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Abstract—It is indisputable that clinicians cannot exactly 

state the outcome of pregnancies through conventional 

knowledge and methods even as the surge in human knowledge 

continues. Hence, several computational techniques have been 

adapted for precise pregnancy outcome (PO) prediction. 

Obstetric datasets for PO determination exist as single label 

learning (SLL), multi-label learning (MLL) and multi-target 

(MTP) problems. There is however no single classifier 

recommended to optimally satisfy the needs of all the 

classification types. This work therefore identifies six widely used 

PO classifiers and investigates their performances in all three 

classification categories; to find the best performing classifier. 

Obstetric dataset exposed to input rank analysis via Principal 

component Analysis, produced thirteen (13) significant features 

for the experiment. Accuracy, F1-measure and build/test time 

were used as evaluation metrics. Decision tree (DT) had an 

average accuracy and F1 score of 89.23% and 88.23% 

respectively, with 1.0 average rank. Under MLL configuration, 

average accuracy (91.71%) and F1 score (94.28%) were highest 

in the random forest (RF) which had a 1.0 average test time rank. 

Using MTP, DT had an average accuracy of 88.80% and average 

F1 score of 71.13%, the multi-layered perceptron (MLP) had the 

best time cost with an average rank value of 2.0. From the 

results, RF is most optimal in terms of accuracy and average 

rank value, while DT is the most efficient in terms of time cost. 

The comparative analysis of global averages of the six base 

classifiers shows that RF is the most optimal algorithm with an 

average accuracy of 87.3% given all three data setups in the 

study. MLP on the other hand had an unexpectedly high time 

cost, making it unsuitable for similar data classifications if time is 

the main criterion. It is recommended that the choice of the 

classifier should either be RF or DT depending on the application 

domain and whether or not time cost is a major consideration. 

Keywords—Pregnancy outcome; random forest; multi-label 

learning; comparative analytics; machine learning algorithms; 

single label learning; maternal outcome prediction; decision tree 

I. INTRODUCTION 

Machine Learning (ML), a fast-rising branch of artificial 
intelligence (AI), encompasses computer science, engineering, 
mathematical sciences, cognitive science and many more 
disciplines [1]. The advancement and wide applications of ML 
is largely due to the availability of enormous data repositories 
and the satisfaction and reliability of its performances — 
accuracy and computational cost. It equips systems with 
cognitive capability of understanding the concepts of their 
environments through the building of models and functions, 

and the communication of their experiences with patterns. 
These models and patterns are built and implemented through 
the process called ML. There are two key classes of ML — 
supervised ML (SML) and unsupervised ML (UML) [1].  
Both UML and SML draw inferences by learning, however 
UML utilizes datasets with input features only while SML 
depends on datasets having both input and target attributes for 
mapping and extraction of relationships between input and 
output feature spaces.  Any dataset with target or desired 
output variable(s) is referred to a labelled dataset. Unlabeled 
datasets lack response variables therefore do not support 
model training activity needed by SML techniques [2-4]. In 
labelled datasets, every record has predefined class label(s) 
and supports two broad types of data mining applications — 
regression and classification [5]. In regression tasks, the target 
variable(s) is in continuous numeric form whereas 
classification requires class labels or categorical variables as 
the target. Classification is the most common and widely 
applied SML approach. It is aimed at identifying and 
assigning membership class to a new record, from a set of 
already defined classes [4,6]. Classification approaches are 
sub-divided into two groups according to the number of 
labels; single label and multi-label. The conventional single-
label classification approach deals absolutely with disjoint 
classes—each record belongs exclusively to a unique class, 
whereas in multi-label classification the labels are intertwined 
and each record is associated with two or more class labels 
[7]. In single label problems, the categories may comprise of 
two labels (binary class) or more than two labels (multi-class). 
For example in medical diagnosis, a laboratory test result 
might confirm the presence or otherwise of causative 
organisms in the tested patient’s sample while the patient can 
concurrently suffer from more than two diseases. 

In maternal healthcare (MHC), obstetricians are 
confronted with the tasks ensuring safety of both the mother 
and baby throughout pregnancy, during delivery, and within a 
specified period after delivery. This is achieved by providing 
specialized medical care services while she is expectant, 
during child delivery and after delivery — antenatal, neonatal 
and post-natal care services. They are therefore required to 
obtain clinical factors for the realization of the safety of 
mother throughout the period during pregnancy and birth, and 
the newborn in a bid to minimize mortality and morbidity. 
These involve simultaneous predictions of multiple outcome 
regarding mother and neonatal status using common baseline 
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risk factors. Maternal outcome, mother’s status during and 
after delivery, neonatal physiological status, conditions and 
overall state among others are central in MHC management. 
Hence, multiple target prediction, multi-label and multi-class 
predictions are essentially mandatory tasks in the obstetric 
healthcare domain. However, these maternal decisions are 
repeatedly made based on doctors’ perceptions and experience 
without utilizing the pieces of vital knowledge concealed in 
the huge data repositories [8,9]. The author in [10] state that 
only about 30% of pregnancy outcomes classified by 
gynecologists and obstetricians concerning pathological fetus 
or pregnancy turns out to be true. This limitation in current 
medical practice has led to several complications in deliveries 
and avoidable deaths from the over 130 million deliveries per 
year globally. It is therefore expected that a robust 
computational technique for accurate pregnancy outcome 
determination will be available to assist medical personnel. 

Although solutions from data mining and computational 
models are laudable and widely accepted methods for medical 
predictions, none is confirmed as a universal and best-
performing model for prediction of diverse maternal 
outcomes; individually or in a combined target setup. This 
paper aims at assessing the performances and suitability on 
obstetrics dataset, classification algorithms under varying 
maternal outcome target configurations, given that they 
comprise binary, multi-class and multi-labeled target features. 
The remaining sections are structured as follows:  Section 2 
gives a review of related works on medical diagnoses 
regarding maternal health care management. In Section 3, the 
dataset acquisition, preprocessing and description are 
presented while the methodology of the comparative analytics 
is described in Section 4. The predictive results along with the 
evaluations of their performances as well as discussions are 
described in Section 5 while conclusions and further directions 
are given in Section 6. 

II. RELATED WORKS 

A. Single Label Learning 

Classification tasks are broadly categorized into single-
label learning (SLL) and multi-label learning (MLL) based on 
the nature of association existing between target labels and 
input patterns [11,12]. The goal of SLL is to build a model for 
the prediction of a distinct class label from a set of non-
overlapping labels using input samples. It deals solely with 
disjoint classes and comprises two types: binary (or filtering in 
of textual and web-data domian) [13] and multi-class 
classification [11]. Binary classification has two unique class 
labels and involves the mapping of input features to only one 
of the two classes based on an explicit assessment criterion. 
Examples include disease diagnosis (positive or not), gender 
discrimination (male or female), email spam detection (spam 
or not), quality control (pass or fail), maternal status after 
delivery (alive or death) among others. Some of the famous 
binary classification datasets are adult dataset (adult.csv) to 
predict if a person’s earnings per annum  exceed $50,000 or 
not, titanic dataset (whose target has passengers who survived 
or not), diabetes dataset (positive or negative diabetic status), 
Cleveland heart disease dataset, ionosphere, banknote 
authentication dataset (authentic or fake). Logistic Regression, 

k-Nearest Neighbors (KNN), decision trees (DT), support 
vector machine (SVM), Naive Bayes (NB) and neural 
networks (NN) are some notable binary classification 
algorithms. Unlike binary learning problems which have two 
class labels, multi-class learning is applied to problems 
involving three or more disjoint class labels. It relies on the 
assumption that 1) each observation is assigned to only a 
single label, and 2) each class label is independent of the other 
[6] For example, a fruit can be one of the following types; 
apple, mango, orange, pear, a student can graduate with only 
one class of degree.  Iris, zoo, waveform, dermatology, sport, 
MNIST, ionosphere, glass and wine datasets are some of the 
examples of widely used multiclass datasets that are available 
in data repositories and widely reported in the literature. SVM, 
DT, multinomial logistic regression and multi-layered 
perceptron are suitable algorithms for multi-class tasks.  
Widely adopted methodologies for multi-class tasks include; 
1) decomposing target label space, via the following methods; 
one-vs-all, all-vs-all, and error-correcting codes 
2) arrangement of the classes in a tree-like structure 
(hierarchical method) 3)  adapting and extending binary 
classifiers to perform multi-class classification tasks  
[11,14,15]. 

B. Multi-label Learning 

In real-world scenarios, the same set of input features are 
often used to concurrently predict more than one target 
variable. The target feature may consist of binary labels, 
categorical or continuous values. For binary target features the 
type of classification is MLL while real-valued target 
variables are referred to as multi-target regression. However, 
when the target features are categorical, it becomes a multi-
target prediction problem. The MLL problem is a special kind 
of multi-target learning (MTL) (multi-dimensional or multi-
objective), where each label can be associated with more than 
one values, as opposed to binary labels which have two values 
depicting relevance(1) or otherwise(0). Recently, MLL has 
progressively attracted the attention of researchers especially 
in ML communities and has been extensively applied to 
solving many problems including image and video analysis, 
text, bioinformatics, web mining, rule mining, information 
retrieval, medical diagnosis and prediction and many more 
[16]. Techniques advanced for MLL classification problems 
include; algorithm adaptation approach (AAA), problem 
transformation methods (PTMs) [11,12,17] and ensemble 
methods [11,18]. The PTMs transform the original MLL 
problem into multiple SLL (binary or multi-class) or 
regression tasks while AAAs adapt the base learning 
algorithms themselves to solve MLL problems rather than 
transforming them. PTMs adopt the basic SLL classifiers to 
accomplish the classification task after the transformation 
stage and thereafter combine the results into an MLL solution. 
In consideration of the flexibility of the PTMs [12,17], this 
work performs MLL using classifier chain (CC), bayesian 
classifier chain (BCC), RAndom k-labEL sets (RAkEL) and 
Pruned Set (PS) methods and its MTL variant Nearest Set 
replacement (NSR). 

CCs provide a means of combining several binary 
classifiers into a single multi-label model that is capable of 
exploiting correlations among targets. It is based on binary 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 2, 2021 

473 | P a g e  

www.ijacsa.thesai.org 

relevance (BR) [12,17,19] approach and beats the weaknesses 
of BR with an improved performance in addition to the 
inherited strengths of BR especially low time complexity. The 
main idea of CC is to incorporate label dependency to BR 
[7,20]. The BCC [21] uses many classifiers, one per class, 
linked in a chain to find a joint distribution of the classes C = 
(C1, C2, . . . , Cd) given the attributes X = (x1, x2, . . . , xn).  In 
BCC settings, a CC can be constructed by firstly inducing the 
classifiers that do not depend on any other class and then 
proceed with their descendants, according to the dependence 
structure which can be represented as a Bayesian network. It is 
an alternative method for MLL that integrates class 
dependencies while preserving the computational proficiency 
of the BR technique [21]. The RAkEL algorithm repetitively 
constructs a cooperative group of Label Powerset (LP) 
classifiers. That is, it transforms a multi-label problem into 
one multi-class classification problem where the possible 
values for the transformed class attribute is a set of distinct 
subsets of labels present in the original training data. Each LP 
classifier is trained by relying on label correlations required 
for ranking of the labels by averaging the zero-one predictions 
of each model per considered label. RAkEL offers the 
following advantages [13]: 1) computationally less expensive 
due to resulting subsets of SLL tasks; 2) improvements in the 
class-imbalance ratio of the dataset thereby enhancing the 
accuracy of minority labels; 3) collation of multiple 
predictions for the same label by the different LP models.  The 
PS method leverages the most significant label relationship 
within a multi-label dataset by eliminating insignificant and 
noisy label sets which might distort the performance of the 
classification. This reduces the complexity originating from 
the label dependencies without significant information loss 
[20,22].  The author in [20] report from experimental evidence 
that the PS approach outperforms LP and other baseline 
methods and is highly recommended for data sets with diverse 
concept drifts. The NSR method is the MTL version of PS 
where the closest sets replace outliers, rather than using 
subsets. 

Researchers have built and used a variety of multi-labeled 
datasets in disparate formats and have made them available in 
notable multi-label data repositories including MULAN [13], 
Multi-label/Multi-target Extension to Weka (MEKA), Library 
for SVM (LibSVM) [23], Knowledge Extraction based on 
Evolutionary Learning (KEEL) (Alcala-Fdez et al, 2011) and 
R Ultimate Multilabel dataset repository (RUMDR), each one 
using two base file formats; comma-separated values (.CSV) 
and attribute-relation file format (.ARFF) file formats. 
MULAN, scikit-multi learn, MEKA and the Multi-labelled 
dataset in R (mldr) package provides exploratory analysis of 
MLL datasets. While MEKA is a general-purpose MLL 
software, mldr package is limited to exploratory analysis only 
[24]. This work therefore adopts MEKA for MLL for 
comparative analytics of obstetric outcome.  The degree to 
which samples in the dataset have more than one label of 
datasets (multi-labelness) is estimated with two basic 
parameters – label cardinality (LC) (1) and Label density (LD) 
(2) [24]. LC indicates the mean number of labels of the 
records in the dataset while LD is equivalent to LC divided by 
the number of labels [14,24]. 
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Where n represents the number of samples in the dataset, 
Yi the label set of the ith instance, and k the sum of labels in 
the dataset. The LC level is directly proportional to the 
number of active labels per sample.  Several classifiers have 
been developed and adapted for binary, multi-class and multi-
label classification problems, but there are no classifiers 
recommended to optimally satisfy the needs of other 
classification problems. This work investigates the 
performances of widely used classifiers on all three types of 
classification with a view of finding the best performing (most 
suitable) one. 

C. Classification Approaches for Medical Diagnostic 

Problems 

Classification is a fundamental and pivotal task of ML and 
data mining (DM) applications. It is encountered in various 
areas, such as medicine to identify a disease of a patient, 
prediction of the effectiveness of surgical procedures, medical 
tests, and the discovery of relationships among clinical and 
diagnosis data. The classification of health care data (HCD) 
for non-faulty diagnosis and appropriate prescriptions is a 
rising application area of DM that is grabbing the attention of 
researchers [25, 26].  Several works have utilized various 
classification methods for diseases’ diagnosis and prediction. 
The proper utilization of classification algorithms significantly 
improves the analysis, disease prediction and severity level 
determination in addition to ensuring early detection and 
effective prevention mechanisms. Over the years, analysis of 
morbidity and mortality data in maternal-related care has 
evolved from the traditional to intelligent research approaches 
with the aim of improving the efficiency of mother and child 
care during pregnancy. Nonetheless, effective analytical 
approaches that breed intelligent decisions are dependent on 
the availability of reliable data collected from the healthcare 
domain for the purpose of extracting knowledge for informed 
decision-making. This process is supported by classifiers 
implemented in binary, multi-class or multi-label approaches. 
However, a universal and multi-label classification with 
Extreme Learning Machine (ELM) classification approach 
capable of performing the functions of the three 
aforementioned classifiers were proposed by [11] and [14], 
respectively. The survey conducted by [27], provided 
information about the association rule, classification and 
cluster analysis as useful tools in the identification and 
discovery of risk in maternal care. These tools are developed 
using a few underlying algorithms that have been used for 
mining maternal-related care, such as DT, NB, KNN, ANN, 
SVM, RF, Gaussian NB and so on [28-30]. ML algorithms 
comprising Logistic Regression (LR), SVM, DT, BPNN, 
XGBoost and RF, in building predictive models for early 
pregnancy loss after In vitro fertilization-embryo (IVF) 
transfer with fetal heart rate. Each of the models experimented 
on the features associated with on-going pregnancy and early 
pregnancy loss samples. RF stood out with a high performance 
of 97% for recall ratio, F1 and area under the curve (AUC), in 
addition to an accuracy of 99% especially for those within 10 
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weeks after embryo transfer.  In [31] MLL was performed by 
adapting and extending three SLL algorithms. The 
comparative analysis was conducted on Genbase, Yeast and 
Scene datasets which were evaluated in terms of LD and LC. 
Genbase dataset which had 27 labels, depicts greatest multi-
labelness with LD of 0.05 and LC of 1.35. Four base ML 
algorithms (SMO, KNN, C4.5 and NB) were used to develop 
a predictive model which revealed SMO as the best algorithm. 
However, inclusion of more well-known datasets would have 
helped in the comparative analysis. 

The author in [28] adopted the Gaussian NB classifier-
based methodology with four variables obtained from INEGI. 
These variables were: gender, gestational age, maternal age 
and fetuses. The result of the classification recorded 96% 
accuracy in terms of precision, recall and F1-score 
respectively. Similarly, the NB classifier was used to compare 
physician-based classification for 21,000 child and adult 
deaths in India, South Africa and Bangladesh. This 
comparative study was carried out on the classifier between 
two different datasets without performance evaluation of any 
existing analytical methods. To detect gestational diabetes 
mellitus (GDM) in pregnant women without a visit to the 
hospital, a decision support system was developed based on 
MLP with newly designed input [50]. The identification of 
predictors of in-hospital maternal mortality among women 
attending referral hospitals in Mali and Senegal was addressed 
by [51]. Nonetheless, BR, LP and CC methods with different 
base classifiers were used for classification [12]. Although the 
work was limited to the phonemes of the Tamil language only, 
the procedure for evaluation is useful in the classification of 
maternal care problems. The author in [32] compared SVM 
and Logistic Regression (LR) to determine their performance 
efficiency in pregnancy outcome prediction on anonymized 
dataset of 420 different pregnancy details.  Four output 
categories were defined, and the results show that the average 
specificity of SVM in all four categories is at least 1% higher 
than that for LR, except in the case of underweight infant 
prediction where LR had a higher specificity. On the other 
hand, the average sensitivity of LR was at least 10% higher 
than that of SVM. The study failed to compute the 
classification accuracies of the designed models, although LR 
was adjudged as a better model.  The author in [49], 
performed a study on the cardiotocography (CTG) dataset of 
the University of California Irvine machine learning 
repository. They compared ten machine learning algorithms; 
focusing on their predictive precision, recall and F1 scores. 
Submission of the work is that during training; DT learnt 
better while NB had the least learning accuracy. Conversely, 
between the MLP, RF, SVM, and NB algorithms; the RF had 
the best result with an accuracy of 92%. This is followed by 
MLP with 84% accuracy, then 83% for the SVM classifier 
with linear kernel and 77% for NB.  Moreover, the work 
reported in [33] compared the classification ability of NB, RF, 
DT, and SVM on the CTG dataset using the Minimum 
Reduction Maximum Relevance technique for feature 

extraction. Their measurement matric comprised of Accuracy, 
Precision, Recall and F1 Score. After experiments, they report 
that SVM had the best classification ratings followed by RF 
with 96%, 88.3%, 91%, and 89.3% respectively. In addition, 
the work did not consider the MLP classifier even though it 
has been widely used with interesting results in the literature 
for pregnancy outcome (PO) prediction. The work reported in 
[10] proposed an ensemble of One Dimensional Convolutional 
Neural Network (1DCNN) and MLP for abnormal birth 
outcome detection. The study performed traced segmentation 
on CTU-UHB intrapartum cardiotocography dataset with 552 
trace observations for class distribution equalization and 
1DCNN for learning and automatic feature extraction from 
segmented CTG data. Classification results from the proposed 
model were compared with SVM, RF and MLP models 
trained with random weight initialization. The model 
evaluation using sensitivity, specificity and AUC showed that 
the conventional MLP classifier out-performed SVM and RF 
in two measures, except that it had the lowest specificity. The 
RF algorithm on the other hand had a higher specificity (69%) 
and AUC (67%) scores. SVM had 68%, 56% and 62% in 
sensitivity, specificity and AUC respectively, at a batch size of 
500. Considering the sensitivity (80%), specificity (79%) and 
AUC (86%), the authors concluded that models evaluated in 
the study failed to produce better classification results 
compared to the proposed ensemble 1DCNN. 

III. DATA ACQUISITION AND FEATURE SELECTION 

Data was acquired from secondary health facilities in Uyo, 
Nigeria. A total of one thousand six hundred and thirty-two 
(1,632) records were obtained from archives of retrospective 
observations of pregnant women recorded while they enrolled 
for antenatal care, with an input feature space of forty-two 
(42) features excluding the target variable. A sub-set of the 
attributes are; maternal age, number of children delivered, 
previous medical history, abortion, miscarriage, prematurity, 
previous illness, number of attendances to antenatal care, 
modal mode of delivery, antenatal registration, and mode of 
delivery, amongst other features. Cleaning, aggregation and 
pruning of attributes with only a single domain value was 
performed. The outcome is a dataset with thirty-five (35) input 
features, which were exposed to input rank analysis [34,35] 
via PCA in WEKA software. The selection criterion was 
based on eigenvalue scores not less than unity [35] regarding 
PO as target variable. This produced thirteen (13) significant 
features with a cumulative effect of 67.13%.  The distribution 
of the variance for each factor and rank given in Table I, 
shows that average maternal blood pressure topped the list 
with an EV of 3.86 (11.7% percentage of variance), followed 
by average maternal weight (EV = 2.77, proportion = 8.39%). 
The 13th ranked attribute, average ascorbic acid level 
accounted for 3.17% variation with an EV score of 1.05.  
Target feature description of is also represented in Table I, PO 
consists of four Death=0) and Neonatal weight (NW) assumes 
low, normal or overweight as possible values. 
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TABLE I. RANK AND DESCRIPTION OF SIGNIFICANT INPUT ATTRIBUTES 

Rank Features Description EV Proportion (%) Cumulative (%) 

1 Maternal BP Average maternal blood pressure 3.86 11.69  11.69 

2 Maternal Weight  Average maternal weight  2.77 8.39  20.29 

Rank Features Description EV Proportion (%) Cumulative (%) 

3 Hemoglobin Level Average number of red blood cells count  2.37 7.18  27.47 

4  PCV level  Average Packed Cell Volume count  1.92 5.82  33.29 

5 Pulse Rate Average number of heart beats per minute  1.54 4.67  37.67 

6 Mode of Delivery 

Delivery method 

vaginal delivery =1;  
caesarean section = 2 

1.42 4.30  42.26 

7 Malaria Frequency  Number of times maternal malaria Diagnosis 1.39 4.21  46.47 

8 Hepatitis C 
Indicates history of hepatitis C disease; 

presence=1, absence=2 
1.26 3.82 50.29 

9 Diabetes Status 

Maternal Diabetic status 

non-diabetic=0 
type1=1; type2=2, others=3 

1.18 3.60  53.89 

10 Herbal Ingestion 
Use of herbal medicinal products during 

pregnancy 
1.15 3.48  57.37 

11 Respiratory disorder 
Maternal respiratory disease status; 
presence=1, absence=2 

1.12 3.39  60.76 

12 Age Maternal age during pregnancy 1.06 3.20  63.96 

13 Ascorbic acid Level 
Average amount of ascorbic acid in the body 

during pregnancy 
1.05 3.17  67.13 

14 Pregnancy outcome 
Maternal delivery outcome miscarriage = 0; 
pre-term =1; full-term=2, stillbirth=3 

- - - 

15 Maternal status 
Records whether mother is alive of death 

Alive=1, Death=0 
- - - 

16 Neonatal weight 
Weight of the newborn 

low=1, normal=2 overweight=3 
- - - 

IV. MATERIALS AND METHODS 

A. Predictive Analytic Models 

Widely used and most performing algorithms SML 
algorithms; NB, SVM, DT, KNN, RF and MLP classifiers are 
compared. The experiment aims to observe which algorithm is 
capable of classifying PO in all multiple classification learning 
scenarios. 

 KNN is a supervised classification technique aimed at 
predicting the target variable           given a set 
of features      [36]. It is a type of instance-based 
learning, or lazy learning approach in which the 
approximation of functions is performed locally. KNN 
is based on the principle of determining a fixed number 
of training examples closest in distance (usually 
Euclidean distance) to an unknown point, and predict 
the label from these pieces of information. Although 
KNN is simple, it does not require categories to be 
linearly separable in addition flexibility, it is 
computationally costly although very fast in the 
training phase and arduous to estimate the optimal 
value of k [5,15]. 

 NB is a classifier based on the Bayes theorem. Results 
from different classification and prediction studies 
suggests its strength and dynamism. The 
implementation of NB algorithm computes the 
posterior probability of a hypothesis given an observed 
data. Given an observation   ; NB helps determine the 

possibility of having d as a component of   , using (3): 

  (  |     
 ( |     (   

 (   
              (3) 

where  (       is the likelihood of finding   in   ,  (    

is the probability of the observation    , while  (   is the 

probability of observing the data, irrespective of the specified 
hypothesis. The NB algorithm can often outperform more 
sophisticated classification methods and ranks among the 
topmost successful algorithms for text documents 
classification. It implicitly assumes that all the attributes are 
mutually independent which violates real-world scenarios and 
performs poorly on data comprising highly correlated features. 
It exhibits greater accuracy and speed when applied to large 
databases, generalizes well even with limited training samples. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 2, 2021 

476 | P a g e  

www.ijacsa.thesai.org 

 SVM is a non-parametric supervised learning classifier 
that finds the trade-off between minimizing the training 
set error and maximizing the margin for optimal 
classification.  It is known to have the best 
generalization ability and resistant to overfitting [37]. It 
is a machine learning approach efficient for solving 
classification and regression problems.  It relies on 
supervised learning models which are trained by 
learning algorithms and is very effective when 
confronted with large amount of training samples to 
identify patterns from them. It is one of the most 
powerful ML algorithms for optimization, prediction 
and classification tasks [38,39]. Its efficiency in the 
prediction of weather, power output, stock market 
dynamics, bioinformatics, voice and handwriting 
recognition, image and video analysis, and medical 
diagnosis, among others has been demonstrated in the 
literature. 

The major strengths of the SVM include: 1) relatively easy 
training and moderate scaling even with high dimensional 
data; 2) trade-off between the model complexity and the error 
are controlled easily; 3) it can handle both continuous and 
categorical data as well as ability to capture the nonlinear 
relationships in the data; 4) assumptions regarding data 
structure are not required because it is a non-parametric 
technique; 5) provides a good generalization performance with 
high accuracy. Some of its weaknesses include: 
1) comprehensible of results to largely depends on 
interpretability of the input features; 2) they are 
computationally costly and need a good kernel function; 3) it 
lacks transparency in its results because it is a non-parametric 
method. 

 DT is a method for approximating discrete-valued 
functions, in which the learned function is represented 
by a decision tree. Mathematically, the i

th
 C4.5 DT 

classifiers solve the following problem that yields the 
i
th

 decision function as presented in (4). 
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  (                  (4) 
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 DT adopts hierarchical design to implement the divide-
and-conquer approach. It is a non-parametric technique 
used for both classification and regression without 
functional form specification. It can be directly 
converted to a set of simple if-then rules to enhance 
human comprehensibility thereby minimizing the 
ambiguity of complicated decisions. DTs are effective 
outliers and missing values detection [5]. Because of 
overfitting the data, additional pruning tasks (pre-
pruning and post-pruning) are required, in addition to 
being computationally expensive. Its performance 
largely depends on the characteristics of the dataset. 

 RF consists of a combination of classifiers where each 
classifier contributes with a single vote for the 
assignation of the most frequent class to the input 
vector (x) [40]. RF is an efficient model for averaging 
multiple deep DT that has been trained on different 
parts of the same training set when the goal is to reduce 
variance in the result. Trees constructed with fixed 
training data are prone to be overly adapted to the 
training data. The averaging function of the RF 
algorithm is described in (5). 

    
 

 
 ∑   

 
   (                (5) 

where N is the total number of trees created in random 
subspaces,    is the classification tree,    represent the 
instance to be classified, and n is a count of the sub trees 
which ranges from 1 to N. 

 MLP consists of multiple layers of simple, bi-state, 
sigmoid processing nodes of neurons that interact using 
weighted connections [41].  The MLP classifier is a 
neural network that utilizes backpropagation in 
prediction based on threshold functions comprising a 
linear combination of weight, bias, and input data, as 
defined by (6). Each perceptron has an activation 
threshold; below which the perceptron is inactivated. 

     (                   (6) 

where   denotes the cumulative vector of weights, X is 
the vector of cumulated inputs,   is the bias and   is the non-
linear activation function. 

B. Problem Formulation and Dataset Modelling 

The dataset on maternal outcome is modeled in three main 
data-setups: 1) single label/single target 2) multi-label 
3) multi-target. The single label/single target setup has two 
variants; single target binary class (ST-BC) where each 
observation is only associated with a single binary class label 
for modeling MS target attribute; and single-target multi-class 
(ST-MC) representation where each instance is associated 
with a single target with multiple class labels (PO and NW 
target attributes). A record may be associated with more than 
two binary class labels in the multi-label (MLL) data 
configuration while in multi-target (MTP), every label can 
assume many values — nominal attributes. The input vector 

space     consists of   input variables               
representing pregnancy risk factors for PO prediction. The 
target feature space       has   target variables, 
             for the multi-target problem. An 

instance  (    , where x=               is the input feature 

vector and                  is the target vector, together 

are constituents of X and Y respectively. The input vector 
space is given in (7) while (8) defines the multi target 
arrangement. 

[

             

             

    
           

]             (7) 
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[

         

         

   
         

]              (8) 

This paper considers three maternal outcomes (m=3) as 

target feature;    
                     is defined with an 

alphabet    , {0,1}
n
 and is associated with the binary-class 

variable Maternal Status (MS). The alphabet    , {1,2,3}
n
 

defines the multi-class target — neonatal weight (NW) vector, 

represented as   
                     while the vector 

  
                     defined with alphabet    {1,2,3,4}

n
 

corresponds to PO, another multi-class target arrangement. 
The multi-target training vector space    (          

  is 
defined in (9) while the labels,                   
         , of target variables are given in (10) – (12). 
Equation 13 also depicts the multi-label structure with target 
vector space defined over alphabet     {0,1}

n
 . 

[

             

             

    
           

] [

         

         

   
         

]           (9) 
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        (13) 

The task is to predict variants of both single-label and 
multi-labelled data setups. This is followed by the assessment 
of the weighted accuracies and computational costs of all 
strategies for optimal predictive power decision making in the 
domain of obstetric management. Table II gives the 
specifications of the dataset configurations. In all 
classification learning types, the input feature dimension is 
        while the target vector for each of the SLL setting 
(MS, PO and NW) are column vectors.  In MLL and MTL, the 
dimensionality of the target vector is 9 and 3 respectively, 
with 9 labels each. All variants of SLL setups depict LC of 
unity and LD of 0.5 for MS, 0.25 and 0.33 for PO and NW 
respectively. However, MLL and MLT have the same LC 
(3.00) and LD (0.33). 

C. Empirical Setup 

The empirical evaluation was performed on some varying 
experimental setups on the obstetrics outcome dataset. The 
different configurations were based on SLL and multi-labeled 

classifications types. The single labeled data configuration 
comprises ST-BC (where the input features are associated 
with one of the two class labels of the MS target) and ST-MC 
(where the input features are mapped to one of the more than 
two class labels of the PO and NW targets, respectively).  All 
base classifiers were implemented under WEKA [42], in the 
SLL scenario and MEKA based frameworks [43] with the 
multi-labeled setting, running under Java JDK 1.7 
environment. The following base classifiers: SVM, RF, DT, 
MLP, KNN and NB were used separately as internal 
classifiers in WEKA (for the ST-BC and ST-MC 
configurations) and MEKA (for the MLL and MTL datasets) 
environments. Implementations were carried out with a 
train/test mode of 10-fold cross validation [9] on each 
configuration of the dataset and repeated 20 runs with each 
classifier–algorithm pair on a 64bit machine of 8GB RAM 
size with windows 10 operating system. 

The WEKA/MEKA default parameters were adopted to 
implement the base classifiers in both SLL and MLL settings 
with a batch size of 100. MLP used a learning rate of 0.3 and 
momentum of 0.2 while the maximum training time was 500 
seconds for each iteration. There was no distance weighting 
associated with KNN while Linear search was used with only 
a single neighbor. A confidence factor of 0.25 was set for C4.5 
DT. John Platt's sequential minimal optimization (SMO) 
algorithm was adopted for training SVM classifier with RBF 
Kernel function as well as epsilon value fixed at          . 
NB classifier adopted unsupervised discretization without 
kernel estimator. MLL and MTL setups adopted the following 
PTMs — classifier chains (CC), random k-label sets (RAkEL) 
and Bayesian classifier chains (BCC) [14] for optimality 
evaluations of the six base algorithms. MEKA default 
parameters were also adopted for the chosen PTMs and base 
classifiers including a batch prediction size of 100. The BCC 
employed CC for creating maximum spanning trees based on 
marginal label dependence, and NB as base classifier [21]. 
The RAkEL method [31] builds ensembles of Label Powerset 
(LP) classifiers. The training of LP classifiers relied on label 
correlations produced through the averaging of zero-one 
predictions of each model per considered label. 

TABLE II. DATASET SPECIFICATIONS 

Classification 

type 

Target 

feature 

Target  

Vector 

Dimension 

Number 

of 

Labels 

LC LD 

Single 

label 

ST-BC MS 1 2 1.0 0.50 

ST-MC 
PO 1 4 1.0 0.25 

NW 1 3 1.0 0.33 

Multi-
Label 

MLL 

Combined 

(MS, PO, 

NW) 

9 9 3.0 0.33 

MTL 
Combined 
(MS, PO, 

NW) 

3 9 3.0 0.33 
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V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Single Labelled Learning Results 

The results for the SLL settings are presented in Tables III 
and IV. They represent the mean values, standard deviation 
(stdev) and the rank given in brackets. A rank of 1 being the 
highest and indicates the highest performance indicator value 
while a rank of 6 is the least performance rank value. 

From Table III, the computed mean accuracy results show 
that ST-BC has the highest mean accuracy (0.950 ±0.219) and 
mean F1 scores (0.964±0.006). This implies that the base 
classifiers used in this experiment performed better in terms of 
accuracy and F1 score in the ST-BC configuration. In terms of 
classifiers, DT, RF and SVM depicts the same mean accuracy 
(0.964) with a slight upward variation in the stdev of DT.  The 
fourth ranked classifier is MLP while NB produced the least 
mean accuracy (0.896 ±0.023). F1 score produced by DT in 
the ST-BC (0.982±0.001) is ranked the 1st while MLP yielded 
the smallest F1 score. 

The build and test costs (Table IV), reveal that KNN is the 
fastest classifier with an average cost of zero during model 
building in all datasets, this corroborates the findings reported 
in [5] while MLP consumed the longest average train time in 
ST-BC(MS) (1.575± 0.149) and ST-MC (1.936±0.135) target 
setups respectively. SVM model building performance was the 
worst in the ST-MC (2.403±0.315). 

All classifiers showed significant improvements in the 
testing time, DT and MLP are the top performers with average 
rank of 1.00 and 1.67 respectively while RF execution time 
was the highest time and earned a rank of 5.33. The rank of 
the classifiers based on accuracy and F1 score (Fig. 1) show 
that DT is the best ranked classifier (rank=2) in both accuracy 
and F1 score while SVM has a rank of 3 in both metrics. Other 
classifiers have an average rank greater than 3.0 in both 
metrics except the accuracy of RF with an average rank of 
2.33. NB is the least ranked classifier based on accuracy and 
second lowest based on F1 score. The average rankings based 
on train and test time (Fig. 2) are unequal in all the classifiers. 
However, NB, KNN and RF ranked higher in training than 
testing while DT yielded the best average ranking. 

TABLE III. SLL ACCURACY AND F1 SCORE (MEAN ± STD DEVIATION) AND RANK (IN BRACKETS) 

Classifier 
Accuracy 

Average Rank 
ST-BC (MS) ST-MC (NW) ST-MC (PO) 

NB 0.896 ±0.023 (6) 0.807±0.027 (6) 0.784±0.025 (6) 6.0 

SVM 0.964 ±0.002 (3) 0.907±0.014 (3) 0.807±0.019 (3) 3.0 

kNN 0.952 ±1.195 (5) 0.909±0.067 (2) 0.738±0.059 (5) 4.0 

DT 0.964 ±0.018 (1) 0.893±0.065 (4) 0.820±0.061 (1) 2.0 

RF 0.964 ±0.007 (2) 0.936±0.016 (1) 0.789±0.024 (4) 2.33 

MLP 0.962 ±0.067 (4) 0.887±0.016 (5) 0.813±0.022 (2) 3.67 

F1 –Score 

NB 0.944±0.013 (4 ) 0.809±0.023 (6 ) 0.770±0.028 (3) 4.33 

SVM 0.982± 0.001(1) 0.890±0.020 (3) 0.765±0.028 (5) 3.0 

kNN 0.975±0.006( 2) 0.908±0.021 (2) 0.730±0.026 (6) 3.33 

DT 0.982±0.001 (1) 0.881±0.022 (4) 0.784±0.021 (1) 2.0 

RF 0.955±0.011 (3) 0.930±0.019 (1) 0.766±0.026 (4) 3.33 

MLP 0.943±0.004 (5) 0.865±0.021 (5) 0.774±0.026 (2) 4.33 

TABLE IV. SLL BUILD TIME AND TEST TIME (MEAN ± STD DEVIATION) AND RANK (IN BRACKETS) 

Classifier 
Build Time 

Average Rank 
ST-BC(MS) ST-MC(NW) ST-MC(PO) 

NB 0.002±0.001 (2) 0.002±0.003 (2) 0.002±0.004 (2) 2.0 

SVM 0.023±0.010 (4) 1.519±0.129 (5) 2.403±0.315 (6) 5.0 

kNN 0.000±0.000 (1) 0.000±0.001 (1) 0.000±0.001 (1) 1.0 

DT 0.013±0.005 (3) 0.034±0.012 (3 ) 0.029±0.012 (3) 3.0 

RF 0.300 ±0.033 (5) 0.452±0.079 (4) 0.587±0.068 (4) 4.33 

MLP 1.575± 0.149 (6) 1.936±0.135 (6) 1.950 ±0.187 (5) 5.66 

Test Time 

NB 0.001±0.002 (3) 0.002±0.004 (3 ) 0.002±0.004 (3 ) 3.0 

SVM 0.000±0.001 (2) 0.027±0.011 (6) 0.032±0.012 (6) 4.67 

kNN 0.015±0.003 (5) 0.018±0.007 (5) 0.021±0.009 (5) 5.00 

DT 0.000±0.000 (1) 0.000±0.001 (1) 0.000±0.001 (1) 1.00 

RF 0.009± 0.002 (4) 0.015±0.015 (4) 0.020±0.003 (4) 5.33 

MLP 0.000± 0.000 (1) 0.001±0.001 (2) 0.001±0.001 (2) 1.67 
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Fig. 1. Average Rank of Algorithms in SLL. 

 

Fig. 2. Average Rank of Time Cost in SLL. 

B. Multi-labelled Learning Performance 

The distribution of average accuracy and F1 score across 
the PTMs and classifiers (Table V) show that NB earned the 
lowest accuracy and F1 score (rank=5.50) while RF produced 
the best performance in both Accuracy and F1 score. 

It is observed that the rank of each classifier across the 
PTMs is the same in both metrics in addition to a marginal 
variation in their values. Similar results (Table VI), show that 
top classifies regarding accuracy earned lower ranks for time 
cost. Although MLP is ranked 6 with outstandingly high build 

time values, it competes favourably with other classifiers in 
the test time. KNN and DT had the best performers in the 
build and test times respectively while the highest execution 
time is exhibited by KNN followed by RF. 

In the MTP scenario, Tables VII and VIII give the 
accuracy/F1 score and build/test time values, respectively.  
The F1 scores are the lowest in all dataset configurations and 
classification types with CC approach producing the highest 
average performance. The top performers are KNN, SVM and 
NB, in that order, and with RF having the highest average F1 
score and rank of 1.25. NB earned the least rank in both 
accuracy (5.25) and F1 score (6.0). DT earns the highest rank 
(1.5) which is slightly higher than that of DT in terms of 
accuracy.  For build and test costs, KNN utilizes an 
insignificant time during model build and returned as the most 
expensive algorithm during model execution. The reverse is 
the case with MLP, although the average rank of KNN is 
better. The ranking of DT is average in both test and build 
metrics while RF ranks 4.00 and 4.50 in test and build phases, 
respectively. 

A summary of the ranks of classifiers across the datasets 
and classification types is given in Table IX and Fig. 3. The 
result shows that the ranks of classifiers in learning types 
varies especially between SLL and others. RF earned the best 
rank in MLL followed by MTP and SLL with an overall best 
rank of 1.78 for accuracy while depicting the worst rank in 
terms of time cost. DT is the second best ranked classifier 
regarding accuracy but is ranked the best regarding time cost 
while SVM is the second top classifier when considering time 
cost. In terms of optimality, it implies that RF is capable of 
producing high accuracy across dataset and classification 
types although is computationally expensive. This 
corroborates the findings reported in [9]. 

In term of both metrics, DT is optimal for consideration 
followed by KNN. It is therefore necessary to choose between 
RF and DT depending on the application domain and whether 
or not time cost should be given consideration. A cursory 
analysis of the result via statistical significant evaluation is 
presented in subsequent sections. 

TABLE V. MLL ACCURACY, F1 SCORE (MEAN ± STD DEVIATION) AND RANK (IN BRACKETS) 

Classifier 
Accuracy Ave 

Rank CC BCC RAkEL PS/NSR 

NB 0.834±0.0182 (6) 0.83 ±0.019 (6) 0.825±0.0191 (6) 0.819±0.023 (4) 5.50 

SVM 0.881±0.015 (5) 0.881±0.014 (5) 0.883±0.0148 (5) 0.88±0.015 (3) 4.50 

kNN 0.889±0.0162 (4) 0.89±0.016 (4) 0.885±0.0166 (4) 0.89±0.015(2) 3.50 

DT 0.896±0.0152 (2) 0 .90±0.015 (2) 0.891 ±0.015 (3) 0.89±0.015 (2) 2.25 

RF 0.9192±0.013 (1) 0.92±0.013 (1) 0.915±0.0132 (1) 0.914±0.014 (1) 1.00 

MLP 0.894±0.016 (3) 0.894 ± 0.16 (3) 0.893±0.015 (2) 0.89±0.015 (3) 2.50 

F1 Score 

NB 0.883±0.013 (6) 0.882±0.014 (6) 0.878±0.014 (6) 0.86±0.02 (4) 5.50 

SVM 0.916± 0.011 (5) 0.919±0.0103 (5) 0.92±0.0104 (5) 0.92±0.01 (3) 4.50 

kNN 0.922±0.012 (4) 0.923±0.012 (4) 0.920±0.0123 (4) 0.92 ±0.01 (3) 3.75 

DT 0.928±0.011 (3) 0.93±0.010 (2) 0.927±0.010 (3) 0.92 ±0.01 (3) 2.75 

RF 0.944±0.009 (1) 0.945±0.009 (1) 0.942 ±0.010 (1) 0.94±0.010 (1) 1.00 

MLP 0.93±0.011 (2) 0.927±0.011 (3) 0.927±0.011 (2) 0.93±0.010 (2) 2.25 
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TABLE VI. MLL BUILD AND TEST TIMES (MEAN ± STD DEVIATION) AND RANK (IN BRACKETS) 

Classifier 
Build Time Ave 

RanK CC BCC RAkEL PS/NSR 

NB 0.060±0.011 (2) 0.061±0.012 (2) 0.101±0.019 (2) 0.011±0.008 (2) 2.00 

SVM 1.134±0.36 (4) 1.07±0.229 (4) 6.790 ±1.801 (4) 7.53 ±2.65 (5) 4.25 

kNN 0.022±0.001 (1) 0.025±0.008 (1) 0.059±0.018 (1) 0.005±0.004 (1) 1.00 

DT 0.24±0.037 (3) 0.34 ±0.062 (3) 0.847±0.13 (3) 0.140±0.028 (3) 3.00 

RF 3.927±0.52 (5) 4.59±0.77 (5) 14.76±7.07 (5) 1.415±0.140 (4) 4.75 

MLP 85.77±12.16 (6) 67.28 ±8.71 (6) 123.14±17.60 (6) 34.91±5.05 (6) 6.00 

 Test Time  

NB 0.023±0.001 (4) 0.021±0.005 (4) 0.083±0.0157 (4) 0.029±0.006 (3) 3.75 

SVM 0.008±0.015 (2) 0.005±0.003 (2) 0.025±0.024 (3) 0.047±0.05 (5) 3.00 

kNN 0.913±0.13 (6) 0.756±0.120 (6) 0.90±0.2059 (6) 0.077±0.01 (6) 6.00 

DT 0.002±0.002 (1) 0.002 ±0.00 (1) 0.006±0.0021 (1) 0.003±0.002 (1) 1.00 

RF 0.172±0.032 (5) 0.213±0.035 (5) 0.70 ±0.37 (5) 0.039±0.010 (4) 4.75 

MLP 0.012±0.004 (3) 0.009±0.004 (3) 0.0167±0.010 (2) 0.004±0.002 (2) 2.50 

TABLE VII. MTP ACCURACY, F1 SCORE (MEAN ± STD DEVIATION) AND RANK (IN BRACKETS) 

Classifier 
Accuracy Ave 

Rank CC BCC RAkEL PS/NSR 

NB 0.815±0.018 (6) 0.816±0.017 (4) 0.814±0.0207 (6) 0.814±0.020 (5) 5.25 

SVM 0.880±0.013 (3) 0.88±0.014 (2) 0.88 ±0.014 (3) 0.88 ±0.013 (2) 2.75 

kNN 0.867±0.014 (4) 0.87±0.014 (3) 0.863±0.013 (5) 0.86 ±0.014 (4) 4.00 

DT 0.892 ±0.013 (2) 0.89±0.013 (1) 0.89±0.013 (1) 0.88 ± 0.013 (2) 1.50 

RF 0.894 ±0.012 (1) 0.89±0.013 (1) 0.89±0.012 (2) 0.88 ±0.012 (3) 1.75 

MLP 0.885±0.013 (3) 0.89±0.013 (1) 0.88±0.013 (4) 0.88 ±0.0135 (1) 2.25 

F1 score  

NB 0.600 ±0.032 (6) 0.60±0.032 (6) 0.58±0.035 (6) 0.59±0.036 (6) 6.00 

SVM 0.69±0.032 (4) 0.69±0.033 (4) 0.69±0.033 (4) 0.69±0.033 (4) 4.00 

kNN 0.648±0.032 (5) 0.65±0.03 (5) 0.64±0.032 (5) 0.64 ±0.032 (5) 5.00 

DT 0.715±0.034 (2) 0.72±0.04 (1) 0.702±0.031 (3) 0.70 ±0.035 (2) 1.75 

RF 0.716±0.031 (1) 0.72±0.028 (2) 0.704±0.031 (1) 0.705±0.030 (1) 1.25 

MLP 0.701±0.031 (3) 0.70±0.03 (3) 0.703±0.032 (2) 0.70 ±0.034 (3) 2.75 

TABLE VIII. MTP BUILD AND TEST COSTS (MEAN ± STD DEVIATION) AND RANK (IN BRACKETS) 

Classifier 
Build Time Ave. 

Rank CC BCC RAkEL PS/NSR 

NB 0.024 ±0.008 (2) 0.032±0.025 (2) 0.014±0.022 (2) 0.01±0.0047 (2) 2.00 

SVM 1.044±0.221 (4) 0.95±0.22 (4) 6.85 ±2.414 (5) 7.141 ± 2.59 (5) 4.50 

kNN 0.009±0.004 (1) 0.010±0.004 (1) 0.006±0.003 (1) 0.004 ±0.003 (1) 1.00 

DT 0.26 ± 0.050 (3) 0.242±0.046 (3) 0.149 ±0.032 (3) 0.139 ±0.031 (3) 3.00 

RF 3.162 ± 0.52 (5) 3.60±0.911 (5) 2.180±0.43 (4) 2.048 ± 0.33 (4) 4.50 

MLP 27.89 ±3.78 (6) 25.70±3.41 (6) 35.07 ±4.92 (6) 348.40±15.92 (6) 6.00 

Test Time  

NB 0.012±0.004 (4) 0.014±0.003 (4) 0.029±0.006 (3) 0.034±0.007 (3) 3.5 

SVM 0.003±0.008 (3) 0.004±0.010 (3) 0.049 ±0.017 (5) 0.059 ±0.049 (4) 3.75 

kNN 0.34 ±0.062 (6) 0.28±0.046  (6) 0.036±0.034 (4) 0.078±0.015 (6) 5.5 

DT 0.001±0.001 (1) 0.001±0.002 (1) 0.073±0.015 (6) 0.007±0.003 (1) 2.25 

RF 0.114 ±0.026 (5) 0.131±0.039 (5) 0.002± 0.002  (1) 0.064±0.059 (5) 4.00 

MLP 0.003 ±0.001 (2) 0.003±0.001 (2) 0.004±0.0013 (2) 0.0084±0.003 (2) 2.00 
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TABLE IX. AVERAGE RANKINGS (AR) OF ALGORITHMS OVER TWO METRICS AND CLASSIFICATION TYPES 

 Accuracy/F1 score  Build and Test Time 

Classifier SLL AR MLL AR MTP AR Global AR  SLL AR  MLL AR MTP AR Global AR 

NB 5.17 5.50 5.63 5.43  2.50 2.88 2.75 2.71 

SVM 3.00 4.50 3.38 3.63  4.84 3.63 4.13 4.20 

kNN 3.67 3.63 4.50 3.93  3.00 3.50 3.25 3.25 

DT 2.00 2.50 1.63 2.04  2.00 2.00 2.63 2.21 

RF 2.83 1.00 1.50 1.78  4.83 4.75 4.25 4.61 

MLP 3.84 2.38 2.5 2.91  3.34 4.25 4.00 3.86 

 

Fig. 3. Global Rank of Classifiers based on Accuracies and Time Cost. 

C. Statistical Significance and Rank Validation 

The main goal is to ascertain if there is any base classifiers 
whose performance is significantly different from others and 
also perform multiple comparison analysis. This was achieved 
by implementing non-parametric procedures [44,45] 
individually to each of the four categories of dataset-target 
setups for informed statistical inferences. Friedman test — a 
non-parametric variant of the repeated-measures Analysis of 
Variance, was used to test the null hypothesis that there is no 
significant difference in the performances (accuracies and 
time costs) of the classifiers. It compares the average rankings 
of the six classifiers across each of the four dataset 
configurations, calculating test statistic which estimates the 
probability of the observed rankings under the null hypothesis. 
Nemenyi’s test and Bergmann-Homme ’s post-hoc procedures 
implemented in R produced pairwise comparisons of all 
algorithms. The results are presented in the following sub-
sections. 

1) SLL Analysis : Friedman test on the performances of 

the classifiers reveals that there was no statistically significant 

difference in the accuracies ( 2
=10.071, df =5, p=0.0732) and 

time cost ( 2
=8.8571, df =5, p=0.1149) of the six classifiers at 

95% confidence level (CL). This implies that the null 

hypothesis that there is no statistically significant difference 

between performances of classifiers in terms of accuracies and 

time cost for the SLL dataset setups is accepted.  Nemenyi test 

(Fig. 4) compared all classifiers to each other and obtained the 

critical difference (CD) value of 3.2853 for both accuracies 

and time.  As shown in Fig. 4, none of the distances separating 

any two classifiers in terms of their accuracy and time is 

greater than the CD value, this confirms that the performance 

of every pair of classifiers is not statistically different. In both 

cases, DT is the best performing classifier while RF has an 

average rank (AR) of 2.67 and 4.33 on accuracy and time cost 

respectively. Although, NB has the lowest accuracy value with 

an average rank of 5.17 it earned an AR of 2.67 for cost, while 

SVM is the most computationally expensive classifier in the 

SLL scenario. 
2) MLL Analysis: The results of accuracies ( 2

 = 36.464, 
df = 5,            ) and time cost ( 2

 = 10.929, df = 5, 
p=0.05281) for MLL target configurations signify the 
existence of statistically significant difference in accuracies of 
classifies while the average time used by each classifier does 
not vary significantly at 95% CL. The CD=2.7924 (Fig. 5) is 
returned for both accuracy and time cost. The top three 
performing algorithms regarding accuracy; RF, MLP and DT, 
do not depict statisticaly significant difference between each 
other while the bottom performing classifiers kNN, SVM and 
NB are statistically similar. NB is lowest ranked classifier in 
terms of classification accuracy and is significantly different 
from values produced by RF, MLP and DT since their 
respective difference in length is greater than CD (2.7924). 

Although RF is the best performing algorithm as evidence 
by its accuracy, it is the most time consuming algorithm with 
an AR of 4.75 while DT consumed the smallest amount of 
time in all dataset configurations, followed by NB. 

3) MTL Analysis : In MTL setting, the comparison of the 
differences in the performance accuracy of the classifiers is 
statistically significant at a CL of 95% while the time costs 
across classifiers, statistically, does vary significantly. This is 
as indicated by their respective p-values and chi-squared 
values regarding accuracy ( 2

 = 35.125, df = 5,        
    ) and time ( 2

 = 5.9107, df = 5,        ). The CD 
diagram (Fig. 6), depicts the results of Nemenyi test showing 
the statistical comparison of all classifiers against each other 
by ARs based on accuracy and time. Classifiers that are not 
connected by a bold line of length equal to CD have 
significantly different ARs at 95% CL. In the case of 
accuracy, the values of NB are significantly different from RF, 
DT and MLP respectively. RF has the highest AR (1.44) 
followed by DT (2.12) and MLP (2.69) using accuracy while 
DT (2.62) and RF(4.25) stand out as the best  and worst 
algorithms respectively when considering computation time. 

 

Fig. 4. CD for Nemenyi Test at        for a) SLL Accuracy b) SLL Time. 
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Fig. 5. CD Diagram for Nemenyi Test (      ) a) MLL Accuracy b) MLL 

Time. 
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Fig. 6. CD Diagram for Nemenyi Test (      ) a) MTL Accuracy b) MTL 

Time. 

4) Multiple Comparison of Classifiers on all targets 

setups: Results of multiple comparison analysis on the 

combined accuracies and time costs obtained from the 

classifier in four dataset settings are discussed in this section. 

The Friedman test on aggregated values of the adopted metrics 

produces accuracy values ( 2
 = 70.019, df = 5, p=     

     ) and time values ( 2
 = 23.123, df = 5, p=          ) 

which depicts a statistically significant difference in 

performance metrics at        significance level. The CD 

diagram (Fig. 7) obtained from the comparisons for accuracy 

and time,  shows that the accuracy of NB significantly differs 

from accuracies of other classifiers while the performance of 

KNN differs significantly from DT and RF. The accuracy of 

SVM is however equivalent to others except R F and NB. RF 

is the highest ranked (1.61) and best performing algorithm 

based on accuracy followed by DT (2.36). MLP earned an AR 

of 3.0 and returned as the third ranking classifier while the 

accuracy of NB is the worst.  In terms of time cost (Fig. 7b), 

the worst performing classifier is the RF with an AR of 4.45 

and is similar to the accuracies of other classifiers except for 

NB and DT. DT is best classifier in terms of computational 

cost closely followed by NB and KNN. This implies that RF 

yields the highest accuracy across all classification types 

(dataset configuration) while it is the most computationally 

expensive algorithm. 

 

Fig. 7. CD for Nemenyi Test at        for    a) Accuracy    b) Time. 

The obtained p-values from the Freidman test specify that 
the null hypothesis (that all the algorithms perform the same) 
is reject. This, therefore, serves as the justification for 
conducting the post-hoc test. Bergmann–Homme ’s test 
procedure is the most powerful, best performing, and most 
suitable when the number of algorithms is less than nine (9) 
[46-48], although it is complex and computationally 
expensive. Statistical pairwise comparison of the six 
algorithms based on average accuracies and time cost are 
given in Table X. 

As shown in Table X, there are four major heterogeneous 
pairwise groupings of classifiers based on accuracy, with RF 
and DT being outstanding and individually significantly 
different from the rest of the classifiers, except MLP while NB 
depicts a statistically significant difference from all other 
classifiers.  KNN-SVM and RF-DT pairs, each produced a ρ-
value > 0.05, therefore statistically equivalent.  

The time cost of RF is significantly different from DT 
(ρ<0.05) and NB (ρ<0.05) while statistically equivalent with 
MLP and SVM (ρ=1.0).  Although the time used by DT is not 
statistically different from that of KNN (ρ=0.383), it exhibits a 
significant difference when compared with MLP (ρ=0.0110) 
and SVM (ρ=0.0110) in addition to RF. Pairwise comparisons 
involving KNN yielded no statistically significant difference 
as well as SVM compared with RF and MLP respectively.  
The summary of the Bergmann–Homme ’s corrected average 
values (accuracy and time) of each algorithm over all the 
dataset is given in Table XI and Fig. 8. The results confirm 
that RF (accuracy=87.3%) is the best performing algorithm 
followed by DT (accuracy=86.3%) based on accuracy metrics 
while NB is the least expensive algorithm across all dataset 
and classification types. The ranking of classifiers considering 
both performance metric reveals DT (rank=2.0) as the best 
optimal performing classifier followed by RF (rank=3.0) while 
MLP (rank=4.5) depicts the worst performance. 

TABLE X. CORRECTED P-VALUES USING BERGMANN–HOMMEL’S 

PROCEDURE FOR ACCURACY (  =0.05) 

S/N Hypothesis 
ρ-value 

Accuracy Time 

1 RF  vs. NB                     

2 RF vs KNN                     

3 RF vs  SVM          1.00 

4 RF vs DT                     

5 DT vs. NB           1.00 

6 DT vs. KNN                     

7 DT vs. SVM                     

8 NB vs. MLP                     

9 NB vs. SVM                      

10 NB  vs. KNN            1.00 

11 MLP vs. RF           1.00 

12 MLP vs. KNN                     

13 MLP vs. SVM           1.00 

14 MLP vs. DT                     

15 KNN vs. SVM                     
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TABLE XI. BERGMANN–HOMMEL’S GLOBAL AVERAGE VALUES (  =0.05) 

S/N Algorithm Accuracy Time Global AR 

1 NB  0.793  0.026 3.5 

2 SVM 0.854 1.69 4 

3 KNN 0.840 0.163 4 

4 DT 0.863 0.115 2 

5 RF 0.873 1.75 3 

6 MLP 0.858 34.26 4.5 

 

Fig. 8. Bergmann–Homme ’s Global Rank of Classifiers based on Time and 

Accuracy Scores (α=0.05). 

VI. CONCLUSION 

Over the years, analysis of morbidity and mortality data in 
maternal-related care evolved from traditional to intelligent 
research approaches with the aim of improving the efficiency 
of mother and child care during pregnancy. For intelligent 
automated predictive solutions, ML and statistical approaches 
have been the most popular techniques in the literature; 
following the increasing clinical and administrative interest in 
PO determination. Results from both methods have 
contributed to the research of PO prediction, preconception 
counseling, antenatal assessment, intrapartum care, 
postpartum management, and reproductive health education 
among others. In this paper, six ML-based classifiers, 
including SVM, RF, DT, MLP, KNN and NB were identified 
as widely used and highly successful in obstetric outcome 
prediction. The performances and suitability of these 
techniques on obstetrics dataset classification under varying 
maternal outcome target configurations were assessed, 
positing that they comprise binary, multi-class and multi-
labeled target features. Performance efficiency was achieved 
by empirical evaluation of implemented non-parametric 
procedures individually for SLL, MLL and MTP to enable 
informed statistical inferences. Using SLL, three 
configurations including MS, PO and NW were defined, 
whereas the MLL and MTP evaluations both used the CC, 
BCC, RAkEL, PS/NSR PMTs to evaluate performance 
efficiency. Dataset obtained from archives of secondary 
healthcare facilities in Uyo, Nigeria, was reduced feature 
dimension of 13 x 1632. From the results, in the SLL setup, 
DT had the best accuracy, F1 score and test time with an 
average rank of 1.0. This was followed by RF in accuracy and 
SVM in F1 score, while MLP had the second best time cost. 
NB had the worst accuracy and F1 values, while the worst test 
time is observed in RF.  In MLL, we observed DT was least 
expensive in terms of time cost; whereas KNN was most 

expensive. RF performed better with the highest accuracy and 
F1 scores and was followed by DT and MLP for accuracy and 
F1 measures, respectively. The accuracy and F1 values 
obtained for NB suggests that it is the least performing 
classifier with the MLL setup. With an average rank of 1.50, 
DT had the highest accuracy in the MTP setup. This was 
followed by RF, while NB had the worst performance. For F1-
measure evaluation, RF, DT and NB had the best, second and 
least performances respectively. The comparative analysis of 
global averages of the six base classifiers shows that RF is the 
most optimal algorithm with an accuracy of 87.3% given all 
three data setups in the study. The pole position of RF in terms 
of accuracy measure is in agreement with the submission in 
[49] (Hoodbhoy et al., 2019) that compared ten machine 
learning algorithms on PO determination and observed RF had 
an accuracy of 92% compared to lower scores obtained by 
MLP, SVM and NB. It also corresponds with the result 
obtained in [33] where the accuracy of RF was best with a 
score of 96%, and the work of [9]. In terms of time cost, NB is 
the least expensive algorithm even though it has the poorest 
global accuracy score. MLP on the other hand had an 
unexpectedly high time cost, making it unsuitable for similar 
data classification if time is the main criterion. Finally, from 
the comparative analysis, it is recommended that the choice of 
classifier should either be RF or DT depending on the 
application domain and whether or not time cost is a major 
consideration.  As further research, the tuning of parameters of 
the base classifiers using evolutionary computing would be 
carried out in order to improve performance in terms of 
accuracy and computational cost. 
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