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Abstract—This is the age of information. Now-a-days 

everyone communicates with each other by means of digital 

systems. Humans are always communicating with each other on 

the go. On-demand broadcasting is an efficient way to broadcast 

information according to user requests. In an on-demand 

broadcasting network, anyone can satisfy multiple clients in one 

broadcast which helps to fulfill the enormous demand of 

information by clients. The optimized flow of digital data in a 

network through the transmission of digital evidence about 

messages is called network coding. The “digital evidence” is 

composed of two or more messages. Network coding 

incorporated with data scheduling algorithms can further 

improve the performance of on-demand broadcasting networks. 

Using network coding, anyone can broadcast multiple data items 

using single broadcast strategy which can satisfy the needs of 

more clients. In this work, it is described that network coding 

cannot always maintain its superiority over non-network coding 

when the system handles different sized data items. However, the 

causes of performance reduction on network coding have been 

analyzed and THETA based dynamic threshold value integration 

strategy has been proposed through which the network coding 

can overcome its limitation for handling heterogeneous data 

items. In the proposed strategy, THETA based dynamic 

threshold will control which data item will be selected from the 

Client Relationship graph (CR-graph) so that large sized data 

items cannot be encoded with small sized data items. Simulation 

result shows some interesting performance comparison. 

Keywords—Network coding; scheduling algorithms; CR graph; 

wireless broadcast; simulation; LTSF; STOBS; performance metric 

I. INTRODUCTION 

Now-a-days almost everyone carries a portable cellular 
computing device from a laptop computer to smartphone. All 
these devices share information to the network on the go. This 
also requires an infrastructure that does not require a user to 
maintain a fixed connection in the network and allows 
mobility. Wireless networks require mobility, distributed 
sensing and city-wide internet connectivity. For broadcasting 
the data to the client, network coding uses the limited 
bandwidth of the wireless efficiently [17] [23]. Network 
Coding, as a field of study is young which was first introduced 
in [27] [30]. It is a new concept. Study on the performance of 
network coding shows that it can utilize the available limited 
bandwidth of the network to achieve improved throughput in 
multicast communication [16] [31] [32]. Network coding is 
applied on on-demand broadcasting network [14] [23] [28]. 
Here the server broadcasting the data has the information of 

every client it is broadcasting. Server uses this information to 
keep track of the data received by clients. Then the server 
encodes data and broadcasts them on the network. All the 
clients receive the encoded data and use its own received data 
to decode the encoded data. Using network coding, a server 
can serve multiple requests at the same time [17] [22]. 

Network coding can increase the performance of a 
broadcasting network in many aspects. It increases 
throughput, robustness, security in network as well as 
decreases deadline miss ratio, stretch, response time [17]. But 
while working on heterogeneous data items, network coding 
has some drawbacks [9]. It does not perform well as it has 
been on singular data items [29]. It is caused by the encoding 
technique which is used in network coding [15]. In XOR 
encoding, we encode the data items that are found in the 
maximum clique from the CR-graph [4] [7] [24] [25]. CR-
graph is constructed through the data regarding clients’ 
relationships of requested and cached data items [4] [7]. In the 
proposed THETA based dynamic threshold value integration 
strategy, the drawbacks of the traditional network coding 
approach in the scenario of heterogeneous data items have 
been minimized. Large sized data items and small sized data 
items have been filtered and encoded separately for improving 
the performance of network coding. 

The rest of this paper is organized as follows. Section II 
contains related work. Section III illustrates the system model 
for implementing our proposed strategy. Section IV describes 
the performance evaluation. Our final thoughts are included in 
Section V. 

II. RELATED WORK 

G. G. Md. Nawaz Ali, Yuxuan Meng et al. [1] performed 
simulation-based analysis based on top of generalized 
encoding model on both in homogenous as well as the 
heterogeneous environment for measuring the effectiveness 
plus adaptability of network coding assisted scheduling 
algorithms. They analyzed the performance of diverse 
scheduling algorithms both in non-coding then their proposed 
coding method utilizing dissimilar performance metrics. 

Yuxuan Meng, Edward Chan at al. [2] analyzed the effect 
of network coding with different scheduling algorithms. They 
conducted various experiments to measure the performance of 
broadcasts considering standard access moment, due date 
ignores relative amount along with typical stretch out. 
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Cheng Zhan, Victor C. S. Lee et al. [3] proposed a 
generalized framework so that data scheduling algorithms can 
be incorporated with network coding for broadcasting on 
demand requests. They described that with coding, 
performance can be improved using different scheduling 
algorithms. 

Jun Chen, Victor C. S. Lee et al. [4] proposed a new 
coding strategy named AC, for implementing an efficient 
coding mechanism. They also proposed two coding assisted 
algorithms named ADC-1 and ADC-2 considering data 
scheduling and network coding. Their simulation results 
showed that response time was dynamically reduced using 
both ADC-1 and ADC-2. They also showed that ADC-1 and 
ADC-2 performed better than conventional and other coding 
assisted algorithms. 

Mohamed A. Sharaf and Panos K. Chrysanthis [8] 
proposed a new scheduling algorithm named STOBS-α for 
grouping requests and only one-time delivery of broadcasting 
results to the clients. Their proposed heuristic on demand 
algorithm was experimented using access time and fairness for 
mobile clients. 

III. NEED OF THE IMPROVEMENTS 

From studies it is noted that when there is no difference in 
data item size, there is no problem in encoding. For instance, 
if it is needed to encode three data item d1, d2 and d3 of unit 
size 1, the size of encoded data item d1⊕d2⊕d3 is also 1. But 
when we have to encode data items with different size then 
there is a slight problem. In this condition, the encoded data 
item's size is the size of the largest item selected for encoding. 
Let the size of d1 is 1 unit, d2 is 3 unit and d3 is 7 unit. Then 
the size of encoded data item d1⊕d2⊕d3 is 7 unit. In 
traditional network coding, large data items are selected with 
small data items for encoding which in terms cause 
performance reduction. That also leads to increased stretch 
and response time, thus hampering the performance of the 
network [12]. Traditional scheduling algorithms [5] [12] [18] 
are able to perform better than network coding in such 
conditions. For this reason, a new modified strategy in 
network coding has been established to handle heterogeneous 
data items with ease for maintaining an improved throughput, 
stretch and response time. The contribution of this paper is as 
follows: 

1) To design a system model, where the server maintains 

the specification of network coding. 

2) To implement the proposed modified strategy which 

will eliminate the drawback of network coding for 

heterogeneous data items. 

3) To simulate, integrate and analyze our proposed 

approach with other existing basic scheduling algorithms and 

compare their performances. 

IV. SYSTEM MODEL 

A. System Architecture 

To fulfill more requests earlier than their due dates as well 
as to assure operative utilization of the constrained bandwidth 
are the main goals of real-time scheduling and coding. Our 

system architecture is based on top of the conventional on 
demand broadcast set-up [4] [7] [10] [14] [18]. The 
architecture is shown in Fig. 1. The system is set aside by one 
server with a number of end devices. All end devices have a 
local cache along with provisions for a certain data core which 
is broadcasted by the server [1] [13]. Due in the direction of 
the obligatory room of the end device’s caches, a certain 
guiding principle is applied intended for cache substitution. If 
the inquired data core cannot be initiated in its cache, the end 
device sends a request, and its active cache stand-in data to the 
server through an uplink tunnel [1]. All requests conceivably 
will necessitate auxiliary data portion from the server. Later 
than transfer requests headed for the server, end devices listen 
to the broadcast tunnel to recapture their requested data [1] 
[13]. It is presupposing that an end device doesn’t cache this 
arriving encoded information but it cannot decode any asked 
data piece by utilizing this encoded information. If an end 
device gets and decodes every requested data substance earlier 
than the time limit, in that case, the requests can be content. In 
other cases, the request misses its time limit as well as there is 
no value to the end device [4]. 

On receiving a request, the server embeds it into a service 
queue. A request holds up to be scheduled in the service queue 
until every one of its requested data substances are 
broadcasted otherwise it gets to be infeasible for scheduling 
[1] [20]. When the leftover slow-moving phase is smaller than 
the compulsory phase obligatory towards broadcast every one 
of the leftover unprocessed data substances, the appeal is 
considered impossible to be scheduled [1]. A request is 
removed from the service queue and becomes infeasible, if it 
misses its required deadline [1]. The server primarily recovers 
the asked information substance put away within the local 
database based on top of certain scheduling algorithms then, in 
that case, encodes the data substance based on data concerning 
end devices' cached and requested data substance. Lastly, the 
server broadcasts the encoded information via the downlink 
tunnel. Inside our model, server and end devices purely 
exploit the basic XOR operations to encode and decode 
information [3] [7] [30]. Therefore, the encoding, as well as 
decoding operating cost and hold-up, can be overlooked. 

 

Fig. 1. System Architecture. 
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B. Graph Model 

Our graph model is based on the graph model proposed 
and discussed by Zhan at al. [3]. In this approach, the CR-
graph is constructed on the THETA based threshold 
mechanism basis. The system has a data server S and n 
number of end devices E = {e1, e2, .... en}. Set X(ei) denotes 
the set of requested data items of end devices’ ei and set Y(ei) 
denotes the set of cached data items of end devices’ ei. The 
server has a database which contains all the data items. Set m 
denotes the overall data items contained in the database D. 
Definition 1: Given E = e1, e2, .... en, D = d1, d2,.... dm, X(ei) ⊆ 
D, Y(ei) ⊆ D, X(ei) ⋂ Y(ei) = ∅ [3][6]. A graph G(V, E) can 
be built the same as follows: 

 V= { vij | end device ei requests for data item dj, 1≤ i≤ n, 
1≤j≤m} 

 E = (vi1j1, vi2j2) | j1=j2; or j1≠ j2, dj2 ⊆ Y(ui1), dj1⊆ Y(ui2), 
| SizeOF(d1)- SizeOF(d2) | THRESHOLD 

If we weigh up on-demand broadcast circumstances in 
Fig. 2(a) which consists of a server, S and five end devices, e1, 
e2, e3, e4 and e5. Presume that the server has four data 
substances d1, d2, d3 and d4. If we assume that end device e1 
has already stored d2, d3, d4 in its cache from preceding 
broadcasting, end device e2 has d1, d2, d4 in its cache, end 
device e3 has d2, d3, d4 in its cache, end device e4 has d1, d2, d4 
in its cache and end device e5 has d1, d2, d3 in its cache. Now if 
we assume that end device e1 is requesting data item d1, end 
device e2 and e3 are requesting data item d2, end device e4 is 
requesting data item d3 and end device e5 is requesting data 
item d4. The data sizes of d1, d2, d3 and d4 are 1 unit in 
addition to the broadcast transmission capacity is B=1, which 
infers the server can broadcast one information piece every 
time unit. 

As of explanation 1, the diagram matching to Fig. 2 is 
developed as Fig. 3. Within this stature vertex V11 speaks to 
the request from end device e1 for data d1. End device e1 has 
d2 requested by e2 and end device e2 has d1 requested by e1, 
there is an edge (V11, V22). It is also shown that the end device 
e3 has d3 requested by e4 and the end device e4 has d2 requested 
by e3, there is an edge (V32, V43). Other edges are constructed 
by following the same rule. 

 

Fig. 2. A Demo of On-demand Information Broadcast. 

 

Fig. 3. CR-Graph Developed Commencing the Case in Fig. 2. 

C. Proposed THETA based Dynamic Threshold Calculation 

Strategy 

The proposed THETA based dynamic threshold 
integration is based on the fact that large data sized items will 
not be encoded with small sized data items. 

We construct the undirected graph G (V, E) according to G 
(V, E) as mentioned in III (B) section. Candidate vertex vmi 

(denotes data item di requested by end device Em) need to be 
initiated with V(G). 

 For each vij ∈ V(G) do 

 if SizeOf (dk) < 100 then 

 THRESHOLD= ( ln ( SizeOf(dk) ) )
2 

 end if 

 if SizeOf (dk) > 100 then 

 THRESHOLD= ( SizeOf(dk) ÷ ln (SizeOf(dk) ) ) 

 End 

We need to make a decision which data items would be 
encoded together. For this reason, we have used dynamic 
thresholds. This gives better results. Threshold calculating 
process is given above. Here we have given an example. 
Suppose we need to broadcast 5-unit data items and 50-unit 
data items. If we choose 5-unit data items as candidates, the 
threshold would be around 3. So, 50 unit sized data items 
won't be in a set with a 5-unit data item set. Only, data item 
size in between 2 and 8 would come to consideration. Again, 
when 50-unit data items are candidate, the threshold would be 
around 15. So, 5 unit sized data item won't be in a set with 50. 
In this case the range of encoding would be 35 to 65. Though 
they produce different thresholds, both will face less stretch. 

The proposed approach is to change THETA for each 
candidate by doing THETA= candidate requests requested 
data item size ÷ 3. But it is tried to choose THETA through a 
general equation. The proposed algorithm strategy is given 
below. 

 At first, we make pairs which contain Client_Id and 
Requested_Data_Id. 

 Then, we choose each request as a candidate request 
one by one. For calculating dynamic THETA, we have 
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used candidate requests requested data item size. Here, 
THETA is equal to either square of ln (candidate 
requests requested data item size) or candidate requests 
requested data item size ÷ ln (candidate requests 
requested data item size). 

 By using THETA, we make a set. If the difference of 
candidate request's requested data item size and other 
requests requested data item size is less than THETA 
then this request is inserted into the set. We repeat this 
process for all candidate requests. 

 From these sets, we find out maximum clique and then 
do network coding by broadcasting data. 

If two vertices of a similar subset are linked through an 
edge in an undirected graph, it is considered as a clique [4] 
[26]. There are a number of preferences in the proposed 
methodology. We are using THETA based dynamic threshold 
integration. It helps to separate small data items from large 
data items. If small data items are encoded with large data 
items, they face large stretch and response time also increases. 

V. PERFORMANCE EVALUATION 

A. Overview of Comparable Scheduling Algorithm 

With the rapid growth of on-demand broadcasting 
networks, servers have to serve significantly large numbers of 
clients every day and it is always increasing. So to balance out 
the increasing load of servers, the necessity of new and 
improved scheduling algorithms is very high. In network 
coding, we have to incorporate scheduling algorithms 
according to our framework so that they maintain their 
characteristics for scheduling data items for normal networks. 
Two algorithms have been implemented using the system 
model (III-A). For heterogeneous data items, STOBS and 
LTSF scheduling algorithms perform efficiently better than 
other scheduling algorithms (FCFS, MRF, LMF and others) as 
those algorithms are generally implemented for single data 
item [11]. 

1) STOBS (Summary Tables On-Demand Broadcast 

Scheduler): In STOBS, the server maintains a queue to store 

the requests of clients at the time of their arrival. This 

scheduler chooses a data item for broadcasting with highest 

(R*W)/S [3] [8] [12] [19]. A summary table T
x 

is maintained 

for each request of Q
x
. The server keeps the following 

information [8] [12] [19]. 

 R: Number of arrival requests for the table T
x.
 When a 

request for T
x
 arrives, the value of R increments. 

 W: Waiting time of the first request Q
x.

 

 S: Table size. 

2) LTSF (Longest Total Stretch First): LTSF chooses a 

data item intended for broadcasting concurring to the order of 

the maximum total recent stretch [3] [12]. The data piece 

having the utmost whole current distend is broadcasted earliest 

[18]. Recent stretch records are calculated by the ratio of the 

waiting time of pending requests to its time of service [3] [9] 

[12] [18] [21]. 

B. Performance Metrics 

1) Average response time: Average response time is the 

ratio of the summation of altogether request’s response time in 

the direction of the entire number of requests [8] [18] [21]. 

Requests are served quickly if the value of average response 

time is low. 

2) Average stretch: Minimizing the average stretch for 

heterogeneous data items is the main issue considered for 

scheduling algorithms. We find average stretch in our 

simulation model using the following equation. 

Average Stretch=Total response time for all end 
devices/Total service time for all end devices [8] [18] [21]. 

C. Simulation Model 

We performed detailed analysis using CSIM19 [11]. The 
simulation parameters used for our system architecture (III-A) 
is shown in Table I. Most of these parameter values are 
considered from related works [1] [2] [3] [4] [5] [7]. In our 
simulation model, the server maintains a cache for every end 
device. At first end devices are generated with data items in 
their cache automatically. Then, they make their requests to 
the server maintaining an inter arrival time (IATM). We use 
IATM in accordance with average data item size. In our 
simulation: 

IATM = 100/Average data item size; 

If IATM is low, then end devices will make their requests 

more frequently which can overload the server. 

TABLE I. SIMULATION PARAMETERS 

Parameters Default Range Description 

IATM - - 
Request generation 
interval 

NUMENDDEVICE 100 25-600 Number of end devices 

DBSIZE 1000 - 
Quantity of information 

objects in the database 

BANDWIDTH 1KB/sec - Broadcasting bandwidth 

THETA (𝜃) 0.4 0.2-1.0 
Zipf distribution 
parameter. 

CACHSIZE 10 30-180 

The maximum amount of 

data stored in every 
client’s cache. 

DWNSIZEMIN 1Kb - 
Minimum size of data 

item in database 

DWNSIZEMAX 60Kb 30-70 
Maximum size of data 

item in database 

D. Performance Analysis 

The proposed THETA based dynamic threshold 
integration has been implemented using the system model 
described in III-A. Overall performance is analyzed and 
compared using two metrics: average response time and 
average stretch. We measured the performance by varying 
item size and cache size with our dynamically changing 
THETA. Simulation results show that there is significant 
increase of performance in the network coding environment 
with our proposed THETA based dynamic threshold 
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calculation strategy. The reason behind performance 
improvement is large sized data items are not being selected 
with small sized data items with our proposed strategy. 

1) Performance comparison of average response time for 

varying item size with different cache size: Tables II, III and 

Fig. 4(a), 4(b) shows the observations of average response 

time by varying item size for different cache size. For both 

STOBS and LTSF algorithms, there is significant increase of 

performance in the network coding environment. For STOBS, 

average response time decreases by .25 percent for cache size 

30 and .095 percent for cache size 60. For LTSF, average 

response time decreases by .25 percent for cache size 30 and 

.26 percent for cache size 60. 

2) Performance comparison of average response time for 

varying cache size with different item size: Tables IV, V and 

Fig. 5(a), 5(b) shows the observations for average response 

time by varying cache size for different item size. For both 

STOBS and LTSF algorithms, there is significant increase of 

performance in network coding environments. For STOBS, 

average response time decreases by .18 percent for item size 

60 and .16 percent for item size 30. For LTFS, average 

response time decreases by .17 percent for item size 30 and 

.16 percent for item size 60. 

TABLE II. AVERAGE RESPONSE TIME WITH CACHE SIZE 30 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With Theta 

LTSF With 

Theta 

1 1.1 1.1 1.1 1.1 

2 2.3 2.4 2.2 2.1 

3 3.4 3.5 3.2 3.1 

4 4.4 4.5 4.2 4.1 

5 5.4 5.5 5.2 5.1 

6 6.4 6.5 6.2 6.1 

7 7.4 7.5 7.2 7.1 

8 8.4 8.5 8.2 8.1 

TABLE III. AVERAGE RESPONSE TIME WITH CACHE SIZE 60 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With 

Theta 

LTSF With 

Theta 

1 1.1 1.1 1.1 1.1 

2 2.3 2.5 2.4 2.1 

3 3.4 3.6 3.5 3.1 

4 4.4 4.6 4.5 4.1 

5 5.4 5.6 5.5 5.1 

6 6.4 6.6 6.5 6.1 

7 7.4 7.6 7.5 7.1 

8 8.4 8.6 8.5 8.1 

 
(a). Average Response Time for Varying Item Size with Cache Size 30. 

 

Fig. 4. (b). Average Response Time for Varying Item Size with Cache Size 

60. 

TABLE IV. AVERAGE RESPONSE TIME WITH ITEM SIZE 30 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS With 

Theta 

LTSF With 

Theta 

1 6.5 6.55 6.5 6.5 

2 5.9 5.95 5.8 5.7 

3 5.4 5.45 5.3 5.2 

4 4.9 4.96 4.8 4.7 

5 4.5 4.6 4.4 4.3 

6 4.2 4.3 4.1 4 

7 4.1 4.2 4 3.9 

8 4 4.1 3.9 3.8 

TABLE V. AVERAGE RESPONSE TIME WITH ITEM SIZE 60 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With Theta 

LTSF With 

Theta 

1 6.5 6.5 6.5 6.5 

2 5.9 6 5.8 5.7 

3 5.4 5.5 5.3 5.2 

4 4.9 5 4.8 4.7 

5 4.5 4.6 4.4 4.3 

6 4.2 4.3 4.1 4 

7 4.1 4.2 4 3.9 

8 4 4.1 3.9 3.8 
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(a). Average Response Time for Varying Cache Size with Item Size 30. 

 

Fig. 5. (b). Average Response Time for Varying Cache Size with Item Size 

60. 

3) Performance comparison of average stretch for 

varying item size with different cache size: Tables VI, VII and 

Fig. 6(a), 6(b) shows the observations for average stretch by 

varying item size for different cache size. For both STOBS 

and LTSF algorithms, there is significant increase in 

performance in the network coding environment. For STOBS, 

average stretch decreases by .91 percent for cache size 30 and 

.85 percent for cache size 60. For LTFS, average stretch 

decreases by 1.10 percent for cache size 30 and 1.09 percent 

for cache size 60. 

TABLE VI. AVERAGE STRETCH WITH CACHE SIZE 30 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With Theta 

LTSF With 

Theta 

1 5 5 5 5 

2 6 6.2 5.1 5 

3 6.4 6.3 5.2 5.1 

4 6.4 6.3 5.3 5.1 

5 6.4 6.3 5.3 5.1 

6 6.4 6.3 5.3 5.1 

7 6.4 6.3 5.3 5.1 

8 6.4 6.3 5.3 5.1 

TABLE VII. AVERAGE STRETCH WITH CACHE SIZE 60 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With Theta 

LTSF With 

Theta 

1 5 5 5 5 

2 6 6.2 5.1 5 

3 6.4 6.3 5.2 5.1 

4 6.3 6.1 5.3 5.1 

5 6.3 6.1 5.3 5.1 

6 6.3 6.1 5.3 5.1 

7 6.5 6.4 5.3 5.1 

8 6.5 6.4 5.3 5.1 

 
(a). Average Stretch for Varying Item Size with Cache Size 30. 

 

Fig. 6. (b). Average Stretch for Varying Item Size with Cache Size 60. 

4) Performance comparison of average stretch for 

varying cache size with different item size: Tables VIII, IX 

and Fig. 7(a), 7(b) shows the observations for average stretch 

by varying cache size for different item size. For both STOBS 

and LTSF algorithms, there is significant increase in 

performance in the network coding environment. For STOBS, 

average stretch decreases by 1.75 percent for item size 30 and 

2.09 percent for item size 60. For LTFS, average stretch 

decreases by 2.04 percent for item size 30 and 2.22 percent for 

item size 60. 
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TABLE VIII. AVERAGE STRETCH WITH ITEM SIZE 30 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With Theta 

LTSF With 

Theta 

1 7.2 7.1 6 5.8 

2 7.2 7.1 5.7 5.5 

3 7.2 7 5.4 5.2 

4 6.4 6.5 5 4.9 

5 6.4 6.3 4.7 4.5 

6 6.4 6.2 4.2 4 

7 5.9 6 3.7 3.4 

8 5.9 5.8 3.3 3 

TABLE IX. AVERAGE STRETCH WITH ITEM SIZE 60 

Serial 

No. 

LTSF 

Without 

Theta 

STOBS 

Without Theta 

STOBS 

With Theta 

LTSF With 

Theta 

1 6.5 7 5 4.6 

2 6.4 6.8 4.8 4.4 

3 6.3 6.5 4.5 4.2 

4 6.2 6.3 4.3 4 

5 6.1 6.2 4.1 3.8 

6 6 6.1 3.9 3.6 

7 5.8 5.9 3.7 3.4 

8 5.6 5.7 3.5 3.1 

 
(a). Average Stretch for Varying Cache Size with Item Size 30. 

 

Fig. 7. (b). Average Stretch for Varying Cache Size with Item Size 60. 

VI. CONCLUSION 

Network coding can be widely used in the on demand 
wireless broadcast environment. However, it faces encoding 
problems while handling heterogeneous data items. It fails to 
provide the best possible solutions when different-sized data 
substance is encoded jointly. It faces a high stretch. Response 
time also increases when size differences of different data 
items are very high. Therefore, in this paper it is attempted to 
minimize the performance reduction difficulty of network 
coding in terms of heterogeneous data substance. Based on top 
of the generalized model proposed and discussed in, a new 
approach called THETA based dynamic threshold strategy has 
been introduced for encoding purposes. The proposed 
approach keeps in mind that large sized data items should not 
be encoded with small sized data items. The simulation results 
reveal interesting performance improvement of network 
coding. STOBS and LTSF scheduling algorithms have been 
used in this paper and the proposed THETA based dynamic 
threshold approach has been integrated with these two 
algorithms. With the proposed strategy, average stretch and 
average response time is dynamically reduced in a network 
coding environment. In future, other scheduling algorithms 
(FCFS, MRF, and LMF) can be integrated with the proposed 
strategy. 
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