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Abstract—Action recognition involves the idea of localizing 

and classifying actions in a video over a sequence of frames. It 

can be thought of as an image classification task extended 

temporally. The information obtained over the multitude of 

frames is aggregated to comprehend the action classification 

output. Applications of action recognition systems range from 

assistance for healthcare systems to human-machine interaction. 

Action recognition has proven to be a challenging task as it poses 

many impediments including high computation cost, capturing 

extended context, designing complex architectures, and lack of 

benchmark datasets. Increasing the efficiency of algorithms in 

human action recognition can significantly improve the 

probability of implementing it in real-world scenarios. This 

paper has summarized the evolution of various action 

localization, classification, and detection algorithms applied to 

data from vision-based sensors. We have also reviewed the 

datasets that have been used for the action classification, 

localization, and detection process. We have further explored the 

areas of action classification, temporal and spatiotemporal action 

detection, which use convolution neural networks, recurrent 

neural networks, or a combination of both. 
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I. INTRODUCTION 

There are two types of human action recognition systems - 
sensor-based and video-based [1]. Various on-body and 
ambient sensors are used to understand and label human 
actions performed in recorded videos or real-time video 
streaming. Video cameras are the essential wellsprings of new 
data on the Internet. A video is an organized arrangement of 
frames of a similar resolution taken at regular intervals of 
time. While developing the video processing algorithm, the 
video is partitioned into two classes-video streams and video 
sequences. Video stream is a continuous video for online 
processing as we are unaware of the information present in 
future frames. The video sequence is a fixed-length video 
where all frames are accessible without a moment's delay. 
Currently, most video cameras do not perform automated 
action recognition. Since the amount of video data available is 
extremely high, automatic action recognition has become a 
necessity. Furthermore, action recognition will facilitate 
efficient human-machine interactions, video surveillance, 
patient-care, smart homes, sports video analysis, gaming, and 
intelligent retail. 

An action recognition process involves two tasks: action 
classification and action localization, as represented in Fig. 1. 
Action classification consists of assigning labels to various 
action instances in videos. Although it is possible to classify 
some actions using single frames, most actions occur in a 
series of adjacent frames. The motion in these frames must be 
captured to classify the actions. Video data brings a new 
feature that is absent in static images, which are motion. This 
motion characterizes actions in videos. To obtain these motion 
features, the motion field must be obtained. Optical flow, 
which represents the apparent motion between frames, is used 
to estimate the motion field. 

The extensive input data, less availability of computational 
resources, and difficulty in obtaining the optical flow pose 
major problems while classifying actions. In action 
classification tasks, the model must run through multiple 
windows in search of action instances. This is computationally 
expensive and time-consuming. Temporal action detection 
models work on the data before action classification models to 
reduce computational costs. They define the temporal bounds 
of action instances and specify to the action classification 
model the actions' temporal location in any given video 
sequence. Spatiotemporal action detection models provide 
information on the spatial locations of the action in addition to 
the temporal bounds. 

The field of computer vision and deep learning has already 
seen significant success in object detection, classification, and 
localization techniques, and now the area of study is moving 
towards efficient action detection and recognition tasks. 
Sliding window approaches were the earliest action 
localization approaches that scanned the videos exhaustively 
to get the video's actions' spatial and temporal coordinates. 
Some previous action recognition approaches like Silhouette 
and poses estimation were inspired by object detection 
frameworks [2]. These frameworks were directly extended to 
the spatiotemporal scale to localize action. Before Deep 
Learning approaches came into the picture, handcrafted 
techniques like Histogram of Oriented Gradient (HOG) [3], 
Histogram of Optical Flow (HOF) [4], Extended 
SURF(ESURF) were prevalent [5]. Although these 
approaches were robust to background noise, change in 
illumination, and video clutter, they lacked semantics and 
discriminative capacity. 
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Fig. 1. Action Recognition - Steps Involved. 

The purpose of this paper is to analyze the various deep 
learning architectures for action recognition techniques. It 
focuses on visual sensor-based methods. The paper has 
elaborated on action classification, temporal/spatiotemporal 
action detection, and localization techniques. Section 2 
describes the various datasets available for action 
classification, recognition, detection, and localization. 
Section 3 explores the different proposed methodologies for 
action classification tasks. Section 4 delves into the existing 
approaches for temporal action detection, and Section 5 
discusses the methods proposed for spatiotemporal action 
detection, respectively. Section 6 concludes the whole paper. 

II. DATASETS 

An estimation says that there are over 1000 human action 
categories. A variety of studies have been conducted to create 
datasets that can help us overcome the challenges posed by 
human action recognition. Action recognition and localization 
is a widely studied problem. The key challenges associated 
with this field have been variations in human posture, scaling, 
pixilation, speed, background clutter, and occlusion. Low-
grade and insufficient datasets lead to challenges such as 

prediction of wrong action class, incorrect spatial or temporal 
action localization, and inability to detect more than one 
action in a frame. Table I lists some of the most used datasets 
for performing action localization and recognition tasks and 
compares them based on several action classes, data size, 
nature of video clips, and their aim. 

Earlier datasets contained very few action classes. UCF 
sports has ten action classes: Golf Swing, Lifting, Running, 
SkateBoarding, Kicking, Diving, Swing-Bench, Swing-Side, 
Riding Horse, and Walking [6]. UCF sports is introduced, 
which mainly comprises the video sequences featured on 
television channels BBC and ESPN. 

Various datasets are not realistic, and the action classes are 
also significantly less. K. Soomro, A. Zamir, and M. Shah [7] 
targeted these issues and proposed a new dataset, UCF101. It 
consists of 101 action classes, 13000 vid clips, 27 hours of 
video clips. Also, the video clips in this dataset are more 
realistic as they are not recorded in controlled environments, 
which is essential for training a model which performs well in 
the real world. However, there is not much variation in the 
video clips for a particular action class in UCF101. 

TABLE I. DATASETS USED FOR ACTION RECOGNITION 

Datasets Number of action classes Data size Trimmed/Untrimmed Year of release Main Sources 

UCF sports 51 action classes 6849 video clips Trimmed 2008 
BBC Motion Gallery and 

GettyImages 

HMDB51 51 action classes 6849 video clips Trimmed 2011 

The Prelinger Archive, 

YouTube, and Google 
videos. 

UCF101 101 action classes 13320 video clips Trimmed 2012 YouTube 

JHMDB 21 action classes 928 video clips Trimmed 2013 

The Prelinger Archive, 

YouTube, and Google 
videos 

Thumos15/14 101 action classes 
18,420(thumos15), 

15,906(thumos14) 
Untrimmed 2015(v15), 2014(v14) YouTube 

ActivityNet 200 action classes 
9682 video clips(v1.2), 
19,994 video clips(v1.3) 

Untrimmed 2016(v1.3), 2015(v1.2) -  

Kinetics 400 400 action classes 300k video clips Trimmed (10s) 2017 YouTube 

Kinetics 600 600 action classes 500k video clips Trimmed(10s) 2018 YouTube 

Kinetics 700 700 action classes 650k video clips Trimmed(10s) 2019 YouTube 
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Some of the datasets focused on increasing the robustness 
of various action recognition models by exploring under 
numerous conditions like the movement of the camera, angle, 
and position of viewpoint, quality of the video, and occlusion. 
Human Motion Database (HMDB51) [8], dataset focuses on 
features mentioned above. At least two observers validate the 
clips of the datasets to establish consistency. The dataset also 
contains metadata like the number of actors involved, 
viewpoint, presence or absence of motion of the camera, and 
category labels. 

H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. Black [9] 
proposed JHMDB, "joint-annotated HMDB." This dataset 
annotates human joints in the HMDB dataset. However, it 
contains lesser action categories as compared to HMDB51. 
Their main objective is to understand what features improve 
the efficiency of action recognition algorithms primarily. They 
find that high-level pose features are more efficient for 
capturing actions in videos than low/mid-level features. J-
HMDB is beneficial for linking low-to-mid level features with 
high-level poses. As higher-level pose features need the 
information of joints. This provides richer information and 
enables more complex models. 

Thumos14 [10] is a dataset used to detect and recognize 
actions in realistic untrimmed videos with a standard protocol 
for evaluation. This dataset's action classes are from UCF101, 
which are mainly divided into five categories - Body-Motion 
Only, Human-Object Interaction, Human-Human Interaction, 
Sports, and Playing Musical Instruments. After this, 
Thumos15 introduces background videos that do not contain 
the target action with multiple actions in the same video. This 
further increases the complexity of the dataset. 

F. Caba, V. Escorcia, B. Ghanem, and J. Carlos [11] 
introduced ActivityNet, which has more action categories. 
Most significantly, ActivityNet has an organized set of 
activities according to social interactions and where they 
usually occur. Some of the classes of action in the dataset 
include - Household, Caring and helping, Personal care, 
Work-related, Eating and drinking, Socializing and leisure, 
Sports, and exercises. ActivityNet has the following 
applications - untrimmed video classification, trimmed 
activity classification, and activity detection. ActivityNet 
benchmark has rich semantic taxonomy and aims at covering 
daily activities performed by humans on an average. Results 
show that ActivityNet opens new challenges in understanding 
and recognizing human actions. 

Just like various action recognition algorithms are inspired 
by multiple object detection algorithms. Similarly, some of the 
datasets are inspired by image datasets. ImageNet inspires 
kinetics dataset for action classification purposes. The kinetics 
project aimed to get the same number of action classes as 
image classes in ImageNet [12]. There are four versions of the 
kinetics dataset: kinetics 400, kinetics 600, and kinetics 700. 
Kinetics 400 contains 10 seconds trimmed video clips and a 
variation in resolution and frame rate having at least 400 clips 
of each action. Some of the parent action classes in kinetics 
400 are arts and crafts, auto maintenance, ball sports, cleaning, 
dancing, electronics. This dataset can also be used for multi-
modal analysis. Kinetics dataset is better than HMDB and 

UCF datasets due to more action classes and a wide range of 
actions. 

The AVA-kinetics dataset [13] contains 624,430 unique 
frames and 238,906 unique videos. Some of the selected 
action classes include swimming, swimming backstroke, 
swimming breaststroke, swimming butterfly stroke, pushing a 
wheelchair, giving or receiving awards, punching bag. 

III. DEEP LEARNING FOR ACTION RECOGNITION 

Andrej Karpathy et al. [14] introduced Single Stream Deep 
Neural networks for action recognition. They proposed and 
tested four different single stream architectures: Single Frame, 
Late Fusion, Early Fusion, and Slow Fusion. Single Stream 
Networks can be induced with information from other models 
trained on larger datasets to obtain better results. Another 
significant advantage is that these models do not require the 
calculator of optical flow as the input includes only RGB 
images. Therefore, these models can be used for real-time 
purposes. However, these models were not able to effectively 
capture the motion features. 

To overcome this shortcoming, K. Simonyan and A. 
Zisserman [15] brought forward the concept of Two-Stream 
Networks. The Two-Stream Network has two different 
architectures to individually process the temporal and spatial 
features. One network takes the single video frames as input, 
and the other will take the optical flow as input. The output of 
the two networks is then fused to obtain the class scores. 
Although this model produces state-of-the-art results in terms 
of accuracy, it has many drawbacks. As both the networks 
have to be trained separately, it is not end-to-end trainable. It 
cannot work with small datasets as transfer learning cannot be 
applied here. Even though the spatial network can derive 
features from large image datasets, the temporal model needs 
to be trained on a video dataset. It is also computationally 
expensive as the optical flow needs to be calculated before 
being fed into the temporal network. 

Later works made use of LSTMs and 3D convolution 
networks for action recognition. These networks were not only 
end-to-end trainable but also worked in real-time. The LSTM 
architecture was first introduced by Jeffrey Donahue et al. 
[16]. The authors have taken inspiration from the encoder-
decoder architecture and extended it for action recognition. 
The LSTM based network did not get results as good as the 
two-stream networks but surpassed the single-stream 
networks. D. Tran, L. Bourdev, R. Fergus, L. Torresani M. 
Paluri [17] introduced the concept of 3D convolution 
networks. This model surpassed the two-stream networks in 
terms of performance. 

The coming sections describe the works that use deep 
learning techniques for action classification, temporal action 
detection spatiotemporal action detection. 

IV. ACTION CLASSIFICATION 

Action classification is the identification of the type of 
action in a trimmed or untrimmed video. There has been 
ongoing research on producing efficient methods of 
classifying actions in a video clip. L. Wang, Y. Qiao, and X. 
Tang [18] have put forward a novel video representation 
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known as Trajectory Pooled Deep Convolutional Descriptor 
(TDD), which considers the advantages of both deep-learned 
features as well as handcrafted features. Deep architectures are 
used to learn discriminative Conv feature maps. Trajectory 
constrained pooling is conducted to concentrate these 
convolutional features into effectual descriptors. The accuracy 
of TDDs is enhanced by using two normalization methods, 
namely channel normalization, and spatiotemporal 
normalization, to transform convolutional feature maps. This 
approach has several advantages. The learning process in 
TDDs is automatic, and the discriminative capacity is higher 
when compared to handcrafted features. The plans of action of 
trajectory-constrained pooling and sampling are introduced by 
considering the temporal dimension's intrinsic characteristics 
for aggregating the deep-learned features. The shortcoming of 
this method is that it is computationally expensive. 

Many researchers have made efforts to make the process 
of action classification less computationally expensive. 
Although two-stream CNNs are quite efficient and are state-
of-the-art when it comes to action recognition, they are 
computationally costly. One of the main reasons for this is the 
requirement to calculate the optical flow, which has very high 
computational needs. The two-stream networks consist of two 
CNN networks. One is the spatial network that takes as input 
RGB images, and the other is the temporal network that takes 
the optical flow as input. This process is not only high on 
computation but is also time taking. To address this problem, 
B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang [19] 
introduced Real-time action recognition with enhanced motion 
vector CNNs. They have replaced optical flows with motion 
vectors. Like optical flow, motion vectors describe the motion 
in a video, but unlike optical flow, they are easily obtained 
directly in the video decoding process. Hence, they can be 
used alongside deep convolutional frameworks for action 
recognition tasks. The authors have proposed a mechanism 
where the RGB images and motion vectors are obtained from 
the video decoding process and fed into two-stream CNN. 
Optical flows are very dense and hence are entirely accurate 
with fewer noise features. Motion vectors are not very precise 
and consist of a lot of inaccurate movements and noise. To 
increase the motion vector CNN's performance, the 
knowledge learned from an optical flow CNN is transferred 
into a motion vector CNN. Although optical flow needs to be 
calculated for this procedure, it is still efficient as this 
calculation is done only while training and not while testing. 

H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. 
Gould [20] introduced dynamic images for action recognition 
to further reduce the computational costs. Dynamic images are 
a novel compact representation of the video, which is based on 
the rank pooling idea and are acquired through the parameters 
of a ranking system that encrypts the temporal evolution of the 
video frames. Since it is an image, CNN models can directly 
be applied to the video data with fine-tuning allowing end-to-
end training for action recognition. This approach is efficient 
and is not time-consuming as the whole video is summarized 
to an amount of data equivalent to a single frame. 

To further reduce the computation costs while maintaining 
accuracy, Y. Zhu, Z. Lan, S. Newsam, and A. Hauptmann [21] 
have proposed a Hidden two-stream CNN for action 

recognition. A two-stream network takes as input RGB images 
as well as optical flows. The hidden two-stream network is 
designed to input only the video frames and not the optical 
flow. This allows a 10x faster performance when compared to 
the traditional two-stream architecture. This approach uses 
unsupervised methods to predict the optical flow. The flow 
field between two adjacent frames is generated using CNN. 
This indicated flow field and a frame are used to reconstruct 
the previous frame using backward warping. The idea is that if 
one frame can rebuild the last frame, then the network has 
learned the representations of some underlying motions of a 
video. 

While some research works focus on reducing the 
computational costs of a system, others have attempted to 
increase the networks' accuracy. W. Byeon, Q. Wang, R. 
Kumar, and P. Koumoutsakos [22] have proposed a fully 
context-aware system that produces sharp predictions of high 
visual quality. The previous prediction models based on 
CNNs, RNNs, or a combination of both, tend to produce 
blurry results. Some efforts have attempted to address this 
issue by separating the foreground from the background, 
adversarial training, or motion flow learning, but have mainly 
failed to consider the issue that the model is unaware of the 
complete information. To solve this shortcoming, the authors 
have proposed a fully context-aware architecture that captures 
past information using parallel multidimensional LSTM units. 

R. Girdhar and D. Ramanan [23] have also tried to 
improve action recognition accuracy while ensuring that the 
network size and computational cost will remain unchanged. 
They have proposed an Attentional Pooling module that can 
be used as a replacement for the normal pooling operation in 
any convolutional network. This model is built over a base 
Resnet architecture. The proposed Attention layer is plugged 
into the last layer after generating spatial feature maps, which 
need to be average pooled. 

Another major factor affecting the accurate classification 
of actions on how much information we can gather from the 
temporal cues available in the video. Ali Diba et al. [24] have 
introduced new architecture and transfer learning for video 
classification. The computer vision community has mainly 
focused on spatiotemporal approaches where the temporal 
convolutional kernel depths are fixed. This paper has 
introduced a new temporal layer that models various kernel 
depths of temporal convolutions, which are embedded into a 
proposed 3D CNN. The 3D CNN is extended from the 2D 
DenseNet by including 3D filters and pooling kernels. Most of 
the researchers working on 3D convnets tend to train them 
from scratch. This can prove inefficient as they fail to consider 
the knowledge gained by the 2D convnets. To overcome this 
issue, this paper has done an effective transfer of knowledge 
from 2D convnets to 3D convnets. This not only diminishes 
the computational cost but also makes the system more 
accurate. 

V. TEMPORAL ACTION DETECTION 

Temporal action detection is another significant yet testing 
problem that goes one step beyond action classification. Since 
recordings in real-world applications are generally long, 
untrimmed, and contain numerous action instances, this issue 
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requires perceiving action classifications and recognizing each 
activity occasion's start time and end time. Temporal action 
detection can help define the temporal bounds of an action 
sequence and reduce the computation of action classification 
tasks. Researchers have tried to solve this problem in various 
ways. G. Yu and J. Yuan [25] proposed a Fast action proposal 
for human action search and detection. The action proposal is 
quite challenging as both the appearance and motion cues 
have to be considered. This paper is targeted at producing 
action proposals in unconstrained videos. An action proposal 
is represented by a temporal series of spatial bounding boxes 
(spatiotemporal video tube) which can locate a single human 
action. They have established the action proposal generation 
as a max set coverage problem, and greedy search is employed 
to maximize the actionness score. Actionness is a measure that 
quantifies the likelihood of the presence of an action instance 
at specified locations. This method can be used before the 
process of action classification to ensure limited 
computational costs. The action classification system can now 
focus only on the action proposals rather than on the whole 
video. This algorithm works well with moving cameras and 
can detect actions even in cluttered backgrounds. 

Numerous researchers make consistent efforts to facilitate 
accurate and efficient estimation of actionness. L. Wang, Y. 
Qiao, X. Tang, and L. Van Goo [26] proposed a hybrid fully 
convolutional network for actionness estimation. They have 
introduced a novel convolutional network consisting of an 
appearance FCN(A-FCN), which takes as input RGB images, 
and a motion FCN(M-FCN) which takes optical flow fields 
input. These two networks derive information from static 
appearance and dynamic motion, respectively. The completely 
convolutional nature of H-FCN permits it to productively 
handle recordings with subjective sizes. Each FCN is a 
discriminative system prepared in a start to finish and pixel-to-
pixel way. These estimated actionness maps are then fed into 
detection frameworks for the action detection process. 

Previous temporal action localization strategies depend on 
applying action classifiers at each time area and different 
transient scales in a temporally designed sliding window. 
While most approaches for activity detection find it quite hard 
to produce high accuracy on large-scale video collections due 
to their high computational complexity, F. Caba, J. Carlos, and 
B. Ghanem [27] devised a method to extract temporal 
segments from untrimmed videos with high recall and good 
precision at a fast rate. A sparse learning frame is generated 
for scoring transient frameworks as indicated by the fact that 
they are prone to contain an action. This proposal is then 
merged into an activity detection framework to enhance the 
overall performance. 

Many researchers understood the importance of 
performing temporal action localization in untrimmed videos 
as recordings in genuine applications are typically 
unconstrained and contain numerous activity cases in addition 
to background clutter. To address this issue, Z. Shou, D. 
Wang, and S. Chang [28] proposed an action localization 
framework using three-segment-based 3D ConvNets. The 
framework contains three networks, namely, localization 
network, classification network, and network. The proposal 
network is used for identifying action sequences in an 

untrimmed video. The classification network serves as an 
initiation for the localization network, which fine-tunes the 
classification network to localize action temporally. 

Single-Stream Temporal Action proposals are another 
method for obtaining temporal action proposals in long, 
untrimmed videos [29]. While most methods require the video 
to be divided into short overlapping clips for temporal action 
localization, SSTs can process a long video in a single stream. 
Hence, they are much faster than previous models where 
temporal action proposals are identified from temporal 
windows and then independently classified. Applying 
windows at multiple scales is computationally expensive. 
Hence, SSTs are less exhaustive and generate action proposals 
in long videos with just a single video pass through the 
network. 

Single-Stream Temporal Action Detection [30] is another 
example of a network that incorporates Single-Stream 
Networks. It draws inspiration from object detection 
algorithms like YOLO and Faster RCNN. It provided an end-
to-end approach of action detection in untrimmed videos, 
claiming that everything happens in a single pass network. 
Hence, it is very efficient which can operate at 701 frames/sec. 
The network was trained for thumos14. This model also 
outperforms other models in detection performance and fps, 
just like YOLO. 

While most works usually involve building frame-level 
classifiers and passing the video through them multiple times, 
S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei [31] have 
designed a methodology for end-to-end learning of action 
detection that learns to predict the temporal bounds of actions. 
An RNN based agent decides which frame to analyze next and 
when to send forth a prediction. This paper puts forth a single 
network that takes an untrimmed video for input and gives as 
output the temporal bounds of any detected actions. 

F. Heidarivincheh, M. Mirmehdi, and D. Damen [32] 
proposed an approach wherein, despite localizing the action, 
they focused on localizing the moment of completion, where it 
localizes the completed action along with localizing the 
action. Hidden Markov Model (HMM) and Long-Short Term 
Memory (LSTM) are used to assess six kinds of actions - 
switch, plug, open, pull, pick and drink. The model uses 
supervised learning. Therefore, the annotations of pre-
completion and post-completion frames are already available. 
They also concluded that fine-tuned CNN features give better 
results than handcrafted features. An action may often be 
localized in the video, even if it was an incomplete action. In 
this approach, by targeting the completion of the action, they 
successfully overcome this problem. 

Some other works also focused on detecting complete 
actions. An end-to-end trainable network proposed by Yue 
Zhao et al. [33] Structured Segment Networks focused on 
untrimmed videos does this by implementing both action 
classifiers and detecting the complete action. This increases 
the overall accuracy of the model. Their model also includes 
detecting high-quality proposal generation termed - Dubbed 
Actionness Grouping (DAG). The limitation which comes to 
this model is the existence of a large number of unfinished 
action snippets in temporal boundaries. To overcome this 
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issue, the model must understand the various stages of an 
action. They have introduced structured temporal pyramid 
pooling that produces a global portrayal of the whole proposal 
and a broken-down discriminative model to order action 
classifications together, finding whether a particular action is 
complete. The model is also computationally efficient because 
they have used a sparse snippet sampling strategy. 

VI. SPATIOTEMPORAL ACTION DETECTION 

Spatiotemporal detection is the process of detecting 
coordinates of action on a spatial as well as temporal scale. 
Various algorithms devised for 2D images were directly 
extended to check their accuracy for 3D actions. One such 
method is Spatiotemporal Deformable Part Models (SDPM) 
for Action Detection [34]. This approach explores the 
generalization of deformable part models from 2D images to 
3D spatiotemporal volumes to study their effectiveness for 
action detection in video. In this paper, a deformable part 
model is generated for each action (spatiotemporal patterns) 
and from a collection of examples. The proposed 
spatiotemporal deformable part model (SDPM) stays true to 
the structure of the original DPM. This model employs 
volumetric parts that displace in both time and space, which 
allows it to perform better for intra-class variation in terms of 
execution and better performance in clutter. 

Another approach that extends a two-dimensional object 
proposal technique is adopted in spatiotemporal object 
detection methods [35]. This paper presents spatial, temporal, 
and spatiotemporal pairwise super voxel features to manage 
the blending process. Also, they propose another effective 
super voxel method. Experimental evaluation of the complete 
model shows that this super voxel approach leads to more 
precise recommendations than utilizing existing cutting-edge 
super voxel methods. They have built on the approach of S. 
Manen, M. Guillaumin, and L. Van Gool [36] that uses a 
randomized superpixel consolidating methodology to get 
object proposals. 

K. Soomro, H. Igrees, N, and M. Shah [37] proposed early 
predication and localization of action by taking input at 
relatively more minor video lengths. Action prediction and 
online localization accuracies improve over time as the 
number of frames available increases. 

Action localization with tubelets from motion [38] 
considered super voxels instead of super-pixels to produce 
spatiotemporal shapes, which directly gives us 2D+t 
sequences of bounding boxes as tubelets in this paper. Their 
contributions include investigating the selective search 
sampling strategy for videos and incorporating motion 
information in various analysis stages. The singularity of the 
motion is encoded in a feature vector associated with each 
super-voxel. 

G. Gkioxari and J. Malik [39], inspired by the field of 
object detection in images, propose an approach where motion 
and appearance are incorporated in two different ways. In this 
paper, they select the frames with a higher probability of 
containing a motion or are more useful for detecting the 
motion in the video. They select candidate regions and employ 
CNNs to classify them. The idea of eliminating the regions 

with lower motion saliency significantly decreases the 
computation time. The two networks - spatial-CNN and 
motion CNN operate on static cues and motion cues, 
respectively. 

Other approaches adopted for spatiotemporal action 
localization include techniques employing dense trajectories. 
APT: Action localization Proposals from dense Trajectories 
[40] proposes an efficient generation algorithm to handle 
many trajectories in a video. The dense trajectories are 
computed for the video's representation; this paper focuses on 
re-using them for proposal generation. Therefore, this paper 
introduces the use of dense trajectories for classification as 
well. 

M. Zolfaghari, G. Oliveira, N. Sedaghat, and T. Brox [41] 
exploits pose, motion, and appearance for action recognition. 
To integrate them Markov chain model is utilized, which adds 
cues successively. This helps in the sequential refinement of 
action labels. 

Action Detection by Implicit Intentional Motion Clustering 
[42] is based on using spatiotemporal trajectory clustering by 
leveraging intentional movement properties. The calculated 
movement clusters are then utilized as action proposals for 
detection. They find that trajectories from deliberate motion 
are appreciably densely localized in space and time. 

Another group of approaches is based on using two-stream 
networks for spatiotemporal action detection or localization. 
Various two-stream networks have been tested successfully 
for action detection and localization. Two-stream networks 
consist of a spatial network that models appearance, whose 
input is RGB frames, and a temporal network that models 
motion. Optical flow or dense trajectories can be used as input 
for these networks. Real-Time End-to-End Action Detection 
with Two-Stream Networks [43] proposes a model that 
integrates the optical flow computation using Flownet2 and 
then, applying early fusion for the two streams and training 
the whole pipeline jointly end-to-end. Experimental results 
prove that training the pipeline together end-to-end with fine-
tuning the optical flow for the objective of action detection 
improves detection performance appreciably. This model is 
inspired by YOLOv2. 

VII. CONCLUSION 

This paper has presented an expanded overview of various 
works done in action classification, temporal action detection, 
and spatiotemporal action detection. Although various on-
body sensors are used to understand and label human action 
recognitions, this paper focuses on visual sensor inputs. Video 
data is available in abundance and can be effectively utilized 
for action recognition. The process of action recognition 
comprises two main tasks, namely, action classification and 
action localization. The former involves assigning labels to 
instances of action in a video, and the latter defines the 
temporal and spatial bounds. Action recognition tasks are 
challenging due to the lack of complete datasets and high 
computational cost levels. Significant research has made 
action recognition a less cumbersome process. A concise 
summary of multiple datasets employed for action recognition 
has been presented in the paper. The most used datasets are 
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compared based on several acting classes, data size, nature of 
video clips, and their aim. Among the available datasets, the 
Kinetics 600 dataset has the maximum number of action 
classes. Although this dataset offers high variation in action 
types, the videos are trimmed and do not depict real-life 
scenarios. Contrarily, the ActivityNet dataset offers 200 action 
classes with untrimmed videos and is a better depiction of 
real-life activities. 

Most of the recent algorithms can localize action in long 
untrimmed videos with limited computational capacities. The 
creation of better datasets can significantly improve the 
performance of these algorithms. The introduction of Single 
Stream Deep Neural Networks profoundly enhanced the 
performance of action recognition algorithms. Although this 
was a considerable breakthrough, these networks had trouble 
capturing the motion features. It was after this invention that 
deep learning started to be widely used for action recognition 
purposes. Later, the introduction of Two Stream Networks 
made it possible to capture the motion features effectively. 
Even then, these networks still had a shortcoming of not being 
end-to-end trainable and fast. LSTMs and 3D convolution 
networks' proposal made it possible to develop end-to-end 
trainable, real-time action recognition systems. In the future, 
the performance of action recognition systems can be 
significantly increased with the creation of publicly available 
datasets that contain more action classes with untrimmed 
videos. Recognizing actions for specific use cases would be 
much more comfortable with the availability of task-specific 
datasets. Apparent and standardized documentation of the 
action recognition methodology would further help make 
more robust models. Considering a broader set of features and 
input from multiple sensors while creating models will also 
significantly improve action recognition systems' 
performance. The utilization of a range of sensors alongside 
vision based sensors will drastically improve the performance 
of deep learning models for action recognition purposes. 
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