive 
collaboration between modeling experts and teachers in the 
field. 

To assist the development of the Q-matrix, several 
quantitative tools have been proposed. First, de la Torre [14] 
proposed to validate a given Q-matrix by the degree of 
agreement with the response data using the EM algorithm [15]. 
Such quantification provides an objective measure to compare 
multiple Q-matrices. However, it remains elusive which Q-
matrices should be compared. To address this gap, DeCarlo 
proposed a Bayesian framework to validate individual 
elements of a given Q-matrix [16]. However, the flexibility of 
the Bayesian model comes with an increased complexity of 
the validation procedure because the reliability of each 
element of the Q-matrix must be provided in advance. Last, 
Chiu proposed a simpler nonparametric method to identify 
misspecified entries of a Q-matrix [17]. 

However, those validation methods are applicable only to 
RSMs, not to AHMs. The hierarchical structure of the 
cognitive attributes is not considered for the validation of a 
given Q-matrix. Therefore, adopting AHMs in practice 
requires extention of the validation framework and more 
careful consideration of the structure of the cognitive 
attributes of interest. 

C. Contributions of the Study 
We propose quantitative tools for validating the 

hierarchical structures of cognitive attributes, to aid the 
development of AHMs. Whereas the current validation 
methods quantify the validity of each element of the Q-matrix, 
we explore alternative hierarchical structure of the cognitive 
attributes. Thus, the search space of out method is a graph 
rather than a matrix. 

Our approach would provide a more natural way to 
validate AHMs in conjunction with the experts’ domain 
knowledge. For instance, the current methods provide a 
refined Q-matrix with some elements flipped from the initial 
Q-matix. However, such a refined Q-matrix may contradict to 
the hierarchical structure of cognitive attributes developed by 
the experts. Instead, our method starts from the experts’ 
knowledge in terms of the hierarchical structure and validate 
individual associations of cognitive attributes. 

The rest of this paper is organized as follows: the Methods 
section describes the AHM model, as well as the data 
collection and evaluation of alternative hierarchies of 
cognitive attributes. In the Results section, we show numerical 
simulations; finally, in the Conclusions and Discussions 
section, we discuss the results and their implications, with 
concluding remarks. 

II. METHODS 

A. Modeling and Data Collection 
An AHM model for arithmetic operations with natural 

numbers was designed as follows. First, seven cognitive 
attributes were chosen based on the elementary school 
mathematics curriculum – addition (A1), subtraction (A2), 
multiplication (A3), division (A4), carry (A5), borrow (A6), 
and ‘0’ in multiplication (A7). Thereafter, the hierarchy of the 
seven attributes (𝐻0 , Fig. 1A) was designed by experts. In 
brief, the root node (A1) represents addition, which is the 
prerequisite for all other cognitive attributes. The descendant 
nodes of the root node are A2, A3, and A5, which correspond 
to subtraction, multiplication, and carry, respectively. To 
understand a leaf node (A4, A6, or A7, corresponding 
respectively to division, borrow, and “0” in multiplication), 
one should master all the preceding cognitive attributes up to 
the root node. For example, A4 (division) requires A1 
(addition), A2 (subtraction), and A3 (multiplication). 

Based on the expert-designed hierarchical structure (𝐻0 , 
Fig. 1A), alternative hierarchical structures (𝐻1,𝐻2,⋯ ,𝐻7 ) 
were created by removing an edge from 𝐻0  (Fig. 1B). For 
example, 𝐻1 was generated by removing the edge between A1 
and A2 (dashed line in Fig. 1B) from 𝐻0 . Similarly, the 
removed edges in 𝐻𝑘 for 𝑘 = 2, 3,⋯7 are indicated by (𝐻𝑘). 

Next, thirty items involving the seven cognitive attributes 
were developed. Our participant sample comprised 977 fourth 
graders who participated in the test; their responses to 
individual items were coded as either correct (1) or incorrect 
(0). 

 
Fig. 1. (A) The Hierarchical Structure (𝐻0) of the Seven Cognitive 
Attributes (A1, A2, ⋯, A7) Designed by the Experts. (B) Alternative 

Hierarchical Structures (𝐻1,𝐻2,⋯ ,𝐻7) were Created by Removing One Edge 
from 𝐻0. For Example, the Graph in Panel B shows 𝐻1, Generated by 

Removing the Edge between A1 and A2 (Dashed Line) from 𝐻0. Similarly, 
other Hierarchical Structures (in Parentheses) are Generated by Removing the 

Corresponding Edges. 

B. Validating the Hierarchies of Cognitive Attributes 
The alternative hierarchies were validated by quantifying 

the degree to which a given hierarchy is in agreement with 
students’ actual responses. The block diagram in Fig. 2 
summarizes the quantification steps, each of which is 
explained as follows. 

First, a different attribute hierarchy ( 𝐻𝑘 ) implies a 
different structure of students’ knowledge states. For the seven 
cognitive attributes, 27 =  128 combinations of the seven 
attributes are enumerated. Among all the potential 
combinations, those that are in conflict with 𝐻𝑘 are eliminated 
(Leighton et al., 2004) and the remaining attribute 
combinations comprise the set of valid knowledge states S𝑘. 
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Fig. 2. A Schematic Diagram of the Quantitative Validation of a 
Hierarchical Structure. For any given Hierarchical Structure Hk, 

Corresponding Knowledge States Sk (Combinations of Attributes Consistent 
with Hk) and a Q-matrix Qk are Generated. Items Corresponding to the Rows 
of Qk are Developed and Students’ Responses (r) to these Items are Collected. 

Ideal Responses (rideal) are Theoretically Calculated from the same Items. 
Comparing r and rideal Produces a Discrepancy Value dk, which Quantifies 

the Validity of Hk; a Lower dk Implies Higher Validness. 

Next, the Q-matrix 𝑄𝑘  is defined by taking all the valid 
states in S𝑘—except the all-zero state (0000000)—as its rows. 

Three statistical characteristics of each 𝑄𝑘-matrix are then 
measured. First, the sum of each column of 𝑄𝑘 (column sum) 
indicates the number of items that require the corresponding 
cognitive attribute. Second, the sum of each row of 𝑄𝑘 (row 
sum) indicates the number of attributes included in the 
corresponding item. Third, the sparsity of 𝑄𝑘 is defined by the 
number of ones divided by the number of elements of 𝑄𝑘 , 
which corresponds to the frequency of attributes examined in 
the test set. 

Next, we develop an item involving corresponding 
attributes for each row of 𝑄𝑘, and students’ item responses (𝑟) 
to the items, which are collected through tests. The set of all 
the item responses is called 𝑅. 

The ideal responses (𝑟𝑖𝑑𝑒𝑎𝑙) to the items are theoretically 
generated. Here, ideal means that the response is solely based 
on the mastery of the cognitive attribute, excluding guessing 
or mistakes. For each knowledge state 𝑠 ∈ S𝑘 , an ideal 
response 𝑟𝑖𝑑𝑒𝑎𝑙 is calculated by Equation 1. 

𝑟𝑖𝑑𝑒𝑎𝑙  = ~((~𝑠)𝑄𝑘𝑇),             (1) 

where ~ and 𝑇  mean the logical NOT operator and the 
matrix transpose, respectively. The set of ideal responses for 
all the states in S𝑘 is called 𝐼𝑘. 

Last, the discrepancy between the ideal responses (𝐼𝑘) and 
the actual responses (𝑅 ) is calculated as follows. A lower 
discrepancy value indicates that 𝐻𝑘 provides a better account 
for actual students’ responses. First, the discrepancy for each 
response 𝑟 ∈ 𝑅  is defined by the Hamming distance (the 
number of mismatches) between 𝑟 and the closest 𝑟𝑖𝑑𝑒𝑎𝑙 in 𝐼𝑘, 
presented as ℎ(𝑟, 𝐼𝑘 ). The average discrepancy of responses is 
normalized by the number of items and defined as the 
discrepancy for 𝐻𝑘 (Equation 2). 

𝑑(𝐻𝑘) =  ∑ ℎ(𝑟,𝐼𝑘 )𝑟∈𝑅
𝑁𝑅 𝑁𝐼

,             (2) 

where 𝑁𝑅 and 𝑁𝐼 are the numbers of responses and items, 
respectively. 

C. Generating Virtual Responses from an Existing Dataset 
Ideally, a different test set would be developed and 

responses for each hierarchical structure 𝐻𝑘  would be 
collected. However, this would be costly and require too much 

time. Developing a test set for 𝐻𝑘  requires determining the 
combinations of cognitive attributes based on 𝐻𝑘  and 
developing corresponding items; each of these steps requires 
repeated feedback from experts. Recruiting test takers for 
multiple test sets is also costly. Repeating multiple test sets 
involving the same set of cognitive attributes for a fixed target 
group would be impractical. Students might learn to recognize 
patterns during the sequence of similar tests or become bored 
by the similarity of multiple tests. In either case, collecting 
unbiased responses for each 𝐻𝑘  is a challenging task. 
Furthermore, if each test is performed on a different group of 
students, it is unclear whether any difference in item responses 
is due to the different hierarchical structure or the 
heterogeneity of the student groups. 

To overcome this limitation, we propose to generate 
virtual responses to each 𝐻𝑘 by employing random sampling 
using a common dataset (Fig. 3). Specifically, for each item, 
corresponding attributes (each row of 𝑄𝑘) are used as a query 
to retrieve responses to items that require attributes similar to 
the query from the existing database. To simplify, attributes 
that have the smallest Hamming distance to the query attribute 
are chosen as candidates first. Thereafter, if there are multiple 
candidates, one is randomly selected with equal probability. 
Otherwise, (if there is only one item with the smallest 
Hamming distance), the candidate response is the virtual 
response. Repeating the above procedure for all the items (all 
the rows of 𝑄𝑘 ) comprises an iteration of simulation. 
Subsequently, the average discrepancy is measured for 1,500 
iterations for each 𝐻𝑘. Additionally, the statistical significance 
of the discrepancy is measured by repeating the above 
calculations, starting from 10 different random seeds. 

 
Fig. 3. Virtual Item Responses are Generated from an Existing Database. 

Each Row of 𝑄𝑘 is used as a Query to Retrieve Candidate Responses to Items 
with Similar Attributes. among these Candidate Responses, One Response is 

Randomly Sampled and used as a Virtual Response. 

III. RESULTS 

A. Statistical Characteristics of the Q-matrix 
Even with the same set of cognitive attributes, different 

hierarchical structures necessitate items with different 
combinations of cognitive attributes; these result in different 
numbers of rows in the corresponding Q-matrices. Removing 
an edge from 𝐻0 increases the number of rows of 𝑄𝑘 (27 ~ 33) 
for 𝑘 = 1, 2,⋯ , 7  (Fig. 4). This is because more items are 
needed to determine participants’ mastery of independent 
attributes than what are needed for related attributes. More 
specifically, Q-matrices corresponding to 𝐻5  and 𝐻7  had the 
largest number of rows (33). Compared with 𝐻0, 𝐻5 and 𝐻7 
have independent nodes A6 and A7, respectively; these nodes 
had many preceding attributes in 𝐻0. 

53 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 12, 2021 

 
Fig. 4. The Q-matrices (𝑄𝑘) for different Hierarchical Structures (𝐻𝑘). The 

Rows and Columns of each 𝑄𝑘 are Associated with Items and Attributes, 
Respectively. Each Row of 𝑄𝑘 Represents Cognitive Attributes Required for 

each Item in Black. 

Even though the number of rows of 𝑄𝑘  differ, the 
frequencies of ones in 𝑄𝑘 are similar. The average numbers of 
items per attribute did not differ significantly (𝑝 = 0.970 , 
one-way ANOVA). Similarly, the average numbers of 
attributes per item did not differ significantly (𝑝 = 0.998 , 
one-way ANOVA). Finally, the average sparsity of 𝑄𝑘  was 
0.571 (±0.012) . Thus, on average, hierarchies (𝐻𝑘 ) are 
homogeneous in terms of the number of items per cognitive 
attribute and the number of cognitive attributes per item. 

B. Comparison of the Discrepancy for Each Hierarchy 
The hierarchy designed by the experts (𝐻0) had a lower 

discrepancy than all the alternative hierarchies, except for 𝐻2 
(Fig. 5); this indicates that 𝐻0  explains students’ responses 
better than most alternative hierarchies, except for 𝐻2 . The 
increase in the discrepancy between the alternative hierarchies 
implies that the removed edge is important for explaining the 
actual students’ responses. 

In contrast, 𝑑(𝐻2) was lower than 𝑑(𝐻0) (Fig. 6). The t-
test for 10 simulations with different random seed numbers 
confirmed that there was a significant difference between 
𝑑(𝐻0) and 𝑑(𝐻2) (𝑝 = 4.18 × 10−18). This result implies that 
𝐻2 explains the students’ real item responses better than 𝐻0. 
There is thus a hierarchy of cognitive attributes that better 
describes responses than the hierarchy designed by the 
experts. 

 
Fig. 5. Average Discrepancy (𝑑𝑘) of each Hierarchy (𝐻𝑘) as a Function of 

Iteration. During Early (< 10) Iterations, 𝑑𝑘 Fluctuates Considerably; 
However, it Stabilizes after about 500 Iterations. After 1,500 Iterations, the 

Value of 𝑑𝑘 was Measured for each 𝐻𝑘. The Hierarchy 𝐻𝑘, which was 
Designed by the Experts, showed Lower 𝑑𝑘 (Black, Dotted) than Most of the 

other 𝐻𝑘, Except for 𝐻2 (Purple). 

 
Fig. 6. The Discrepancy (𝑑𝑘) of each Hierarchy (𝐻𝑘) is shown on the 

Removed Edge (for 𝑘 > 0). The Hierarchy without the Edge between A1 and 
A3 (𝐻2) showed the Lowest 𝑑𝑘, even Lower than that of the Expert-Designed 

Hierarchy (𝑑0). 

IV. CONCLUSION AND DISCUSSION 
In this study, we propose a method to quantitatively 

validate the hierarchy of cognitive attributes of a CDM and 
corresponding Q-matrices. The hierarchy designed by experts 
( 𝐻0 ) was compared with alternative hierarchies 
(𝐻1,𝐻2,⋯ ,𝐻7) with an edge removed. The discrepancy for 
each hierarchy was defined by the distance between the real 
and ideal responses (𝑟  and 𝑟𝑖𝑑𝑒𝑎𝑙 ), the inverse of which is 
interpreted as a quantitative indicator of how well a hierarchy 
and the corresponding Q-matrix describe the students’ item 
responses. 

Virtual responses were generated from an existing 
database, rather than directly collecting responses for each 
hierarchy and its corresponding Q-matrix. After generating a 
Q-matrix that corresponds to each hierarchy, we selected the 
items with the closest Hamming distance (𝑑𝐻𝑎𝑚𝑚𝑖𝑛𝑔) to each 
row of Q by comparison with the existing datasets, and one of 
the responses to these items was randomly selected as a virtual 
response. 

The hierarchy of cognitive attributes designed by the 
experts (𝐻0) had generally lower discrepancy than alternative 
hierarchies; however, one hierarchy ( 𝐻2 ) had a lower 
discrepancy than 𝐻0. The difference between 𝐻0 and 𝐻2 was 
the edge between addition (A1) and multiplication (A3), 
which is present in 𝐻0, but absent in 𝐻2. This implies that the 
link between addition and multiplication might be weaker than 
was expected by the experts. 

Our interpretation of this gap is that multiplication, once 
acquired as a separate skill, may not require the concept of 
addition. The concept of multiplication can be divided into 
three categories: repetitive addition, multiples, and product set 
[18]. The first concept of multiplication—repetitive 
addition—is utilized to teach multiplication to first-time 
learners. It is therefore reasonable to assume that 
understanding or performing multiplication also relies on the 
knowledge of addition, in agreement with the hierarchy 
designed by the experts (𝐻0). However, the other aspects of 
multiplication may play more important roles for students who 
mastered the concept of multiplication. In other words, after 
acquiring the knowledge of multiplication, they may perform 
multiplication as an independent skill, rather than repeating 
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addition multiple times. Therefore, we posit that the 
relationship between addition and multiplication may be 
important for learning, but that it is less so for practicing the 
actual skill of multiplication. 

We propose a scalable validation tool for comparing 
alternative hierarchies, which could encourage more teachers 
to utilize CDMs for learning achievement analyses. Selecting 
relevant cognitive attributes and designing the hierarchy 
among them requires experts’ knowledge and experience, 
which could hinder wider uses of CDMs. When a user wants 
to validate a chosen hierarchy or explore alternative 
hierarchical structures, item responses are sampled from an 
existing database, without having to develop new items and 
collect responses for each candidate. The proposed 
quantitative validation of alternative hierarchies could be used 
as objective indicators of the validity of established 
hierarchies. 

Our future work will generalize the proposed framework to 
more complex cases. In this study, we considered only seven 
attributes with rather simple associations. In general, presence 
of loop a graph hinders theoretical analysis as well as 
numerical calculations based on the graph. The hierarchical 
structure in this study has only one loop. It is of great interest 
to explore a more complex attributes structure with multiple 
loops. 
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