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Abstract—The increased growth in the cloud-based 
application development and hosting, the demand for higher 
application and data security is also increasing. The cloud-based 
applications are hosted on virtual machines and the data 
generated or used by these applications are also hosted inside the 
virtual machines. Hence, the security of the applications and the 
data can be achieved only by securing the virtual machines. 
There are number of challenges to achieve the security of the 
virtual machines. Firstly, the size of the virtual machines is large, 
and the generic cryptographic methods are primarily designed to 
handle smaller size of the data. Thus, the applicability of these 
methods for virtual machine are subjected to analysis. Secondly, 
the additional time required for applying the cryptographic 
algorithms on the virtual machines impact the response time of 
the applications, which again impacts the service level 
agreements. Finally, the virtual machines during the migration 
are highly vulnerable as the virtual machines are migrated inside 
the data center networks as simple text data. A good number of 
research attempts have tried to solve these challenges. 
Nonetheless, most of the parallel research works have either 
compromised on the strength of the security protocols or have 
compromised on the time taken to apply the cryptographic 
methods. However, the need of the research is to identify the 
attacks based on the characteristics of connection requests and 
reduce the time for the encryption and decryption of the virtual 
machines. This work proposes a novel framework for detection of 
the attacks based on a machine learning driven algorithm by 
analyzing the connection properties and prevent the attacks by 
selective encryption of the virtual machines using another 
machine learning driven algorithm. This work demonstrates 
nearly 98% accuracy in detection of the newer and existing 
attack types. 
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I. INTRODUCTION 
The security for the cloud infrastructure has always been a 

persistent issue as most of the consumers and practitioners do 
not have clear understanding about the security factors and 
implementation details. To some extent, the service providers 
have made a closed loop about the knowledge of cloud security 
inside the organizations and sometimes only to the selective 
groups. This makes the deployment of the cloud-based security 
protocols even harder for the researchers. Nonetheless, the 
recent research outcomes by various research attempts are 
opening the closed loops of the knowledge and exploring the 
possibilities of the deployment of novel and higher performing 
security protocols. One such work presented by P. Mishra et al. 
[1]. Nevertheless, the challenges of cloud securities are not 

only restricted to the data stored on the cloud. Rather, the 
security challenges can be observed in all the layers of cloud 
implementations as on the infrastructure layer, platform layer 
and the services layer. Another work by P. Mishra et al. [2] 
have confirms this claim. Thus, deploying the security protocol 
for all the layers of cloud implementation is highly complex 
due to various aspects such as model complexity or 
compatibility or interoperability between the layers. 

Henceforth, the implementation of the cloud security 
protocols can be best implemented using the virtual machine 
architectures. As the virtual machines holds the applications 
core and the data, generated or consumed by these applications, 
hence protecting the virtual machines must be the primary 
concern, which is implemented in this work. This work 
identifies the challenges of cloud security, internally which is 
virtual machine security and proposes a machine learning 
driven framework to protect the VMs. 

II. PARALLEL RESEARCH OUTCOMES 
The security of the cloud-based applications is critical as 

mentioned earlier. The applications and the data on the cloud 
are visible to authenticated and unauthenticated parties at the 
same time. Though, the access and identity management 
aspects of the online access can restrict the privileges on the 
applications and the data. Nonetheless, the visibility of data 
cannot be restricted. Hence, the possibilities of the attacks also 
increase on such data. The work by M. R. Watson et al. [3] 
have clearly listed the vulnerabilities on the cloud systems and 
also produced a clear guideline for managing the security. 
Considering the similar directions, to produce a framework for 
detection of the attacks based on characteristics, yet another 
work by V. Varadharajan et al. [4] can be highlighted. These 
parallel research outcomes are primarily focused on an old 
framework called Rekall [5] and the produced recent outcomes 
are the attempts to reduce the complexity and at the same time 
increasing the responsiveness of the same outlined 
characteristics. These outcomes have mainly concentrated on 
the prevention of the attacks. 

In the other hand, the domains for attack detections are also 
very popular among researchers. The work by T. K. Lengyel et 
al. [6] have clearly listed the possibilities of the attack analysis 
frameworks to detect the attacks. Nonetheless, these detection 
processes can be highly complex for the distributed 
architectures such as cloud or fog or edge-based computing. 
The application, the data and the userbases are always 
distributed and most of the times, the execution is parallel. 
Hence, the protective framework must also comply with the 
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distributed nature of the architecture. The work by S. Gupta et 
al. [7] have confirmed to this believe. 

The attacks are not only restricted to platform and the 
service layers. Multiple attacks are also reported on the 
physical hardware devices. The immediate but costly solution 
is to provide the hardware security modules or the HSM 
devices. Nonetheless, as mentioned these solutions are costly 
and for a cloud-based architecture, the applicability of the 
HSMs is very limited due to the limited physical access to the 
infrastructure. The work by D. Kirat et al. [8] have spoken in 
favor of this statement and confirms the claim. Although, the 
analysis of the intrusion or attack detections must take place at 
all the layers of cloud computing and infrastructure layer is not 
an exception. The work by C. Spensky et al. [9] have 
elaborated on the possibilities and feasibilities of monitoring 
for the attack detections on the physical infrastructure layer. 
This work has been criticized for not considering the 
possibilities for remote monitoring, which can be achieved 
using the access to the virtual machines. In the recent times, a 
good number of virtual machine managers have incorporated 
the monitoring layers in the VMM structure. 

Reciting back to the monitoring of the virtual machines for 
attack detection and prevention methods have improved a lot 
using the virtual machine monitoring possibilities. The survey 
done by F. Cai et al. [10] confirms few claims directly and 
indirectly as firstly, the deployment of the security features can 
be best adopted on the virtual machines. Secondly, the existing 
cryptographic methods can easily be outperformed in the 
recent higher demand for best response times and finally, the 
newer types of the attacks are increasing day by day and a 
method for detecting the attacks based on the behavior must be 
adopted. Thus, the demand for the automated framework with 
these features is the demand of the current research as also 
demonstrated in the work by A. Almtrf et al. [11]. 

The primary features of the expected framework must 
comply with few additional characteristics. The first 
characteristics is the close association with the software and the 
hardware modules to track the flow of the application 
processing characteristics as rightly stated in the work by A. 
Khurshid et al. [12]. The second characteristics of the proposed 
framework is to track the changing nature of the data as 
mentioned in the work by N. E. Moussaid et al. [13]. The final 
characteristics must comply with the deployed virtual machine-
based applications hosted on the cloud platforms as suggested 
by X. Lu et al. [14]. Thus, this work considers all the 
recommendations from the parallel research outcomes and 
further produces the proposed framework for detection and 
prevention of the attacks on the cloud application, in tern the 
virtual machine security. 

Further, this work realizes the characteristic based detection 
of the attacks. This not only identifies the known attack types, 
but also identifies the newer attack types. The work by B. 
Sudhakar et al. [15] has clearly listed the attack types and the 
mapping to the connection properties. The conclusive mapping 
from this work is furnished here [Table I]. 

TABLE I. ATTACK TYPES AND CONNECTION PROPERTIES MAPPING [15] 

Attack Type Connection Properties 

Browser Based Attacks  1. Count of the connection requests  
2. Access Type Requests  

Brute Force Based Attacks  1. Count of the connection requests 
2. Ratio between the request and responses  

DoS Based Attacks  

1. Access Type Requests 
2. Service Request Types  
3. The rate of change in the service request 

types  

SSL Based Attacks  
1. Service Request Types  
2. The rate of change in the service request 

types 

Scan Based Attacks  1. Ratio between the request and responses 

DNS Based Attacks  1. Service Request Types  

It is worth the mention, that these all characteristics or 
connection properties are available in the KDD dataset [16]. 

Thus, in the next section of this work, the problem 
identified in this section in the parallel research outcomes is 
formulated using mathematical models. 

III. PROBLEM FORMULATION & PROPOSED SOLUTIONS 
After the fundamental understanding of the research 

problems in the previous section of this work, this section 
focuses and elaborates the core problems and proposes 
solutions to these problems using the mathematical modeling 
techniques. 

The first problem elaborates on the responsiveness of the 
cloud-based applications due to the adaptation of the attack 
detection methods. The parallel research outcomes, as seen in 
the previous sections, shows higher time complexity. The 
increased time complexity is due to the nature of analysis 
deployed by these algorithms, which primarily focus on large 
number of characteristics or the connection properties. Hence, 
this must be resolved. 

Lemma – 1: The reduction of the connection characteristics 
using the correlation method can reduce the time complexity of 
the detection method. 

Proof: The connections characteristics or the properties 
extracted from the connection requests can be a very large 
dataset because of multiple monitoring system. Many of the 
times, these large datasets provide limited and redundant 
information, which is again at the cost of higher time 
complexity. Thus, a machine learning driven process to reduce 
the number of characteristics can certainly reduce the time 
complexity. 

Assuming that, the set of connection properties, C[], is a 
collection of multiple characteristics and each characteristics 
can be identified as Ci. Thus, for n number of total 
characteristics, the relationship can be formulated as: 

1 2 3[] , , ...., nC C C C C=
                       (1) 

659 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 12, 2021 

Also, assuming that, CX is the class variable, which defines 
the nature of the connection in terms of attacks or normal from 
the historical information sets. 

Hence, the characteristics analysis for detection of the 
attacks using the standard algorithms can be formulated as, 

( ) : []
i

i i
RowID C

TH C C
=

= Φ ∃ ∏
                 (2) 

Here, Φ is the function for extracting the threshold and 
further, the threshold for attribute iC  is stored in iTH . 
Clearly, the threshold must be calculated relatively as with the 
consideration of the other parameters. 

Further, the combined information from the thresholds 
from all the characteristics can decide the nature of the 
connection in terms of the class variable as, 

1

n

X i
i

C TH
=

=∑
                  (3) 

It is natural to realize that due to Eq. 2 and Eq. 3, the time 
complexity, T1, can be formulated as, 

1 ( 1)T n n= −                   (4) 

Or, 
2

1 * ( )T n n O n= =                   (5) 

For a large dataset with 100s of parameters or 
characteristics, this time complexity for detection of the attacks 
can be very high. Thus, this problem must be solved using 
parameter reduction process. 

Thus, based on the Eq. 1, the correlation formulation can be 
formulated as, 

( ( [ ]) ).( ( [ ]) )( , )
.

x i
x i

x i

C x C C i CC C
C C

η ηρ
σ σ
− −

=
                 (6) 

Here, ρ defines the correlation value or correlation 
coefficient, η defines the mean value and σ defines the 
standard deviation. 

The standard deviation calculation can be formulated as, 

2{ ( [ ])}i
i

C C i
C

n
η

σ
−

= ∑
                    (7) 

Further, the total correlation sets can be stored in Corr[] and 
the highest values can be taken to identify m number of 
characteristics for final analysis as, 

[] ( , )x iCorr C Cρ=< ∃ >                   (8) 

And, 

: []m Corr→                     (9) 

Thus, in the light of Eq. 4, the new time complexity, T2, 
can be formulated as, 

2 ( 1)T m m= −                 (10) 

Or, 
2

2 * ( )T m m O m= =                  (11) 

As, m n<<  , thus it is conclusive to state that 

2 1T T<<                    (12) 

Thus, reduction of the time complexity using the attribute 
reduction method is highly feasible. 

The second problem elaborates on the detection of the 
attack types. The attack types can be identified using a cluster 
analysis on the connection characteristics or the properties. As 
seen in the previous section of the work, the parallel research 
outcomes mostly fail to detect the newer attacks, though the 
types of the attacks are not very new and have a strong 
similarity with the existing and known types of attacks. 

This problem can be solved using deep cluster technique. 
The clustering method for identification of the attacks is 
significant as the identification of attacks direct towards 
anomalies in the connection, which is easily identifiable as 
outliers using the clustering method. 

Lemma – 2: The deep clustering method can identify the 
newer types of attacks using the outlier identification method. 

Proof: The outliers as a result of clustering process 
identifies the anomalies using various characteristics and 
similarities of the characteristics domain values. Based on the 
nature of the data used in the clustering process, the outliers 
can define various meanings. As in this research the data used 
are the connection characteristics, hence the outliers will 
denote the abnormal connections or the attacks. 

Continuing and revising the Eq. 1, for all the 
characteristics, there must be domains for each characteristic 
as, 

1 2 3[][] [], [], []...., []nC C C C C=
                (13) 

Further, the clustering process must be performed initially 
for each and every characteristic or attribute domains as 

[] ( [])i iCL C←Φ ∃                    (14) 

Here, the set of clusters for the ith attribute will be stored in 
[]iCL and Φ denotes the clustering process. 

Henceforth, the number of members in each cluster must be 
validated and the cluster with the lowest number of members 
are the potential clusters, inside which the outliers will reside. 

Thus, the iterative clustering must be performed until the 
outliers, in this case the attacks, is not identified as, 
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( [] )i low
CLω ←Φ ∃

                   (15) 

The terminating condition for Eq. 15 iteration is 1ω → . 

Henceforth, it can be stated conclusively, the minute 
deviations can be identified using this proposed method and 
further any new attack can also be detected, which has very 
little similarity to the existing attack types. 

The final problem, which this research aims to solve is the 
reduction of the cryptographic algorithm implementation time. 
As seen in the previous section of this work, the cryptographic 
algorithms are not designed to handle the large data, which is 
case of virtual machine files are very large in volume. Also, 
due to the higher adaptability of the DevOps processes across 
all organizations for application development, the changes 
made to the application and indirectly to the virtual machines 
are very high. This makes the process of applying 
cryptographic algorithms further difficult. 

Henceforth, the solution is to track the changes made to the 
virtual machines in terms of application code and data and 
apply incremental encryption process to reduce the time. 

The proposed solutions are converted to algorithms, which 
are furnished in the next section of this work. 

IV. PROPOSED ALGORITHMS AND FRAMEWORK 
After the formulation of the concepts of solutions in the 

previous section, in this section of the work, the proposed 
algorithms and the proposed frameworks are furnished. 

Firstly, the Connection Characteristics Reduction using 
Correlation Analysis algorithm is furnished. 

Algorithm - I: Connection Characteristics Reduction using 
Correlation Analysis (CCR-CA) Algorithm 
Input:  
Connection Characteristics set as CS[] 
 
Output:  
Reduced Characteristics set as RCS[] 

Process:  
Step - 1. Load the CS[] set 
Step - 2. Mark the class characteristics as CX from CS[x] 
Step - 3. For each attrbiute in CS[] as CS[i] 

a. Calculate the standard deviation, as SD[] using 
Eq. 7 

b. Calculate the correlation of CS[i] with CX as 
Corr[i] using Eq. 6 

Step - 4. For each element in Corr[] as Corr[j] 
a. If Corr[j] Not Equal Corr[j+1] & Corr[j] is Max 

i. Store RCS[j] = CS[i] 
b. Else,  

i. Continue 
c. Corr[j] = Null 
d. Stop if Count(RCS[]) >= Count(CS[])/2 

Step - 5. Return RCS[] 

The above algorithm is framed to solve the first problem 
discussed and based on the proposed Lemma – 1. 

Secondly, the Deep Clustering Based Attack Detection 
algorithm is furnished. 

Algorithm - II: Deep Clustering Based Attack Detection 
(DC-AD) Algorithm 

Input:  
Reduced Characteristics set as RCS[][] 
Output:  
Detected Attacks as DS[] 
Process:  
Step - 1. Load the RCS[][] set  
Step - 2. For each element in RCS[][] as RCS[i][] 

a. Apply K-Means Clustering on RCS[i][] and 
store the result in CL[i][] using Eq. 14 

Step - 3. For each element in CL[][] as CL[j][] 
a. If count(CL[j][]) -> min(count(CL[][]) 

i. Apply K-Means Clustering on 
CL[j][] and store the result in 
CL1[i][] using Eq. 15 

ii. Repeat the process untill 
Count(CL1[i][]) -> 1 

iii. Identify the attack characteristics as 
DS[k] = RCS[i] 

b. Else,  
i. Continue  

Step - 4. Return DS[] 

The above algorithm is framed to solve the second problem 
discussed and based on the proposed Lemma – 2. 

Thirdly, the Random Crypto Key Generation algorithm is 
furnished. 

Algorithm - III: Random Crypto Key Generation (RCKG) 
Algorithm 
Input:  
Large Random numbers as P & Q  
 
Output:  

I. Public Key as PK 
II. Private Key as PKK 

Process:  
Step - 1. Calculate the modulus, M as M = P * Q 
Step - 2. Select the derived encryption factor, DE as DE>1 and 

DE<(P-1).(Q-1) 
Step - 3. Generate public key, PK as PK = (M,DE) 
Step - 4. Generate private key, PKK as PKK = {1 MOD (P-

1).(Q-1)}/DE 
Step - 5. Return PK and PKK 

Fourthly, the Progressive Virtual Machine Encryption 
using Change Detection algorithm is furnished. 
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Algorithm - IV: Progressive Virtual Machine Encryption 
using Change Detection (PVME-CD) Algorithm 
Input:  

I. Version Management of VM as VMS[] 
II. Public Key as PK (M, DE)  

Output:  
Encrypted Virtual Machine as VME 
Process:  
Step - 1. Load the virtual machine versions as VMS[] 
Step - 2. For each element in VMS[] as VMS[i] 

a. Configuration Management:  
i. Identify the import and include 

statements  
ii. Store the configuration management 

as CM[i] 
b. Data Management:  

i. Identify the variable in the code  
ii. Store the data management as DM[i] 

c. Life Cycle Management:  
i. Identify the loops and conditional 

statements  
ii. Store the life cycle management as 

LCM[i] 
Step - 3. For each element in VMS[] as VMS[i] 

a. If CM[i] Not Equals to CM[i+1] 
b. Then, Store the changes CMC[j] = CM[i]-

CM[i+1] 
c. If DM[i] Not Equals to DM[i+1] 
d. Then, Store the changes DMC[j] = DM[i]-

DM[i+1] 
e. If LCM[i] Not Equals to LCM[i+1] 
f. Then, Store the changes LCMC[j] = LCM[i]-

LCM[i+1] 
g. Merge the changed components as CC[i] = 

CMC[j] U DMC[j] U LCMC[j] 
h. Build the encrypted VMS[i] as VME = 

pow(CC[i],DE) mod M 
Step - 4. Return VME 

Fifthly & finally, the Progressive Virtual Machine 
Decryption using Change Detection algorithm is furnished. 

Algorithm - V: Progressive Virtual Machine Decryption 
using Change Detection (PVMD-CD) Algorithm 
Input:  

I. Encrypted Virtual Machine as VME 
II. Private Key as PKK (DE, M) 

Output:  
Decrypted Virtual Machine as VM 
Process:  
Step - 1. Load the encrypted virtual machine as VME 
Step - 2. Build the decrypted virtual machine, VM as VM = 

pow(VME,DE) mod M 
Step - 3. Return VM 

The above algorithms are framed to solve the third problem 
discussed in the previous section of this work. 

Further, the final framework is furnished here [Fig. 1]: 

 
Fig. 1. A Framework for Cloud based Virtual Machine Security by Change 

Management using Machine Learning. 

Further, in the next section of this work, the obtained 
results from these proposed algorithms are discussed. 

V. RESULT AND DISCUSSION 
After the detailed understanding on the proposed 

algorithms, here the obtained results are furnished. 

Firstly, the used dataset [16] is analyzed here [Table II]. 

Further, the data is visualized graphically here [Fig. 2]. 

Here this is important to observe that, the many attributes 
have higher unique distributions and further demonstrates 
unique characteristics to detect large number of attacks. 

Secondly, the impact or the correlation analysis results are 
furnished here [Table III]. 

The obtained results are again visualized graphically 
[Fig. 3]. 

Here it is natural to realize that the many of the attributes 
have demonstrated higher correlation than the other attributes. 
As per the proposed algorithm, the threshold of the correlation 
is calculated as 0.223 and based on the correlation theory, the 
positive impacted and meaning full attributes correlation must 
be above 0.50. Thus, again based on the proposed algorithm, 
the median value of the correlation is considered as 0.135. 

Henceforth, based on the new correlation threshold, the 
following attributes are identified in the reduced set [Table IV]. 

Further, the reduced set is also analyzed graphically here 
[Fig. 4]. 

Here, it is worth noting that, due to this process the 
information loss is minimum as the diversified nature of the 
dataset with high distribution is kept intact. 

Further, the results from the deep clustering process to 
detect the attacks are furnished here [Table V]. 
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TABLE II. DATASET ANALYSIS 

SN
O Attribute Name Attribut

e Type 

Missin
g Value 
(%) 

Number of 
Unique  
Distributio
n 

1 “duration” Num 0% 624 
2 “protocol_type” Nom 0% 3 
3 “service” Nom 0% 64 
4 “flag” Nom 0% 11 
5 “src_bytes” Num 0% 1149 
6 “dst_bytes” Num 0% 3650 
7 “land” Nom 0% 2 
8 “wrong_fragment” Num 0% 3 
9 “urgent” Num 0% 4 
10 “hot” Num 0% 16 
11 “num_failed_logins” Num 0% 5 
12 “logged_in” Nom 0% 2 
13 “num_compromised” Num 0% 23 
14 “root_shell” Num 0% 2 
15 “su_attempted” Num 0% 3 
16 “num_root” Num 0% 20 
17 “num_file_creations” Num 0% 9 
18 “num_shells” Num 0% 4 
19 “num_access_files” Num 0% 5 
20 “num_outbound_cmds” Num 0% 1 
21 “is_host_login” Nom 0% 2 
22 “is_guest_login” Nom 0% 2 
23 “count” Num 0% 495 
24 “srv_count” Num 0% 457 
25 “serror_rate” Num 0% 88 
26 “srv_serror_rate” Num 0% 82 
27 “rerror_rate” Num 0% 90 
28 “srv_rerror_rate” Num 0% 93 
29 “same_srv_rate” Num 0% 75 
30 “diff_srv_rate” Num 0% 99 
31 “srv_diff_host_rate” Num 0% 84 
32 “dst_host_count” Num 0% 256 
33 “dst_host_srv_count” Num 0% 256 
34 “dst_host_same_srv_rate” Num 0% 101 
35 “dst_host_diff_srv_rate” Num 0% 101 

36 “dst_host_same_src_port_ra
” Num 0% 101 

37 “dst_host_srv_diff_host_ra” Num 0% 58 
38 “dst_host_serror_rate” Num 0% 99 
39 “dst_host_srv_serror_rate” Num 0% 101 
40 “dst_host_rerror_rate” Num 0% 101 
41 “dst_host_srv_rerror_rate” Num 0% 100 
42 “class” Nom 0% 2 

 
(a) 

 
(b) 

Fig. 2. (a) and (b) Analysis of the Dataset. 

TABLE III. CORRELATION ANALYSIS 

SNO Correlation with “Class” Variable  
1 0.150 
2 0.112 
3 0.368 
4 0.525 
5 0.016 
6 0.097 
7 0.008 
8 0.039 
9 0.009 
10 0.057 
11 0.135 
12 0.618 
13 0.021 
14 0.018 
15 0.022 
16 0.021 
17 0.016 
18 0.052 
19 0.070 
20 0.000 
21 0.010 
22 0.116 
23 0.353 
24 0.092 
25 0.282 
26 0.280 
27 0.517 
28 0.513 
29 0.550 
30 0.261 
31 0.192 
32 0.399 
33 0.645 
34 0.636 
35 0.276 
36 0.030 
37 0.022 
38 0.312 
39 0.308 
40 0.528 
41 0.506 
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Fig. 3. Correlation Analysis. 

TABLE IV. REDUCED ATTRIBUTE SET WITH CORRELATION 

SNO Attribute Name Correlation with 
“Class” Variable  

1 “dst_host_srv_count” 0.645 

2 “dst_host_same_srv_rate” 0.636 

3 “logged_in” 0.618 

4 “same_srv_rate” 0.550 

5 “dst_host_rerror_rate” 0.528 

6 “flag” 0.525 

7 “rerror_rate” 0.517 

8 “srv_rerror_rate” 0.513 

9 “dst_host_srv_rerror_rate” 0.506 

10 “dst_host_count” 0.399 

11 “service” 0.368 

12 “count” 0.353 

13 “dst_host_serror_rate” 0.312 

14 “dst_host_srv_serror_rate” 0.308 

15 “serror_rate” 0.282 

16 “srv_serror_rate” 0.28 

17 “dst_host_diff_srv_rate” 0.276 

18 “diff_srv_rate” 0.261 

19 “srv_diff_host_rate” 0.192 

20 “duration” 0.150 

21 “num_failed_logins” 0.135 

 
Fig. 4. Reduced Attribute Set Correlation Analysis. 

TABLE V. ATTACK DETECTION ACCURACY ANALYSIS 

Analysis Metric  Number of 
Values 

Percentage 
(%) 

“Correctly Classified Instances” 84248 98.2335 

“Incorrectly Classified Instances” 1515 1.7665 

“Kappa statistic” 0.9638 - 

“Mean absolute error” 0.032 - 

“Root mean squared error” 0.12 - 

“Relative absolute error” - 6.5494 

“Root relative squared error” - 24.2856 

“Total Number of Instances” 85763 - 

The results are observed visually here [Fig. 5]. 

 
Fig. 5. Detection Accuracy Analysis. 
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Clearly from the results it is worth noting that the accuracy 
of the proposed deep clustering algorithm for attack detection 
is 99.23% with the newer types of attacks. 

Further, the change detection algorithm for the virtual 
machines produces a log of tracked changes. The analysis is 
performed over 1000 virtual machines, however, for the 
visualization on 10 virtual machine logs are presented here. 

Sample Change Detection Log File 

Change Tracking for VM #1 
Tracking for version #1 
VM Size reduced by 126 GB 

Change Tracking for VM #2 
Tracking for version #1 
VM Size reduced by 95 GB 

Change Tracking for VM #3 
Tracking for version #1 
VM Size reduced by 94 GB 
Tracking for version #2 
VM Size reduced by 42 GB 

Change Tracking for VM #4 
Tracking for version #1 
VM Size increased by 138 GB 

Change Tracking for VM #5 
Tracking for version #1 
VM Size reduced by 183 GB 
Tracking for version #2 
VM Size increased by 28 GB 

Change Tracking for VM #6 
Tracking for version #1 
VM Size increased by 236 GB 
Tracking for version #2 
VM Size reduced by 28 GB 

Change Tracking for VM #7 
Tracking for version #1 
VM Size increased by 208 GB 

Change Tracking for VM #8 
Tracking for version #1 
VM Size increased by 275 GB 

Change Tracking for VM #9 
Tracking for version #1 
VM Size reduced by 32 GB 
Tracking for version #2 
VM Size reduced by 42 GB 
Tracking for version #3 
VM Size increased by 79 GB 

Change Tracking for VM #10 
No Changes Detected  

From the above sample log file, the following aspects are 
conclusive regarding the virtual machine change detection 
algorithm: 

1) The changes for any virtual machine can be detected 
over multiple versions of the same VM. 

2) The changes are reflected in terms of size; however, the 
actual change management is tracked based on characteristics 
of the virtual machines. 

3) The detection algorithm also ensures no changes if the 
version of the same virtual machine is not updated. 

Henceforth, it is conclusive that, the change management 
algorithm is perfectly justifying the claims made is this work. 

Further, the key generation algorithm outputs are analysed 
here [Table VI]. During the testing phase, the algorithm is 
tested for more than 1000 instances. However, for 
representation purposes only 10 examples from the total 
outcomes are furnished. 

TABLE VI. KEY GENERATION TIME ANALYSIS 

Test Sequence # Key Generation time (ns) 
Seq #1 7 
Seq #2 9 
Seq #3 14 
Seq #4 7 
Seq #5 10 
Seq #6 20 
Seq #7 15 
Seq #8 25 
Seq #9 10 
Seq #10 14 

The results are visualized graphically here [Fig. 6]. 

 
Fig. 6. Key Generation Time Analysis. 

It is evident from the above results, that the time taken for 
the key generation demonstrates fairly liner characteristics, 
which is always expected for any best key generation 
algorithms. 

TABLE VII. CRYPTOGRAPHIC ALGORITHMS TIME ANALYSIS 

Test Sequence # Encryption Time (ns) Decryption Time (ns) 
Seq #1 19 22 
Seq #2 6 16 
Seq #3 4 19 
Seq #4 10 7 
Seq #5 17 1 
Seq #6 11 20 
Seq #7 18 14 
Seq #8 14 20 
Seq #9 8 15 
Seq #10 12 16 
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Further, the encryption and decryption time analysis is 
furnished here [Table VII]. During the testing phase, the 
algorithm is tested for more than 1000 instances. However, for 
representation purposes only 10 examples from the total 
outcomes are furnished. 

The results are also visualized graphically here [Fig. 7]. 

 
Fig. 7. Encryption and Decryption Time Analysis. 

The results obtained in terms of time taken to perform the 
encryption and decryption operations on the detected changes 
on the virtual machines clearly showcase a trend of reduced 
time. This reduction is achieved due to the change management 
algorithm deployed for the virtual machine versions. 

Further, in the next section of this work, the obtained 
results are compared with the other parallel research outcomes.  

VI. COMPARATIVE ANALYSIS 
The obtained result from the proposed framework is highly 

satisfactory. Nonetheless, without a comparative analysis, no 
work can be concluded as benchmarked outcome. Thus, in this 
section of the work, the proposed framework using various 
parameters is compared with the parallel popular research 
outcomes [Table VIII]. 

Henceforth, it is conclusive to state that, the proposed 
framework has outperformed the parallel popular research 
works in terms of capabilities and as well as in terms of model 
complexity. 

Finally, in the next section of the work, the research 
conclusion is presented. 

TABLE VIII. COMPARATIVE ANALYSIS 

Author, Year Methodology Capabilities Model 
Complexity 

X. Lu et al. [14], 
2020 

Machine 
Learning  Reactive Security  O(n2) 

N. E. Moussaid et 
al. [13], 2020 

Machine 
Learning Reactive Security O(n2) 

F. Cai et al. [10], 
2019 

Machine 
Learning Reactive Security O(n2) 

B. Sudhakar et al. 
[15], 2019 

Machine 
Learning Reactive Security O(n*m) 

Proposed 
Framework  

Machine 
Learning 

Reactive & 
Proactive Security O(n) 

VII. CONCLUSION 
This research establishes benchmark in many aspects. In 

any of the parallel research outcomes, the reduction of time for 
applying the cryptographic aspects is ignored, which as per this 
work is most evident to increase the responsiveness of the 
cloud security. Also, this work elaborates the possibilities of 
detection of the attacks with the simplest model with least 
complexity. The proposed mathematical models and 
algorithms are strong evidence of the claim that, this 
framework is not only capable of detection of existing or 
known attacks, rather, this framework can also detect newer or 
unknown types of attacks based on the connection 
characteristics analysis. The detection rate on the benchmarked 
dataset is over 98%, which is again a benchmark for these 
types of framework. 
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