
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

463 | P a g e

www.ijacsa.thesai.org

Performance Improvement of Network Coding for

Heterogeneous Data Items with Scheduling

Algorithms in Wireless Broadcast

Romana Rahman Ema
1
, Md. Alam Hossain

2
*, Nazmul Hossain

3
, Syed Md. Galib

4
, Md. Shafiuzzaman

5

Computer Science and Engineering Department, Jashore University of Science and Technology, Jashore-7408, Bangladesh

Abstract—This is the age of information. Now-a-days

everyone communicates with each other by means of digital

systems. Humans are always communicating with each other on

the go. On-demand broadcasting is an efficient way to broadcast

information according to user requests. In an on-demand

broadcasting network, anyone can satisfy multiple clients in one

broadcast which helps to fulfill the enormous demand of

information by clients. The optimized flow of digital data in a

network through the transmission of digital evidence about

messages is called network coding. The “digital evidence” is

composed of two or more messages. Network coding

incorporated with data scheduling algorithms can further

improve the performance of on-demand broadcasting networks.

Using network coding, anyone can broadcast multiple data items

using single broadcast strategy which can satisfy the needs of

more clients. In this work, it is described that network coding

cannot always maintain its superiority over non-network coding

when the system handles different sized data items. However, the

causes of performance reduction on network coding have been

analyzed and THETA based dynamic threshold value integration

strategy has been proposed through which the network coding

can overcome its limitation for handling heterogeneous data

items. In the proposed strategy, THETA based dynamic

threshold will control which data item will be selected from the

Client Relationship graph (CR-graph) so that large sized data

items cannot be encoded with small sized data items. Simulation

result shows some interesting performance comparison.

Keywords—Network coding; scheduling algorithms; CR graph;

wireless broadcast; simulation; LTSF; STOBS; performance metric

I. INTRODUCTION

Now-a-days almost everyone carries a portable cellular
computing device from a laptop computer to smartphone. All
these devices share information to the network on the go. This
also requires an infrastructure that does not require a user to
maintain a fixed connection in the network and allows
mobility. Wireless networks require mobility, distributed
sensing and city-wide internet connectivity. For broadcasting
the data to the client, network coding uses the limited
bandwidth of the wireless efficiently [17] [23]. Network
Coding, as a field of study is young which was first introduced
in [27] [30]. It is a new concept. Study on the performance of
network coding shows that it can utilize the available limited
bandwidth of the network to achieve improved throughput in
multicast communication [16] [31] [32]. Network coding is
applied on on-demand broadcasting network [14] [23] [28].
Here the server broadcasting the data has the information of

every client it is broadcasting. Server uses this information to
keep track of the data received by clients. Then the server
encodes data and broadcasts them on the network. All the
clients receive the encoded data and use its own received data
to decode the encoded data. Using network coding, a server
can serve multiple requests at the same time [17] [22].

Network coding can increase the performance of a
broadcasting network in many aspects. It increases
throughput, robustness, security in network as well as
decreases deadline miss ratio, stretch, response time [17]. But
while working on heterogeneous data items, network coding
has some drawbacks [9]. It does not perform well as it has
been on singular data items [29]. It is caused by the encoding
technique which is used in network coding [15]. In XOR
encoding, we encode the data items that are found in the
maximum clique from the CR-graph [4] [7] [24] [25]. CR-
graph is constructed through the data regarding clients’
relationships of requested and cached data items [4] [7]. In the
proposed THETA based dynamic threshold value integration
strategy, the drawbacks of the traditional network coding
approach in the scenario of heterogeneous data items have
been minimized. Large sized data items and small sized data
items have been filtered and encoded separately for improving
the performance of network coding.

The rest of this paper is organized as follows. Section II
contains related work. Section III illustrates the system model
for implementing our proposed strategy. Section IV describes
the performance evaluation. Our final thoughts are included in
Section V.

II. RELATED WORK

G. G. Md. Nawaz Ali, Yuxuan Meng et al. [1] performed
simulation-based analysis based on top of generalized
encoding model on both in homogenous as well as the
heterogeneous environment for measuring the effectiveness
plus adaptability of network coding assisted scheduling
algorithms. They analyzed the performance of diverse
scheduling algorithms both in non-coding then their proposed
coding method utilizing dissimilar performance metrics.

Yuxuan Meng, Edward Chan at al. [2] analyzed the effect
of network coding with different scheduling algorithms. They
conducted various experiments to measure the performance of
broadcasts considering standard access moment, due date
ignores relative amount along with typical stretch out.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

464 | P a g e

www.ijacsa.thesai.org

Cheng Zhan, Victor C. S. Lee et al. [3] proposed a
generalized framework so that data scheduling algorithms can
be incorporated with network coding for broadcasting on
demand requests. They described that with coding,
performance can be improved using different scheduling
algorithms.

Jun Chen, Victor C. S. Lee et al. [4] proposed a new
coding strategy named AC, for implementing an efficient
coding mechanism. They also proposed two coding assisted
algorithms named ADC-1 and ADC-2 considering data
scheduling and network coding. Their simulation results
showed that response time was dynamically reduced using
both ADC-1 and ADC-2. They also showed that ADC-1 and
ADC-2 performed better than conventional and other coding
assisted algorithms.

Mohamed A. Sharaf and Panos K. Chrysanthis [8]
proposed a new scheduling algorithm named STOBS-α for
grouping requests and only one-time delivery of broadcasting
results to the clients. Their proposed heuristic on demand
algorithm was experimented using access time and fairness for
mobile clients.

III. NEED OF THE IMPROVEMENTS

From studies it is noted that when there is no difference in
data item size, there is no problem in encoding. For instance,
if it is needed to encode three data item d1, d2 and d3 of unit
size 1, the size of encoded data item d1⊕d2⊕d3 is also 1. But
when we have to encode data items with different size then
there is a slight problem. In this condition, the encoded data
item's size is the size of the largest item selected for encoding.
Let the size of d1 is 1 unit, d2 is 3 unit and d3 is 7 unit. Then
the size of encoded data item d1⊕d2⊕d3 is 7 unit. In
traditional network coding, large data items are selected with
small data items for encoding which in terms cause
performance reduction. That also leads to increased stretch
and response time, thus hampering the performance of the
network [12]. Traditional scheduling algorithms [5] [12] [18]
are able to perform better than network coding in such
conditions. For this reason, a new modified strategy in
network coding has been established to handle heterogeneous
data items with ease for maintaining an improved throughput,
stretch and response time. The contribution of this paper is as
follows:

1) To design a system model, where the server maintains

the specification of network coding.

2) To implement the proposed modified strategy which

will eliminate the drawback of network coding for

heterogeneous data items.

3) To simulate, integrate and analyze our proposed

approach with other existing basic scheduling algorithms and

compare their performances.

IV. SYSTEM MODEL

A. System Architecture

To fulfill more requests earlier than their due dates as well
as to assure operative utilization of the constrained bandwidth
are the main goals of real-time scheduling and coding. Our

system architecture is based on top of the conventional on
demand broadcast set-up [4] [7] [10] [14] [18]. The
architecture is shown in Fig. 1. The system is set aside by one
server with a number of end devices. All end devices have a
local cache along with provisions for a certain data core which
is broadcasted by the server [1] [13]. Due in the direction of
the obligatory room of the end device’s caches, a certain
guiding principle is applied intended for cache substitution. If
the inquired data core cannot be initiated in its cache, the end
device sends a request, and its active cache stand-in data to the
server through an uplink tunnel [1]. All requests conceivably
will necessitate auxiliary data portion from the server. Later
than transfer requests headed for the server, end devices listen
to the broadcast tunnel to recapture their requested data [1]
[13]. It is presupposing that an end device doesn’t cache this
arriving encoded information but it cannot decode any asked
data piece by utilizing this encoded information. If an end
device gets and decodes every requested data substance earlier
than the time limit, in that case, the requests can be content. In
other cases, the request misses its time limit as well as there is
no value to the end device [4].

On receiving a request, the server embeds it into a service
queue. A request holds up to be scheduled in the service queue
until every one of its requested data substances are
broadcasted otherwise it gets to be infeasible for scheduling
[1] [20]. When the leftover slow-moving phase is smaller than
the compulsory phase obligatory towards broadcast every one
of the leftover unprocessed data substances, the appeal is
considered impossible to be scheduled [1]. A request is
removed from the service queue and becomes infeasible, if it
misses its required deadline [1]. The server primarily recovers
the asked information substance put away within the local
database based on top of certain scheduling algorithms then, in
that case, encodes the data substance based on data concerning
end devices' cached and requested data substance. Lastly, the
server broadcasts the encoded information via the downlink
tunnel. Inside our model, server and end devices purely
exploit the basic XOR operations to encode and decode
information [3] [7] [30]. Therefore, the encoding, as well as
decoding operating cost and hold-up, can be overlooked.

Fig. 1. System Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

465 | P a g e

www.ijacsa.thesai.org

B. Graph Model

Our graph model is based on the graph model proposed
and discussed by Zhan at al. [3]. In this approach, the CR-
graph is constructed on the THETA based threshold
mechanism basis. The system has a data server S and n
number of end devices E = {e1, e2, en}. Set X(ei) denotes
the set of requested data items of end devices’ ei and set Y(ei)
denotes the set of cached data items of end devices’ ei. The
server has a database which contains all the data items. Set m
denotes the overall data items contained in the database D.
Definition 1: Given E = e1, e2, en, D = d1, d2,.... dm, X(ei) ⊆
D, Y(ei) ⊆ D, X(ei) ⋂ Y(ei) = ∅ [3][6]. A graph G(V, E) can
be built the same as follows:

 V= { vij | end device ei requests for data item dj, 1≤ i≤ n,
1≤j≤m}

 E = (vi1j1, vi2j2) | j1=j2; or j1≠ j2, dj2 ⊆ Y(ui1), dj1⊆ Y(ui2),
| SizeOF(d1)- SizeOF(d2) | THRESHOLD

If we weigh up on-demand broadcast circumstances in
Fig. 2(a) which consists of a server, S and five end devices, e1,
e2, e3, e4 and e5. Presume that the server has four data
substances d1, d2, d3 and d4. If we assume that end device e1
has already stored d2, d3, d4 in its cache from preceding
broadcasting, end device e2 has d1, d2, d4 in its cache, end
device e3 has d2, d3, d4 in its cache, end device e4 has d1, d2, d4
in its cache and end device e5 has d1, d2, d3 in its cache. Now if
we assume that end device e1 is requesting data item d1, end
device e2 and e3 are requesting data item d2, end device e4 is
requesting data item d3 and end device e5 is requesting data
item d4. The data sizes of d1, d2, d3 and d4 are 1 unit in
addition to the broadcast transmission capacity is B=1, which
infers the server can broadcast one information piece every
time unit.

As of explanation 1, the diagram matching to Fig. 2 is
developed as Fig. 3. Within this stature vertex V11 speaks to
the request from end device e1 for data d1. End device e1 has
d2 requested by e2 and end device e2 has d1 requested by e1,
there is an edge (V11, V22). It is also shown that the end device
e3 has d3 requested by e4 and the end device e4 has d2 requested
by e3, there is an edge (V32, V43). Other edges are constructed
by following the same rule.

Fig. 2. A Demo of On-demand Information Broadcast.

Fig. 3. CR-Graph Developed Commencing the Case in Fig. 2.

C. Proposed THETA based Dynamic Threshold Calculation

Strategy

The proposed THETA based dynamic threshold
integration is based on the fact that large data sized items will
not be encoded with small sized data items.

We construct the undirected graph G (V, E) according to G
(V, E) as mentioned in III (B) section. Candidate vertex vmi

(denotes data item di requested by end device Em) need to be
initiated with V(G).

 For each vij ∈ V(G) do

 if SizeOf (dk) < 100 then

 THRESHOLD= (ln (SizeOf(dk)))
2

 end if

 if SizeOf (dk) > 100 then

 THRESHOLD= (SizeOf(dk) ÷ ln (SizeOf(dk)))

 End

We need to make a decision which data items would be
encoded together. For this reason, we have used dynamic
thresholds. This gives better results. Threshold calculating
process is given above. Here we have given an example.
Suppose we need to broadcast 5-unit data items and 50-unit
data items. If we choose 5-unit data items as candidates, the
threshold would be around 3. So, 50 unit sized data items
won't be in a set with a 5-unit data item set. Only, data item
size in between 2 and 8 would come to consideration. Again,
when 50-unit data items are candidate, the threshold would be
around 15. So, 5 unit sized data item won't be in a set with 50.
In this case the range of encoding would be 35 to 65. Though
they produce different thresholds, both will face less stretch.

The proposed approach is to change THETA for each
candidate by doing THETA= candidate requests requested
data item size ÷ 3. But it is tried to choose THETA through a
general equation. The proposed algorithm strategy is given
below.

 At first, we make pairs which contain Client_Id and
Requested_Data_Id.

 Then, we choose each request as a candidate request
one by one. For calculating dynamic THETA, we have

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

466 | P a g e

www.ijacsa.thesai.org

used candidate requests requested data item size. Here,
THETA is equal to either square of ln (candidate
requests requested data item size) or candidate requests
requested data item size ÷ ln (candidate requests
requested data item size).

 By using THETA, we make a set. If the difference of
candidate request's requested data item size and other
requests requested data item size is less than THETA
then this request is inserted into the set. We repeat this
process for all candidate requests.

 From these sets, we find out maximum clique and then
do network coding by broadcasting data.

If two vertices of a similar subset are linked through an
edge in an undirected graph, it is considered as a clique [4]
[26]. There are a number of preferences in the proposed
methodology. We are using THETA based dynamic threshold
integration. It helps to separate small data items from large
data items. If small data items are encoded with large data
items, they face large stretch and response time also increases.

V. PERFORMANCE EVALUATION

A. Overview of Comparable Scheduling Algorithm

With the rapid growth of on-demand broadcasting
networks, servers have to serve significantly large numbers of
clients every day and it is always increasing. So to balance out
the increasing load of servers, the necessity of new and
improved scheduling algorithms is very high. In network
coding, we have to incorporate scheduling algorithms
according to our framework so that they maintain their
characteristics for scheduling data items for normal networks.
Two algorithms have been implemented using the system
model (III-A). For heterogeneous data items, STOBS and
LTSF scheduling algorithms perform efficiently better than
other scheduling algorithms (FCFS, MRF, LMF and others) as
those algorithms are generally implemented for single data
item [11].

1) STOBS (Summary Tables On-Demand Broadcast

Scheduler): In STOBS, the server maintains a queue to store

the requests of clients at the time of their arrival. This

scheduler chooses a data item for broadcasting with highest

(R*W)/S [3] [8] [12] [19]. A summary table T
x

is maintained

for each request of Q
x
. The server keeps the following

information [8] [12] [19].

 R: Number of arrival requests for the table T
x.
 When a

request for T
x
 arrives, the value of R increments.

 W: Waiting time of the first request Q
x.

 S: Table size.

2) LTSF (Longest Total Stretch First): LTSF chooses a

data item intended for broadcasting concurring to the order of

the maximum total recent stretch [3] [12]. The data piece

having the utmost whole current distend is broadcasted earliest

[18]. Recent stretch records are calculated by the ratio of the

waiting time of pending requests to its time of service [3] [9]

[12] [18] [21].

B. Performance Metrics

1) Average response time: Average response time is the

ratio of the summation of altogether request’s response time in

the direction of the entire number of requests [8] [18] [21].

Requests are served quickly if the value of average response

time is low.

2) Average stretch: Minimizing the average stretch for

heterogeneous data items is the main issue considered for

scheduling algorithms. We find average stretch in our

simulation model using the following equation.

Average Stretch=Total response time for all end
devices/Total service time for all end devices [8] [18] [21].

C. Simulation Model

We performed detailed analysis using CSIM19 [11]. The
simulation parameters used for our system architecture (III-A)
is shown in Table I. Most of these parameter values are
considered from related works [1] [2] [3] [4] [5] [7]. In our
simulation model, the server maintains a cache for every end
device. At first end devices are generated with data items in
their cache automatically. Then, they make their requests to
the server maintaining an inter arrival time (IATM). We use
IATM in accordance with average data item size. In our
simulation:

IATM = 100/Average data item size;

If IATM is low, then end devices will make their requests

more frequently which can overload the server.

TABLE I. SIMULATION PARAMETERS

Parameters Default Range Description

IATM - -
Request generation
interval

NUMENDDEVICE 100 25-600 Number of end devices

DBSIZE 1000 -
Quantity of information

objects in the database

BANDWIDTH 1KB/sec - Broadcasting bandwidth

THETA (𝜃) 0.4 0.2-1.0
Zipf distribution
parameter.

CACHSIZE 10 30-180

The maximum amount of

data stored in every
client’s cache.

DWNSIZEMIN 1Kb -
Minimum size of data

item in database

DWNSIZEMAX 60Kb 30-70
Maximum size of data

item in database

D. Performance Analysis

The proposed THETA based dynamic threshold
integration has been implemented using the system model
described in III-A. Overall performance is analyzed and
compared using two metrics: average response time and
average stretch. We measured the performance by varying
item size and cache size with our dynamically changing
THETA. Simulation results show that there is significant
increase of performance in the network coding environment
with our proposed THETA based dynamic threshold

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

467 | P a g e

www.ijacsa.thesai.org

calculation strategy. The reason behind performance
improvement is large sized data items are not being selected
with small sized data items with our proposed strategy.

1) Performance comparison of average response time for

varying item size with different cache size: Tables II, III and

Fig. 4(a), 4(b) shows the observations of average response

time by varying item size for different cache size. For both

STOBS and LTSF algorithms, there is significant increase of

performance in the network coding environment. For STOBS,

average response time decreases by .25 percent for cache size

30 and .095 percent for cache size 60. For LTSF, average

response time decreases by .25 percent for cache size 30 and

.26 percent for cache size 60.

2) Performance comparison of average response time for

varying cache size with different item size: Tables IV, V and

Fig. 5(a), 5(b) shows the observations for average response

time by varying cache size for different item size. For both

STOBS and LTSF algorithms, there is significant increase of

performance in network coding environments. For STOBS,

average response time decreases by .18 percent for item size

60 and .16 percent for item size 30. For LTFS, average

response time decreases by .17 percent for item size 30 and

.16 percent for item size 60.

TABLE II. AVERAGE RESPONSE TIME WITH CACHE SIZE 30

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With Theta

LTSF With

Theta

1 1.1 1.1 1.1 1.1

2 2.3 2.4 2.2 2.1

3 3.4 3.5 3.2 3.1

4 4.4 4.5 4.2 4.1

5 5.4 5.5 5.2 5.1

6 6.4 6.5 6.2 6.1

7 7.4 7.5 7.2 7.1

8 8.4 8.5 8.2 8.1

TABLE III. AVERAGE RESPONSE TIME WITH CACHE SIZE 60

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With

Theta

LTSF With

Theta

1 1.1 1.1 1.1 1.1

2 2.3 2.5 2.4 2.1

3 3.4 3.6 3.5 3.1

4 4.4 4.6 4.5 4.1

5 5.4 5.6 5.5 5.1

6 6.4 6.6 6.5 6.1

7 7.4 7.6 7.5 7.1

8 8.4 8.6 8.5 8.1

(a). Average Response Time for Varying Item Size with Cache Size 30.

Fig. 4. (b). Average Response Time for Varying Item Size with Cache Size

60.

TABLE IV. AVERAGE RESPONSE TIME WITH ITEM SIZE 30

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS With

Theta

LTSF With

Theta

1 6.5 6.55 6.5 6.5

2 5.9 5.95 5.8 5.7

3 5.4 5.45 5.3 5.2

4 4.9 4.96 4.8 4.7

5 4.5 4.6 4.4 4.3

6 4.2 4.3 4.1 4

7 4.1 4.2 4 3.9

8 4 4.1 3.9 3.8

TABLE V. AVERAGE RESPONSE TIME WITH ITEM SIZE 60

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With Theta

LTSF With

Theta

1 6.5 6.5 6.5 6.5

2 5.9 6 5.8 5.7

3 5.4 5.5 5.3 5.2

4 4.9 5 4.8 4.7

5 4.5 4.6 4.4 4.3

6 4.2 4.3 4.1 4

7 4.1 4.2 4 3.9

8 4 4.1 3.9 3.8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

468 | P a g e

www.ijacsa.thesai.org

(a). Average Response Time for Varying Cache Size with Item Size 30.

Fig. 5. (b). Average Response Time for Varying Cache Size with Item Size

60.

3) Performance comparison of average stretch for

varying item size with different cache size: Tables VI, VII and

Fig. 6(a), 6(b) shows the observations for average stretch by

varying item size for different cache size. For both STOBS

and LTSF algorithms, there is significant increase in

performance in the network coding environment. For STOBS,

average stretch decreases by .91 percent for cache size 30 and

.85 percent for cache size 60. For LTFS, average stretch

decreases by 1.10 percent for cache size 30 and 1.09 percent

for cache size 60.

TABLE VI. AVERAGE STRETCH WITH CACHE SIZE 30

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With Theta

LTSF With

Theta

1 5 5 5 5

2 6 6.2 5.1 5

3 6.4 6.3 5.2 5.1

4 6.4 6.3 5.3 5.1

5 6.4 6.3 5.3 5.1

6 6.4 6.3 5.3 5.1

7 6.4 6.3 5.3 5.1

8 6.4 6.3 5.3 5.1

TABLE VII. AVERAGE STRETCH WITH CACHE SIZE 60

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With Theta

LTSF With

Theta

1 5 5 5 5

2 6 6.2 5.1 5

3 6.4 6.3 5.2 5.1

4 6.3 6.1 5.3 5.1

5 6.3 6.1 5.3 5.1

6 6.3 6.1 5.3 5.1

7 6.5 6.4 5.3 5.1

8 6.5 6.4 5.3 5.1

(a). Average Stretch for Varying Item Size with Cache Size 30.

Fig. 6. (b). Average Stretch for Varying Item Size with Cache Size 60.

4) Performance comparison of average stretch for

varying cache size with different item size: Tables VIII, IX

and Fig. 7(a), 7(b) shows the observations for average stretch

by varying cache size for different item size. For both STOBS

and LTSF algorithms, there is significant increase in

performance in the network coding environment. For STOBS,

average stretch decreases by 1.75 percent for item size 30 and

2.09 percent for item size 60. For LTFS, average stretch

decreases by 2.04 percent for item size 30 and 2.22 percent for

item size 60.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

469 | P a g e

www.ijacsa.thesai.org

TABLE VIII. AVERAGE STRETCH WITH ITEM SIZE 30

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With Theta

LTSF With

Theta

1 7.2 7.1 6 5.8

2 7.2 7.1 5.7 5.5

3 7.2 7 5.4 5.2

4 6.4 6.5 5 4.9

5 6.4 6.3 4.7 4.5

6 6.4 6.2 4.2 4

7 5.9 6 3.7 3.4

8 5.9 5.8 3.3 3

TABLE IX. AVERAGE STRETCH WITH ITEM SIZE 60

Serial

No.

LTSF

Without

Theta

STOBS

Without Theta

STOBS

With Theta

LTSF With

Theta

1 6.5 7 5 4.6

2 6.4 6.8 4.8 4.4

3 6.3 6.5 4.5 4.2

4 6.2 6.3 4.3 4

5 6.1 6.2 4.1 3.8

6 6 6.1 3.9 3.6

7 5.8 5.9 3.7 3.4

8 5.6 5.7 3.5 3.1

(a). Average Stretch for Varying Cache Size with Item Size 30.

Fig. 7. (b). Average Stretch for Varying Cache Size with Item Size 60.

VI. CONCLUSION

Network coding can be widely used in the on demand
wireless broadcast environment. However, it faces encoding
problems while handling heterogeneous data items. It fails to
provide the best possible solutions when different-sized data
substance is encoded jointly. It faces a high stretch. Response
time also increases when size differences of different data
items are very high. Therefore, in this paper it is attempted to
minimize the performance reduction difficulty of network
coding in terms of heterogeneous data substance. Based on top
of the generalized model proposed and discussed in, a new
approach called THETA based dynamic threshold strategy has
been introduced for encoding purposes. The proposed
approach keeps in mind that large sized data items should not
be encoded with small sized data items. The simulation results
reveal interesting performance improvement of network
coding. STOBS and LTSF scheduling algorithms have been
used in this paper and the proposed THETA based dynamic
threshold approach has been integrated with these two
algorithms. With the proposed strategy, average stretch and
average response time is dynamically reduced in a network
coding environment. In future, other scheduling algorithms
(FCFS, MRF, and LMF) can be integrated with the proposed
strategy.

REFERENCES

[1] G. G. Md. Nawaz Ali, Yuxuan Meng, Victor C. S. Lee, Kai Liu and
Edward Chan, “Performance Improvement in Applying Network Coding
to on-demand scheduling Algorithms for Broadcasts in Wireless
Networks”, The Ninth International Multi-Conference on Computing in
the Global Information Technology, ICCGI 2014.

[2] Yuxuan Meng, Edward Chan and Victor Lee, “Performance Simulation
of Network Coding-Based on-demand Broadcast Models”, IEEE, 2013.

[3] Cheng Zhan, Victor C. S. Lee, Jianping Wang, and Yinlong Xu,
“Coding-Based Data Broadcast Scheduling in on-demand Broadcast”,
IEEE Transactions On Wireless Communications, Volume 10, No. 11,
November 2011.

[4] Jun Chen, Victor C.S. Lee, Kai Liu, G.G.M.N. Ali and Edward Chan
“Efficient processing of requests with network coding in on-demand
data broadcast environments”, ElSEVIER, 2013.

[5] Jun Chen, Kai Liu and Victor C.S.Lee “Analysis of Data Scheduling
Algorithms in supporting Real-time Multi-item Requests in On-demand
Broadcast Environments”, IEEE, 2009.

[6] Cheng Zhan and Fuyuan Xiao “Coding based wireless broadcast
scheduling in real time applications”, ElSEVIER, 2016.

[7] Jun Chen,Victor C.S.Lee and Cheng Zhan “Efficient Processing of Real-
time Multi-item Requests with Network Coding in On-demand
Broadcast Environments”, 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, 2009.

[8] Mohamed A. Sharaf and Panos K. Chrysanthis, "On-Demand Broadcast:
New Challenges and Scheduling Algorithms”.

[9] Md. Ashiqur Rahman, G. G. Md. Nawaz Ali, Yumeng Gao, Syeda K.
Samantha, and Peter H.J. Chong “On Accessing Heterogeneous Data
Items using Network Coding in Wireless Broadcast”, IEEE, 2016.

[10] Jianliang Xu, Xueyan and Wang-Chien Lee “Time-Critical On-Demand
Data Broadcast: Algorithms, Analysis, and Performance Evaluation”,
IEEE Transactions On Parallel and Distributed Systems, Volume. 17,
No. 1, January 2006.

[11] H. Schwetman, “CSIM19: A powerful tool for building system models,”
in Proceedings of the 33th IEEE Winter Simulation Conference,
Arlington, VA, USA, 2001.

[12] Xiao Wu and Victor C. S. Lee “Preemptive Maximum Stretch
Optimization Scheduling for Wireless On-Demand Data Broadcast”,
International Database Engineering and Applications Symposium
(IDEAS’04), IEEE, 2004.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

470 | P a g e

www.ijacsa.thesai.org

[13] Jun Chen, Victor C.S. Lee and Kai Liu “On the performance of real-time
multi-item request scheduling in data broadcast environments”,
ElSEVIER, 2010.

[14] Shujuan Wang, Chunting Yan and ZhengtaoY “Efficient Coding-Based
Scheduling for Multi-Item Requests in Real-Time On-Demand Data
Dissemination”, Hindawi Publishing Corporation, volume 2016.

[15] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel
Me´dard and Jon Crowcrof “XORs in The Air: Practical Wireless
Network Coding”, SIGCOMM’06, September 11–15, ACM, 2006, Pisa,
Italy.

[16] Tracey Ho and Desmond S. Lun “Network Coding: An Introduction”.

[17] Christina Fragouli1 and Emina Soljani “Network Coding
Fundamentals”, Foundations and Trends in Networking, Volume 2, No.
1, 2007.

[18] YiqiongWu, JingZhao,MinShao and GuohongCao ” Stretch-Optimal
Scheduling for On-Demand Data Broadcasts”, 2005 Springer Science +
Business Media.

[19] Mohamed A. Sharaf and Panos K. Chrysanthis “On-Demand Data
Broadcasting for Mobile Decision Making”, Kluwer Academic
Publishers, 2004.

[20] Jiun-Long Huang and Ming-Syan Chen “Dependent Data Broadcasting
for Unordered Queries in a Multiple Channel Mobile Environment”,
IEEE Global Telecommunications Conference (GLOBECOM),
November 2002.

[21] Miao Wang and Ilias Michalarias “Scheduling On-Demand Broadcast
Items”.

[22] Demet Aksoy and Mason Sin-Fai Leung “Pull vs Push: A Quantitative
Comparison for Data Broadcast”, IEEE Communications Society,
Globecom 2004.

[23] Marek Konieczny “Network coding in wireless environment”.

[24] M. Chaudhry, A. Sprintson, Efficient algorithms for index coding, in:
INFOCOM Workshops, 2008.

[25] S. El Rouayheb, M. Chaudhry, A. Sprintson, On the minimum number
of transmissions in single-hop wireless coding networks, in: Information
Theory, Workshop (ITW’07), 2007, pp. 120–125.

[26] Salim Y. El Rouayheb, Mohammad Asad R. Chaudhry, and Alex
Sprintson, “On the Minimum Number of Transmissions in Single-Hop
Wireless Coding Networks”, 5 July, 2017.

[27] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li and Raymond W.
Yeung “Network Information Flow”, IEEE Transactions on Wireless
Communications, Volume. 10, NO. 11, November 2011.

[28] Xiaojiang Chen, Jingjing Zhao, Dan Xu, Shumin Cao, Haitao Li, Xianjia
Meng and Dingyi Fang “Efficient Network Coding with Interference-
Awareness and Neighbor States Updating in Wireless Network”,
Hindawi Wireless Communications and Mobile Computing Volume
2017, Article ID 4974165, 22 pages.

[29] Chen Han, Yuwang Yang and Xu Han “A fast network coding scheme
for mobile wireless sensor network”, International Journal of Distributed
Sensor Networks 2017, Volume 13.

[30] Ali, G. G. Md. N., Lee, V. C. S., Meng, Y., Chong, P. H. J., & Chen, J.
“Performance Analysis of On-Demand Scheduling with and without
Network Coding in Wireless Broadcast,” Future Internet, 11(12), 248,
2019.

[31] Jian Li, Tongtong Li, Jian Ren, & Han-Chieh Chao “Enjoy the Benefit
of Network Coding: Combat Pollution Attacks in 5G Multihop
Networks,” Wireless Communications and Mobile Computing, 2018,
pp. 1–13.

[32] K. Lei, S. Zhong, F. Zhu, K. Xu, and H. Zhang, “An ndniot content
distribution model with network coding enhanced forwarding strategy
for 5g,” IEEE Transactions on Industrial Informatics, vol. 14, pp. 2725–
2735, 2018.

