
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

30 | P a g e

www.ijacsa.thesai.org

Advanced Debugger for Arduino

Jan Dolinay
1
, Petr Dostálek

2
, Vladimír Vašek

3

Faculty of Applied Informatics

Tomas Bata University in Zlín

Zlín, Czech Republic

Abstract—This article describes improved version of our

source-level debugger for Arduino. The debugger can be used to

debug Arduino programs using GNU debugger GDB with

Eclipse or Visual Studio Code as the visual front-end. It supports

all the functionally expected from a debugger such as stepping

through the code, setting breakpoints, or viewing and modifying

variables. These features are otherwise not available for the

popular AVR-based Arduino boards without an external debug

probe and modification of the board. With the presented

debugger it is only needed to add a program library to the user

program and optionally replace the bootloader. The debugger

can speed up program development and make the Arduino

platform even more usable as a tool for controlling various

experimental apparatus or teaching computer programming.

The article focuses on the new features and improvements we

made in the debugger since its introduction in 2016. The most

important improvement over the old version is the support for

inserting breakpoints into program memory which allows

debugging without affecting the speed of the debugged program

and inserting breakpoints into interrupt service routines. Further

enhancements include loading the program via the debugger and

newly added support for Arduino Mega boards.

Keywords—Arduino; debugger; microcontroller; software

debugging

I. INTRODUCTION

Arduino is a very popular prototyping platform with a
microcontroller (MCU). It started as an educational tool in
2003 and evolved into a widespread platform for prototyping,
controlling various devices and for teaching computer
programming. It is now frequently used in courses focused on
embedded systems, robotics, and the like. For example, [1]
describes successful use of the platform in computer science
capstone course, [2] used Arduino-based custom board to
increase student’s interest in programming courses and [3]
utilized Arduino as the base for their educational mobile robot.
A comprehensive review on this topic was presented e.g., by
[4]. Arduino is also used in scientific laboratories as a low-cost
multipurpose device for controlling various experimental
apparatus in a wide range of areas. For example, [5] concludes
that Arduino boards may be inexpensive tool for many
psychological and neurophysiological labs, [6] based their
device to abate tremors for patients with Parkinson’s disease on
this platform, [7] uses Arduino to generate pulsatile flow rate
for biofluid dynamics research, [8] uses distributed network of
Arduino boards acting as remote servers in a system
controlling capacitive energy storage and [9] used Arduino for
real-time monitoring of air quality in urban area. Yet another

area of its use is the emerging technology of Internet of Things
(IoT), as described by [10, 11] and others.

The Arduino hardware is a printed circuit board with a
microcontroller. A program must be written, built, and
uploaded to the MCU for the Arduino to be able to perform
requested tasks. There is a software tool, integrated
development environment (IDE), provided with the platform to
accomplish this. It is also possible to use other tools to create
the programs for Arduino, for example, Eclipse or Visual
Studio Code. These tools offer more functionality than the
simplistic Arduino IDE and are therefore preferred by many
advanced users.

One feature which is commonly missed by advanced users
is a source-level debugger. The Arduino IDE does not provide
any interface for source-level debugging. The alternative IDEs
do provide such interface, but the most popular Arduino boards
based on AVR microcontrollers, such as Uno, Mega or Nano,
cannot be debugged without an external debug probe and
alteration of the board. Thus, most users debug their programs
by printing textual messages to serial interface, which is
usable, but not very effective or comfortable.

A debugger that lets the user stop the program, view, and
modify variables or execute the program step by step can save
significant amount of time in localizing problems, especially in
more complex projects. It can also greatly improve the
usability of the Arduino platform for teaching computer
programming. For the novice programmers it is easier to create
the mental model of the programming constructs they are
learning if they can use a debugger to single step through lines
of code, set breakpoints, and watch the internal state of the
program as well as the outside effects, such as an LED turning
on. Debugger is also an essential tool for teaching debugging
skills, which is recognized as an important part of computing
curricula [12, 13].

As follows from the above a source level debugger is a
highly desirable feature, which can make the Arduino platform
more usable both for teaching programming and for
implementing various devices. We developed first version of
such a debugger in 2016 [14]. This debugger had several
limitations which affected the performance of the debugged
program and thus the usability of the tool. In this article, we
present a significantly improved version of the debugger,
which overcomes limitations of the first version and offers
features and comfort of use at the level expected from fully-
fledged, hardware-based debugger.

This work was supported by the Ministry of Education, Youth and Sports

of the Czech Republic within the National Sustainability Programme project
No. LO1303 (MSMT-7778/2014) and also by the European Regional

Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03

xxx.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

31 | P a g e

www.ijacsa.thesai.org

II. DEBUGGER PERFORMANCE IMPROVEMENTS

As already mentioned, in 2016 we developed a source-level
debugger for the AVR-based Arduino boards. The unique
feature of this debugger is that it makes it possible to debug
programs at source level without any external tools. This can
be particularly useful for educational purposes – there is no
extra cost of buying a hardware debug probe for each
workplace in the lab and no extra work with modifying the
Arduino boards to be able to communicate with the probe.

However, the first version of the debugger had several
limitations - it was implemented for Arduino Uno only, the
program execution was significantly slower when any
breakpoints were set, and it was not possible to set breakpoints
into interrupt service routines (ISR). After receiving positive
feedback from the users, we decided to improve the debugger
to overcome these limitations.

A. Debugging Options for Arduino

There are three options for debugging the AVR-based
Arduinos besides printing messages to serial line. First option
is to use a hardware debugger – a debug probe, which connects
to the debug pin of the MCU. Unfortunately, there is a
capacitor attached to this pin on the Arduino boards which
must be disconnected for the communication with the debug
probe to work. Newer revisions of the board are equipped with
a solder bridge which can be cut to enable this feature, making
the modification relatively easy. Nevertheless, it is a
modification which needs to be reverted if the normal program
uploading via bootloader is needed. Another problem is that
the debug protocol is proprietary and therefore a commercial
debug probe must be obtained. The prices of such probes start
at around $50 for the most affordable Atmel-ICE-PCBA tool.

The second option is to use VisualMicro Arduino IDE for
Visual Studio, which contains a tool called Serial debugger.
This debugger is based on inserting code into the user program
to communicate with the IDE. This added code is not visible to
the user and the user experience is quite satisfactory, but there
are major limitations to this approach - it is not possible to
insert breakpoints during debugging; a rebuild and re-upload is
required. Also, stepping through the code is not possible - the
program can only be run from one breakpoint to the next one.
Moreover, the VisualMicro is a paid software; the prices start
at $12 for a one-year student license or $49 for a permanent
license. All this, together with the fact that it is only available
as an extension for Visual Studio, a complex and hardware
intensive IDE, probably makes it less than ideal solution for
many users.

The third option is a debugger based on GDB stub
mechanism, which is described in the next section. The
advantage of this approach is that the features of such a
debugger are very similar to a hardware debugger, including
stepping through the code, inserting breakpoints in runtime,
and viewing and modifying the variables. Also, the stub is not
limited to certain IDE; it can be used with GDB in command
line as well as with various IDEs. We verified the solution with
Eclipse IDE, Visual Studio Code and PlatformIO which are all
free, multiplatform, and relatively light-weight environments.
As far as we know, our GDB stub presented here is the only
such stub for the AVR based Arduinos available.

To summarize, to be able to debug Arduino programs at
source level, the other options besides our solution are either
modifying the board and buying a debug probe for approx. $50
or buying the Visual Micro software solution which has limited
features. We believe that our solution is an attractive option
especially for educators, as it is completely free, can be used in
Windows, Linux or Mac and works with the Arduino board as-
is, without any hardware modification.

B. Principle of Operation

The debugger is based on so-called debugger stub for the
GNU debugger GDB. Debugger stub is a small program that
runs on the debugged computer and communicates with the
debugger running on development (host) computer [15].

To enable debugging, users must insert a program library
(the stub) into their code and then they are able to connect to
the running program and debug it with the GDB. We first
presented this solution with Eclipse IDE, but it can also be used
from command line or with any IDE that can integrate with
GDB, notably the popular open-source editor Visual Studio
Code. The principle of communication is shown in Fig. 1. Our
software component, GDB stub, is part of the user program
running on the Arduino board (target system). The stub handles
serial communication with the GDB debugger running on the
host system (desktop computer). This way the GBD can
control the program, view the memory, etc.

C. New Breakpoints Implementation

The key new feature described in this paper is the ability to
set breakpoints into program memory. In general, breakpoints
are implemented by modifying the program code at the
position where the execution should be suspended. The original
instruction is replaced by another instruction that redirects the
execution to the debugger. This is easily achieved on desktop
computers, as the program is located in RAM memory, which
it is easy to modify. The problem with using this technique in
microcontrollers is that the program memory is typically based
on flash technology and cannot be easily rewritten in runtime.

MCUs are commonly equipped with a debug module which
takes care of inserting the breakpoints, single stepping etc.
However, to access this module a special hardware - a debug
probe is required. Moreover, the AVR-based Arduino boards
can only be used with such a probe after modification of the
printed circuit board, as mentioned in Section A.

Fig. 1. Principle of Debugging with our GDB Stub.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

32 | P a g e

www.ijacsa.thesai.org

We aimed to provide accessible debugging option without
the relatively expensive hardware probe and modification of
the board. That is why we implemented the debugger using the
debugger stub technique mentioned above, without using the
debug module of the MCU. The first version of our debugger
introduced in [14] did not insert breakpoints into the program
memory because it seemed too complicated at that time.
Instead, breakpoints were implemented by comparing the
current position in the program with a list of desired breakpoint
addresses after executing every instruction of the CPU.
Obviously, this considerably decreases the execution speed of
the debugged program, but in many situations, it is not a
problem and the debugger can be successfully used. The
advantage of this approach is that the users simply add a library
to their program; no other action is required.

However, setting breakpoint directly to the program
memory promises significant benefits and we decided to
implement this feature in the new version. In the following text
we refer to these new breakpoints as “flash breakpoints” and to
the older breakpoints as “RAM breakpoints”. The advantage of
the flash breakpoints is that the program can run at full speed,
with virtually no intrusion, until a breakpoint is hit. Moreover,
flash breakpoints can be set into interrupt service routines
(ISR), which is not possible with the RAM breakpoints. This
follows from the principle of operation of the RAM
breakpoints – after each instruction of the main program an
ISR must be executed to examine current position of the
program - and the AVR CPU can only execute one ISR (which
is used by the debugger) and the main program in this mode.
On the other hand, flash breakpoints are implemented by
replacing the original instruction at the position where the
program should stop with another instruction that redirects
execution back to the debugger. Thus, they do not require any
use of an interrupt for monitoring current position of the
program which would grade the execution speed. The details of
the implementation are provided in the following section.

III. RESULTS AND DISCUSSION

In this section we describe the implementation of the new
version of the debugger stub which can be useful for better
understanding of the features and limitations of this solution.
We also present sample cases of running the debugger.

A. New Breakpoints and Program Load Implementation

To implement the flash breakpoints, we needed to solve
two problems. First problem is that on the ATmega328 MCU it
is only possible to rewrite the flash memory from code running
in special memory section called the bootloader section. This
section already contains the Arduino bootloader which handles
loading user programs from the IDE. In normal course of
operation, user programs (including our debugger stub) cannot
be loaded into this section.

To solve this problem, we developed custom version of the
bootloader which works in the same way as the standard
bootloader - it allows uploading the user program without
debugging, but additionally it provides service to the debugger
stub to write to program memory. The principle is depicted in
Fig. 2. When the stub needs to set a breakpoint in the program
memory it calls a routine in the custom bootloader to modify

the flash memory. The bootloader also provides a routine for
loading new application program as described later.

The second problem was how to replace the original
instruction in the memory when setting a breakpoint. To stop
the program, we need to execute some code that will pass the
control from the debugged program to the debugger. Often,
there is a special instruction in the instruction set of the target
CPU to break the execution and jump to the debugger, or an
instruction for software interrupt which can be used to pass the
control to an appropriate ISR handled by the debugger.
However, in the AVR architecture neither of these are
available.

The simple solution would seem to be to replace the
original instruction with a jump to the debugger, but such a
jump would require overwriting several bytes of the memory –
the jump instruction together with its target address. Yet we
can only replace single instruction by the breakpoint; we
cannot overwrite the following instruction. Consider the case
of setting a breakpoint one instruction before the location
which is the target of a jump or a subroutine call. If the
breakpoint replaces not only the intended instruction but also
the following one, the program will crash when it jumps to the
now-damaged location after the breakpoint. From this it
follows that the instruction to be used as a breakpoint must not
be longer than the shortest instruction of the CPU – which is
just one word. This significantly limits the available options.

Our first solution was to use an external interrupt which
would be asserted all the time but disabled in the peripheral,
and to replace the original instruction with an instruction to
enable the interrupt. Such an instruction fits into single word
but as we found out the execution of the program does not stop
immediately at the instruction which enables the interrupt; the
program only stops at the next instruction. This would be
unacceptable and thus this solution had to be abandoned.

The working solution proved to be using a relative jump
instruction (RJMP) with -1 as the target address, which is a
jump to itself (an endless loop). Thus, the program stops in an
infinite loop at the position of the breakpoint. To pass the
control to the debugger we use periodic interrupt that checks
whether the program is currently at the address of a breakpoint
and if so, it calls the debugger code. The watchdog peripheral
is utilized to generate the periodic interrupt leaving all the
timers free for use by the Arduino software.

Fig. 2. Interaction of the GDB Stub with the Bootloader.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

33 | P a g e

www.ijacsa.thesai.org

As follows from the above, to use the flash breakpoints the
users need to replace the default bootloader in their Arduino
board with our bootloader. Replacing the bootloader is
relatively easy and the procedure is well documented by the
Arduino community. However, should it be a problem, the
debugger can still be used without replacing the bootloader,
with RAM breakpoints only. This mode is supported as a
compile-time option in the code. It has two advantages – it is
readily available for Arduino boards without any modification,
and it does not cause wear of the flash memory, as discussed in
the next section. In some use-cases, such as school lab for a
basic programing course, the RAM-breakpoints mode may be
sufficient and preferred.

On the other hand, if the bootloader is replaced and thus
writing to flash memory from the user program is enabled, the
users can take advantage of another new feature we
implemented – the support for loading the program via the
debugger. Without this feature the typical workflow for
debugging a program is as follows:

 Build the program.

 Upload the program (through the Arduino bootloader).

 Attach the debugger and debug.

With the load support it is possible to upload the program
and start debugging with a single click in the IDE. Our
debugger stub takes care of receiving the new program and
writing it to the program memory of the MCU.

B. Flash Memory Wear Considerations

As already mentioned, the flash breakpoints are
implemented by replacing one instruction in the program by a
code which transfers the control to the debugger stub. Thus,
setting a breakpoint requires overwriting part of the program
memory of the MCU. This memory is based on flash
technology, which can only endure certain number of write
cycles. For the ATmega328 MCU the manufacturer guarantees
flash endurance of ten thousand cycles. Although the number is
high, memory wear should be considered when using the
debugger. Let us briefly discuss this topic.

From user’s perspective there are two debugger commands
to control execution of the program – a Step command which
moves the program to the next line and Continue (Run)
command which lets the program run until a breakpoint is hit.

To perform the Step command, the debugger must execute
one or more CPU instructions – consider that one line of code
in C language may correspond to several CPU instructions. We
implement the Step command in the same way as RAM
breakpoints – one instruction is executed and then an interrupt
is triggered to check whether desired position in the program
has been reached. Consequently, the flash memory is not
rewritten during step commands.

The Continue command requires writing a breakpoint to
program memory - the program should run until a breakpoint is
hit. Besides user-defined breakpoints there are also some
breakpoints inserted automatically by the debugger. For
example, when stepping over a function the GDB places
temporary breakpoint at the next instruction after the function

call. GDB also removes all breakpoints when the program
stops on a breakpoint so that the user can see the stopped
program with the original instructions in place and so that the
original instruction can be executed when continuing from a
breakpoint. When the user resumes the program, all active
breakpoints must be written back to memory because the
debugger does not know which one will be hit next.

To reduce the memory wear, we implemented a simple
optimization so that the breakpoints are written and removed
only if it is necessary. When our stub receives command from
GDB to remove a breakpoint it notes this request but does not
remove the breakpoint (rewrites the flash memory) until the
continue command is received. In many cases the breakpoint is
removed and then replaced by GDB, but the stub leaves the
breakpoint in place thus saving two flash write cycles. Even
with this optimization one should keep in mind that the flash
memory is overwritten often. It is possible to analyze the
number of writes if a compile-time option is enabled in the
code of the stub; then there is a global variable which tracks the
number of writes to flash memory.

C. Running the Debugger

In the following sections we show the usage of the
debugger with focus on the new features. For detailed
explanation of the basic setup and usage please refer to our
earlier article [14]. The results presented here were obtained on
a Window 10 desktop computer with Eclipse Oxygen IDE, 64-
bit, version 4.7.3a.

We assume an Arduino Uno board in the original state as it
left the factory. First step is to replace the bootloader. For this
an in-circuit AVR programmer (ISP programmer) is required.
Such programmers are available in many variants for low
prices. It is also possible to use another Arduino board as a
programmer. The modified bootloader can be found in the
source package as a .hex file. This file needs to be loaded into
the MCU memory instead of the original bootloader and so-
called fuses need to be changed to take into account different
size of the new bootloader – the fuse BOOTSZ (size of the
bootloader region of the MCU) needs to be set to 1024 words,
which means the bootloader occupies 2 kB of memory. After
replacing the bootloader, we are ready to use the new features.

D. Building the Program

We will use the typical introductory program which blinks
the on-board LED on Arduino pin 13. The user first needs to
set up the Eclipse IDE to be able to develop programs for
Arduino. The procedure is described in the documentation
provided with the source code.

Once the Eclipse project is set up to build the blink
program, we can add the code of our debugger stub. This code
is located in four files in the avr8-stub folder: avr8-stub.c, avr8-
stub.h, app_api.c and app_api.h. The two app_api files provide
communication with the bootloader and are only needed if the
flash breakpoints or load-via-debugger options are enabled.

As the next step we configure the debugger stub. The
constant AVR8_BREAKPOINT_MODE determines whether
the flash breakpoints should be used. Default value 1 results in
using RAM breakpoints only. Changing it to 0 enables the
flash breakpoints.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

34 | P a g e

www.ijacsa.thesai.org

The constant AVR8_LOAD_SUPPORT determines
whether it should be possible to load the program via the
debugger. We set the value to 1 to enable this feature. Now we
can build the program.

E. Debugging the Program

Once the program is built and an Eclipse debug
configuration is created the program can be debugged. Even
with the load-via-debugger option enabled we still need to
upload the program to the MCU in the standard way (using
avrdude tool and bootloader) for the first time because the code
of the GDB stub is not yet present in the MCU to be able to
receive new programs directly.

After uploading the program to the MCU, we are ready to
start debugging. In our earlier article we described using a
TCP-to-serial converter on Windows 7 to connect the GDB
and the debugger stub because direct serial connection was
unstable. With Windows 10 or Linux systems direct serial
connection can be used.

Once the code is uploaded to the MCU we can connect to
the running program using the Debug button in the IDE. When
the connection is established, we should see the program
stopped in the debugger – as shown in Fig. 3. The Debug
window at the top shows the call stack. The program is stopped
in the loop function. Below, in the source window, the line to
be executed next is highlighted – it is a call to the delay
function. It is now possible to either step into the function and
debug the code inside, or step over and execute the function at
once.

There is also a variable “counter” which we can examine or
modify. Fig. 4 shows the value of the variable as displayed in
the IDE when hoovering cursor over the variable name.

To illustrate the benefit of the flash breakpoints - that they
do not slow down the execution of the debugged program, we
compare the speed of the program when running with flash
breakpoints and with RAM breakpoints. First, we insert a
breakpoint into the setup function. It will never be hit because
the setup function is only executed once when the program
starts. However, as described earlier, the presence of the
breakpoint should nevertheless slow down the program when
using the RAM breakpoint mode.

With the breakpoint set, we resume the program so that it
runs at full speed and measure the period of the blinking of the
LED. Using the configuration described above we obtain
approximately 2 seconds period, as expected given the two
1000 milliseconds delays in the code. This shows that the
program speed is not affected by the presence of the
breakpoint.

Now we switch the configuration to RAM breakpoints by
setting AVR8_BREAKPOINT_MODE to 1 in avr8-stub.h file.
After loading the program and running it without a breakpoint
we obtain 2 seconds period as in the previous case. However,
after setting the breakpoint into the setup function as in the
previous case, we obtain period of 7.2 seconds. This means that
the program is slowed down by a factor of nearly 4. If a busy
loop is used instead of the timer-based Arduino delay function
the program is slowed down even more by a factor of 350.

Fig. 3. Sample Program Stopped in the Debugger.

Fig. 4. Viewing Value of a Variable.

F. Loading New Program via the Debugger

With the new feature of loading the program via debugger
it is possible to modify and reload the program faster while
debugging; just edit the code, click the Debug button and the
IDE will save changes, build the program, load it to the MCU
and start it in the debugger.

For this to work our debugger stub must be able to receive
the program from the IDE and write it to the flash memory of
the MCU. To be more precise the GDB debugger issues a load
command which our stub supports to load the executable into
the target MCU. To enable this feature, the constant
AVR8_LOAD_SUPPORT must be defined with value of 1 as
described in section D above. Then we need to edit the debug
configuration in Eclipse IDE to enable loading the program.
This is done by checking the “Load image” box in the Startup
tab of the debug configuration. There is detailed description of
the procedure in the documentation provided with the source
code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

35 | P a g e

www.ijacsa.thesai.org

After this we can start the program by clicking the Debug
button in the IDE and selecting the debug configuration with
load program enabled. To modify the code, we can just stop the
program, edit the code, and click the debug button again to
upload and debug the modified program.

G. Space Requirements

Table I shows the size of the debugger stub for various
configurations of the breakpoints and load support. The exact
values will depend on compiler version and configuration, but
the presented numbers can be used as estimates of how much
space is required to add the debugger support to the program.
As can be seen the full-featured version with both breakpoints
in flash and load-via-debugger enabled uses about 5.5 kB of
program memory. Together with the increased size of the
modified bootloader which is required for this configuration (2
kB) adding debugger support to a program requires 7.5 kB out
of the total 32 kB of program memory available in the MCU.

H. Use of the Debugger

As already mentioned, presented debugger can be
employed without any additional hardware and is free of cost
which makes it suitable for use in programming courses which
already have the necessary hardware - an Arduino board, and
wish to extend the course with introduction to debugging. The
improved version of the debugger described here provides
better user experience than the old version and allows
debugging even time-sensitive code. Besides the educational
courses the debugger can also be useful to anyone developing
Arduino programs who wants to use a debugger yet is not
ready to invest the time and money to switching to a
professional development environment.

The current version of the debugger can be used with
Arduino boards with the ATmega328 microcontrollers, which
includes Uno, Nano and Micro and for the Arduino Mega
boards with ATmega2560 and ATmega1280 MCUs.

We are still seeking the ideal development environment to
be used with the debugger. The environment based on Eclipse
IDE shown above provides complete control of the processes
but is quite complicated to set up. A promising alternative
seems to be Visual Studio Code editor with Arduino extension
which is considerably easier to set up and use for beginner
programmers.

TABLE I. CODE AND DATA SIZE FOR DEBUGGER CONFIGURATIONS

Configuration
Program size in

bytes

Data size in

bytes

Flash breakpoints with load enabled 5446 347

Flash breakpoints with load disabled 5374 307

RAM breakpoints with load enabled 4904 342

RAM breakpoints with load disabled 4658 277

IV. CONCLUSION

In this article we presented new version of the source-level
debugger for Arduino. The most important of the new features
is the support for writing breakpoints to program memory and
loading the program via the debugger. To implement these
features a custom version of the Arduino bootloader was

created which makes it possible for our debugger stub to write
to the program memory. We also had to develop a way to
replace the original instruction of the program with a
breakpoint to transfer the control to the debugger with the
constraint of not overwriting more than one instruction of the
original program. Furthermore, to reduce the wear of the flash
memory from unnecessary insertion and removal of
breakpoints by the GDB debugger, we implemented an
algorithm in the code which only rewrites the memory if
necessary. Yet another new feature is that the debugger now
works also with Arduino Mega boards, which extends its range
of use into the area of larger program with many inputs and
outputs.

We believe that with these new features the debugger offers
user experience similar to a fully-fledged hardware debugger.
The advantage of this solution is that, unlike the hardware
debug probe, it is free and requires no changes in the Arduino
board. It can be helpful in embedded programming courses,
student’s projects, for controlling lab experiments or in any
other project based on the Arduino platform. In future we
would like to add support for more Arduino boards and
simplify the process of setting up the development
environment for debugging. The source code of the debugger
stub and detailed instructions for use can be found at
https://github.com/jdolinay/avr_debug.

REFERENCES

[1] P. Bender and K. Kussmann, “Arduino based projects in the computer
science capstone course”, Journal of Computing Sciences in Colleges,
Vol. 27, no. 5, pp. 152-157, 2012.

[2] I. Perenc, T. Jaworski and P. Duch, “Teaching programming using
dedicated Arduino Educational Board”, Comput Appl Eng Educ., vol.
27, no. 4, 943-954, 2019.

[3] F. M. López-Rodríguez and F.J. Cuesta, “Andruino-A1 Low-Cost
Educational Mobile Robot Based on Android and Arduino”, Journal of
Intelligent & Robotic Systems, vol. 81, no. 1, 63-76, 2016.

[4] M. El-Abd. “A Review of Embedded Systems Education in the Arduino
Age: Lessons Learned and Future Directions”, International Journal of
Engineering Pedagogy, vol. 7, no. 2, 79-93, 2017.

[5] A. D’Ausilio, “Arduino, a low-cost multipurpose lab equipment”,
Behavior Research Methods, vol. 44, no. 2, 305-313, 2012.

[6] J. Hinostroza-Qui˜nones and M. Vasquez-Cunia, “Non-invasive Device
to Lessen Tremors in the Hands due to Parkinson’s Disease,”
International Journal of Advanced Computer Science and Applications,
vol. 11, no. 8, pp. 735-738, 2020.

[7] M. R. Najjari and M.W. Plesniak, “PID controller design to generate
pulsatile flow rate for in vitro experimental studies of physiological
flows”, Biomedical Engineering Letters, vol. 7, no. 4, 339-344, 2017.

[8] K. I. Mekler, A.V. Burdakov, D.E. Gavrilenko and S. S. Garifov, “A
new control system for the capacitive energy storage of the GOL-3
multiple-mirror trap”, Instruments and Experimental Techniques, vol.
60, no. 3, 345-350, 2017.

[9] J. Balen, S. Ljepic, K. Lenac and S. Mandzuka, “Air Quality Monitoring
Device for Vehicular Ad Hoc Networks: EnvioDev”, International
Journal of Advanced Computer Science and Applications, vol. 11, no. 5,
pp. 580-590, 2020.

[10] P. Diogo, N. V. Lopes and L. P. Reis, “An ideal IoT solution for real-
time web monitoring”, Cluster Computing, vol. 20, no. 3, pp. 2193-
2209, 2017.

[11] M. M. Soto-Cordova, M. Medina-De-La-Cruz and A. Mujaico-Mariano,
“An IoT based Urban Areas Air Quality Monitoring Prototype”,
International Journal of Advanced Computer Science and Applications,
vol. 11, no. 9, pp. 711-716, 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

36 | P a g e

www.ijacsa.thesai.org

[12] F. Kazemian and T. Howles, “Teaching Challenges - Testing and
Debugging Skills for Novice Programmers”, Software Quality
Professional, vol. 11, no. 1, 2008.

[13] R. Chmiel and M.C. Loui, “Debugging: From Novice to Expert”, ACM
SIGCSE Bulletin, vol. 36, no. 1, 2004.

[14] J. Dolinay, P. Dostálek and V. Vašek, “Arduino Debugger”, IEEE
Embedded Systems Letters, vol. 8, no. 4, pp. 85-88, 2016.

[15] H. Li, Y. Xu, F. Wu and C. Yin, “Research of “Stub” remote debugging
technique”, Proceedings of 2009 4th International Conference on
Computer Science & Education, Nanning, China, pp. 990-993, 2009.

