
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

624 | P a g e

www.ijacsa.thesai.org

Design and Implementation of a Strong and Secure

Lightweight Cryptographic Hash Algorithm using

Elliptic Curve Concept: SSLHA-160

Bhaskar Prakash Kosta
1

Research Scholar, Computer Science and Engineering

Department, GITAM Institute of Technology, GITAM

Deemed to be University, Vishakapatnam, AP, India

Dr. Pasala Sanyasi Naidu
2

Assoc Professor, Computer Science and Engineering

Department, GITAM Institute of Technology, GITAM

Deemed to be University, Vishakapatnam, AP, India

Abstract—Cryptographic hash function assumes a

fundamental job in numerous pieces of cryptographic algorithm

and conventions, particularly in authentication, non-repudiation

and information trustworthiness administrations. A

cryptographic hash work takes a commitment of optional

tremendous size message and conveys a fixed little size hash code

as a yield. In the proposed work SSLHA-160 (a strong and secure

lightweight cryptographic hash algorithm), each 512-digit square

of a message is first diminished to 256-bit. A cryptographic hash

work takes a contribution of discretionary enormous size

message and delivers a fixed little size hash code as a yield. In the

proposed work SSLHA-160 (A strong and secure lightweight

cryptographic hash algorithm), each 512- digit square of a

message is first diminished to 256-bit and afterward partitioned

into eight equivalent block of 32 pieces each and each 32-cycle

block is additionally separated into two sub-block of 16-piece

each. These two sub-blocks go about as two purposes of an

elliptic curve, which are utilized for computing another point

which is of 16 pieces. The new point esteems are thusly handled

to produce message digest. SSLHA-160 is easy to develop, simple

to actualize and displays solid torrential slide impact (avalanche),

when contrasted with SHA1, RIPEMD160 and MD5.

Keywords—Cryptography hash function; message digests;

authentication; elliptic curve concepts

I. INTRODUCTION

Authentication is a significant idea in information security,
and one method of accomplishing this by utilizing hash
function. A Hash function is a mathematical function that
maps a message of variable size into a small-length esteem
called message digest. Message digest is likewise alluded to as
a synopsis of the information or unique mark of the
information. One direction hash function is a variation of the
message authentication code. A single direction hash function,
otherwise called a message digest, is a numerical function that
takes a variable-length input string and converts it into a
small-length arrangement that is computationally hard to
alter—that is, going in back direction is impossible create the
information from the hash. Hash code is created from all the
pieces of the message any blunder in the message can without
much of a stretch be distinguished from hash code as little
change made in the message brings about huge modification
in the hash code. Message confirmation and gadget
verification can be accomplished through this hash code or
message digest. Likewise message verification is said to

secure the respectability of a message, for example the
message that is gotten is showing up in a similar frame as send
by the sender with no alteration done by clients with
vindictive aim. With digital signature well source of messages
can be verified. At the point when responsibility for
computerized signature mystery key is bound to a particular
client, a substantial digital signature gives an affirmation that
the message was send by the right client. Sender validation
gets significant in monetary and in light weight scenario. This
paper is coordinated as follows. Area 2 gives a diagram of
cryptographic hash capacities. In Area 3, proposes a strong
and secure lightweight cryptographic hash algorithm SSLHA-
160, planned dependent on elliptic curve ideas. Area 4
presents results and conversations. The investigation of
SSLHA-160 is talked about in Area 5. Area 6 closes by
indicating the straightforwardness of calculation.

II. OVERVIEW OF CRYPTOGRAPHIC HASH

FUNCTION

Hash functions are as of now alluring subject of
examination. Especially data security area consistently
searches for new ways to deal with plan the safe hash
capacities. There are endless hash works that have been
created like (Venkateswara Rao Pallipamu, K Thammi Reddy,
P Suresh Varma 2014 ASH-160 [1], Venkateswara Rao
Pallipamu, K Thammi Reddy, P Suresh Varma 2014 : ASH-
512 [2], and Venkateswara Rao Pallipamu, K Thammi Reddy,
P Suresh Varma 2016 :ASH-256 [3] Some of the renowned
hash work are examined beneath:

A. The MDx Family

The MD calculations are generally used to create an
advanced mark from a message. MD2 [14] was created in
1989 for 8-digit encoders. It cushions the message to be
encoded until it is a various of 16 bytes long, affixes a 16-byte
checksum, and computes the hash. MD4 [12] was created in
1990 for 32-digit encoders. The MD5 [13] message-digest
calculation which yield a MD of 128 bit, but it also has
shortcoming [19] [20] [22]. Starting at 2019, MD5 keeps on
being generally utilized, despite its all-around recorded
shortcomings and expostulation by security specialists.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

625 | P a g e

www.ijacsa.thesai.org

B. The RIPEMD Family

RIPEMD is a gathering of hash work which is created by
Hans Dobbertin, Antoon Bosselaers and Bart Preneel in 1992.
RIPEMD-160 [4] is a 160-bit cryptographic hash function. It
was, intended to be used as a secure replacement for the 128-
bit hash function MD4, MD5 and RIPEMD. RIPEMD was
developed in the frame work of the EU project RIPE (RACE
Integrity Primitives Evaluation, 1988-1992). RIPEMD-160 is
a strengthened version of RIPEMD with a 160-bit hash result.

C. The HAVAL Algorithm

HAVAL is a cryptographic hash work. In contrast to MD5,
yet like most current cryptographic hash capacities, HAVAL
can create hashes of various lengths – 128 pieces, 160 pieces,
192 pieces, 224 pieces, and 256 pieces. HAVAL additionally
permits clients to indicate the quantity of rounds (3, 4, or 5) to
be utilized to create the hash. HAVAL was broken in 2004.
HAVAL was imagined by Yuliang Zheng, Josef Pieprzyk, and
Jennifer Seberry in 1992

D. The SHA Family

The Secure Hash Algorithm (SHA) was developed by the
National Institute of Standards and Technology (NIST) and
published in 1993. A revised version was issued as FIPS PUB
1809-1 in 1995 [5] [6]. This is generally referred as SHA-1.
SHA is based on the MD4 algorithm. SHA works by taking
care of a message as a bit string of length under 2

64
 pieces,

and creating a 160-piece hash esteem known as a message
digest. Various version of SHA are SHA-0 (first form, but
had loop hole [21], SHA-1 made by National Security
Agency but had cryptographic flaw, SHA-2 and SHA-3
[16],[17],[18].

III. STRONG AND SECURE LIGHTWEIGHT

CRYPTOGRAPHIC HASH ALGORITHM USING ELLIPTIC CURVE

(SSLHA-160)

The proposed calculation is named as SSLHA-160. This
calculation SSLHA-160 (A strong and secure lightweight
cryptographic hash algorithm) accepts a message as
contribution with a most extreme length of under 2

64
pieces

and creates a 160-piece message digest as yield [10], [11].
First the info message is divided into squares of 512 pieces.
This 512 pieces is taken as info, at that point the information
is diminished from 512-digit squares to 256-bit blocks. The
Hash code creation function acknowledges two sources of
info which are 512 pieces square of the message and the
initialize MD buffer (fastening variable 160-bits). The cycle
comprises of the accompanying advances:

A. Append Cushioning Pieces

The message is cushioned so its length is consistent to 448
modulo 512 (length = 448 mod 512). Cushioning is
constantly done, regardless of whether the message is of
wanted length. Hence, the quantity of cushioning pieces is in
the scope of 1-448. The cushioning comprises of a solitary 1
followed by the important number of 0's.

B. Append Length

A square of 64 pieces which contains the length of the
message (prior to cushioning) is affixed to the message. This

square is treated as an unsigned 64-bit number (most huge
byte first).

C. Initialize MD Cushion

A 160-piece cushion is utilized to hold transitional and
end-product of the hash work. The support can be spoken to
as five 32-digit registers (S0, S1, S2, S3 and S4) .These
registers are instated to the accompanying 32-bit numbers
(Hexadecimal qualities):

S0 = 67 45 23 01

S1 = ef cd ab 89

S2 = 98 ba dc fe

S3 = 10 32 54 76

S4 = c3 d2 e1 f 0

These qualities are same as the underlying vector
estimations of SHA-1 which are normalized by Federal
Information Processing Standards Publications (FIPS PUBS).
These qualities are put away in big endian design, which is
the main byte of a word in the low-address byte position.

D. Processes Message in 512-Bit Blocks

The Hash code generation method comprises of five sub
function. This part is named (HSSLHA-160) in Fig. 1 and its
rationale is appeared in Fig. 2. Fig. 1 portrays the general
preparing of message to create a message review [7]. The
result of the initial two stages (after add cushioning pieces and
attach size) outputs a message that is a number multiple of
512-piece long. The extended message is spoken to as the
grouping of 512-cycle blocks X0, X1,X2 …XL-1, so the
complete size of the extended message is L × 512 pieces (L =
the quantity of 512 bit blocks), that is the consequence of
different of sixteen 32-bit blocks. Here K speaks to the
genuine length of the message in pieces; "IV" is the
underlying vector which is utilized to introduce the five 32-
cycle registers (S0, S1, S2, S3 and S4). VC1, VC2, … VCq…
and VCL-1 speak to instate MD(carry vector) which holds
middle of the road and eventual outcome of the Hash work,
individually. Each round takes two information sources one
512-cycle block (Xq) of the message and a 160 piece convey
vector (VCq). Toward the finish of the Lth stage produces 160
piece message digest. At first the given message is isolated
into 512-digit blocks, and each square is passed to Hash Code
creating function (HSSLHA) as a contribution alongside the 160-

piece vector.

Fig. 1. Hash Code Creation using SSLHA-160.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

626 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Rationale of Hash Work (Compression Work).

The Hash work (HASSH160) rationale is:

Alteration function(Afn) changes over the given 512-bit
block into altered 256-digit block.

Concatenation function(Cfn) changes over the given 160-
piece vector into CONCATENATED 256-bit vector.

32-digit XOR operation(XORop) performs XOR procedure
on each 32-pieces of changed 256-bit block and concatenated
256-bit vector.

Segregation and Modification operation(Sop) isolates the
256-bit block into 8 sub-block of 32-bits each and then each
32 bit block is separated into four 8-bit block, after that it
modifies each eight bit block. This process is repeated for all
32 bit block.

New Point(on elliptic curve) estimation work (NPfn)
computes new point on elliptic curve utilizing 32-bit block.

where,

 Xq = the qth 512-cycle square of the message.

 VCq = anchoring variable prepared with the qth square
of the message.

 Afn = Alteration function.

P=(xx1,yy1) and Q=(xx2,yy2)

Fig. 3. Elliptic Curve Representation of Two Points.

 Cfn = Concatenation function.

 XORop = XOR(Exclusive-OR) activity performed on
each 32-cycle square of the changed 256-digit block
(Xq) and relating 32-pieces of the extended 256-bit
block (VCq).

 Sop = 256-bit square can be isolated into 8 sub squares
of 32-bits each and then each 32 bit block is separated
into four 8-bit block, after that it modifies each eight bit
block..

 NPfn = first 32-bits further partitioned into 2 sub
squares of 16-bits each.

First sub square = 16 pieces, partitioned into two sub
squares (8-bits, 8- bits) = (xx1, yy1).

Second sub square = 16 pieces, partitioned into two sub
squares (8-bits, 8-bits) = (xx2, yy2).

The qualities (xx1, yy1, xx2, and yy2 as appeared in
Fig. 3) are changed over into whole numbers followed by
computing a new point on elliptic curve. The above process is
redone for remaining seven 32-bit block and the end result is 8
sub block each of 16 bits. Now each of this 8 sub block each
of 16 bit is altered ,the first 8-bit of first block is XOR with a
8-bit sub block which are all zeros, the result is stored in first
8-bit sub block. The second 8-bit sub block of first block is
added with first 8-bit sub block and result is stored in second
8-bit sub block and the process is repeated for all 8-bit sub
block. The result is formatted 128 bit block. Now adjacent sub
block each 16 bits are added which results in a sub block of 32
bit and we get four 32 bit sub block. By performing some
mathematical operation on above four computed 32 bit sub
block and then XOR them results in the fifth 32 bit sub block.
This five 32 bit sub block when joined amounts to 160 bit and
when added with initialized MD buffer forms the hash code.
This 160 bit hash code will be the input to next 512 bit of
message i.e. it will act as initialize MD buffer for next 512 bit
of the input message. The last 160 bit code generated from last
512 bit of message will be the final hash code which will act
as authentication code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

627 | P a g e

www.ijacsa.thesai.org

a) Alteration function(Afn): Each 512-bit block of

information is separated into 64 sub-blocks involving 8-pieces

of each sub-block. One brief exhibit of size 8 (Tempx8[]) is

taken and instated with zeroes. The modification work

comprises of two sub functions as demonstrated as follows:

Sub-function-1: Initially, the above aftereffect of Tempx8[
] is XOR with the initial 8-pieces of the 512-bit block of
message to create the initial 8-pieces of adjusted message. In
resulting step this Tempx8[] is augmented by 1 and is XOR
with the following 8-pieces of the message to create the
following 8-pieces of altered message as spoken to in Fig. 4.

Fig. 4. Operation of Sub-Function-1.

Sub-function-2: The above result is again divided into sub
block of 8 bits and 1st 8-bit sub block and middle 8-bit sub
block after bitwise complimenting(~) are XOR and the result
is again bitwise complimented(~) and stored in a separate
array(W2). The above process is repeated for second 8-bit sub
block and middle plus one 8-bit sub block and result is stored
in second part of separate array(W2). This is repeated for all
remaining 8-bit sub block. The result is 512 bit block is
reduced to 256 bit block. The modified message as depicted
below:

int ModInp(vector<int> m, int n)
{
int i,j=0,p,q,k1,T=0;
p=n;
n*=64;
for (i=n;i<n+64; i++)
{
 W[i]=T ^ m[i] ;
 T++;
}
j= ((i+n)/2) ;
q=j;
for (i=n;i<q+n; i++)
{
 W2[k1]=~(~(W[i]) ^ ~(W[j]));

 k1++;
 j++;

 }
return 0;
}

b) Concatenation function (Cfn): The 160-piece Initial

Vector (IV) is one of the contributions to the hash code

creation function (HSSLHA). It tends to be extended to 256-bits

by connecting all underlying vector esteems in roundabout

way, which is called Concatenated Vector (VC). The

connection cycle is appeared in Fig. 5.

Fig. 5. Concatenation of 160-Bit Block (IV) to 256-Bit Block (CV).

c) 32-bit XOR operation (XORop): XOR activity is

performed on initial 32-bit sub-squares of altered 256-cycle

block and extended 256-bit block. For this first four 8-bit

block are expanded and added so that it becomes 32 bit block.

Then this 32-bit block is XOR with first 32-bit of expanded or

initialize MD buffer of 256-bit block. This process is repeated

for rest of the bits of modified 256-bit and expanded 256-bit

block. The result is 256-bit block as shown below:

for (t1 = 0; t1 < 8; t1++)
 {
 W3[t1] = (W2[4 * t1] << 24) + (W2[4 * t1 + 1]

<< 16) + (W2[4 * t1 + 2] << 8) + (W2[4 * t1 + 3]) ;
 if(t1==0)
 W3[t1]=((W3[t1]) ^ (E)) ;
 if(t1==1)
 W3[t1]=((W3[t1]) ^ (D)) ;
 if(t1==2)
 W3[t1]=((W3[t1]) ^ (C)) ;
 if(t1==3)
 W3[t1]=((W3[t1]) ^ (B)) ;
 if(t1==4)
 W3[t1]=((W3[t1]) ^ (A)) ;
 if(t1==5)
 W3[t1]=(W3[t1]) ^ (E) ;
 if(t1==6)
 W3[t1]=((W3[t1]) ^ (D)) ;
 if(t1==7)
 W3[t1]=(W3[t1]) ^ (C) ;
 }

d) Segregation and Modification Operation(Sop): Each

32-digit square of the above outcome is additionally

partitioned into 2 sub-squares of 16-bits each. Then each 16-

bit block is separated into two 8-bit sub block, each of these

eight bits are modified that is First the four bits are taken from

the 8-bit value starting from least significant position then it is

XOR with a variable1(km) whose value is zero, the result is

kept in a variable2(km1) also the value of variable1(km) is

updated i.e. it is given the value of variable2(km1). After

completing the above step again from 8-bit value(input), four

bits starting from most significant bit is stored in

variable3(km2) and variable 3 is altered by performing a XOR

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

628 | P a g e

www.ijacsa.thesai.org

with variable1(km). The input i.e. 8-bit value is recomputed

by storing the value of variable3(km2)(four bits starting from

least significant position) in four bits starting from most

significant position and next four bit of initial eight bit(input)

stating from least significant position gets the bits from

variable2(km1) (four bits starting from least significant

position) so this way the 8-bit of input is modified . The same

procedure is adopted for remaining three 8-bit values

generated from 32 bit that is

B1 = (W3[t] >> 8) & 0xff; Second eight bit number
generated from 32 bit number
A2 = (W3[t] >> 16) & 0xff Third eight bit number
generated from 32 bit number
B2 = (W3[t] >> 24) & 0xff Fourth eight bit number
generated from 32 bit number
A1 y1
int mod_Int2(int y1)
{
 int i,j,km=0,km1=0,km2=0;
 km1=y1 & 0xf;
 km2=(y1 >> 4) & 0xf;
 km1= km1 ^ km;
 km= km1;
 km2= km2 ^ km;
 y1 = (km2<< 4) + (km1);
 return y1;
}

A similar system is followed for remaining seven 32-digit
blocks.

e) New Point (on elliptic curve) Estimation Work

(NPfn): Each 32-bit block is separated into two sub blocks of

same length. These sub blocks act as two points of a elliptic

curve which are used in new point estimation in elliptic curve

[8],[9],[15] as shown in Fig. 3. First by using two points slope

of line is calculated the this slope value (M) is used in the

calculation of new X and Y axis point on elliptic curve. The

resultant new point is 16 bit value i.e X axis is 8 bits and Y

axis is 8 bits so both taken together is 16 bit sub block. A total

of 8 16-bit sub block are generated after new point calculation.

Now this new points are modified by performing XOR on new

points. Each 8-bit sub block is XOR with its adjacent 8-bit sub

block except first 8-bit sub block which is XOR with a 8 bit

sub block of all zeros. After above operation adjacent sub

blocks are added in such a way that it becomes 32 bit sub

block. Repeating this, results in four 32-bit sub block.

Slope of line in elliptic curve (for Real) is calculated as

where (xx1,yy1) and (xx2,yy2) are points on elliptic curve.
New point on elliptic curve for reals are calculated using the
following formula

x3(new point) = (slope(λ))2 - xx1 - xx2

and

y3(new point) = slope(λ) * (xx1-xx2) – yy1

the above formula is for the case when x1 != (not equal to)
x2 (this is assumed that x1 is not equal to x2)

f) Output: The 160-bit hash code is obtained by

attaching four 32 bit sub block obtained in above process and

the final 32-bit sub block is obtained by using the above four

32-bit sub block as shown below:

E=~ (A) ^ (B>>5) ^ ~(C) ^ ~ (D <<5)

160-bit message digest = A + B + C + D + E

All hexadecimal numbers are replicated into convey vector
(or instate MD cushion), which is the message overview of a
given message (if the message size is 512-bit block) in any
case the above cycle is rehashed until the last 512-digit square
of the message.

Table I representation of input message before padding in
hexadecimal and Table II representation of input message
after padding in hexadecimal.

TABLE I. REPRESENTATION OF INPUT MESSAGE BEFORE PADDING IN

HEXADECIMAL

Ex:. Message ―I am from Jabalpur working hard for kits
singapur‖
Characters count 41.
Bit count 328.

Before cushion (in Hexadecimal representation)

 49 20 61 6d 20 66 72 6f 6d 20 6a 61 62 61 6c 70
 75 72 20 77 6f 72 6b 69 6e 67 20 68 61 72 64 20
 66 6f 72 20 6b 69 74 73 20 73 69 6e 67 61 70 75

72 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TABLE II. REPRESENTATION OF INPUT MESSAGE AFTER PADDING IN

HEXADECIMAL

After padding:(in Hexadecimal representation)

49 20 61 6d 20 66 72 6f 6d 20 6a 61 62 61 6c 70
75 72 20 77 6f 72 6b 69 6e 67 20 68 61 72 64 20
66 6f 72 20 6b 69 74 73 20 73 69 6e 67 61 70 75

72 80 00 00 00 00 00 00 00 00 00 00 00 00 01 88

g) Alteration function (Afn): Tempx8 = 0 implies a brief

exhibit instated with zeroes. XOR activity is performed on

every 8-digit square of above advance with Tempx8 by one.

First letter(I) decimal value 73 and hexadecimal equivalent is

49. Now 73 is XOR with Temp8 as shown below 73 binary

form is 01001001 and temp8 is 00000000 so modified first8-

bit block is 01001001 ^ 00000000 = 01001001.

Now Temp8 is incremented by 1 so it becomes 1 and next
input decimal value is 32 and hexadecimal equivalent is 20.
So the second 8-bit block is modified by XOR it with Temp8
i.e. 00100000 ^ 00000001 = 00100001(decimal equivalent 33)
this is the value of second 8-bit sub block and Temp8 is
incremented and XOR with third 8-bit sub block value and the
process continues till last 8-bit sub block of 512-bit block.

Once the 512-bit block of message is altered it again
subjected to modification i.e. the first 8-bit sub block value is
complimented and XOR with complimented (mid+1)8-bit sub
block value, the result is again complimented and stored in a
separate array(W2). Then the second 8-bit sub block value is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

629 | P a g e

www.ijacsa.thesai.org

complimented and XOR with complimented (middle+2)8-bit
sub block value, the result is complimented and stored in the
second location of array(W2) and the process continues for
rest of 8-bit sub block value till first half of input
message(after first step). The result is 512 bit block is reduced
to 256 bit block. The modified message as depicted:

The Alteration Step result

W2[0] = fffffff0 W2[1] = ffffff90
W2[2] = ffffffcc W2[3] = ffffff92
W2[4] = ffffff94 W2[5] = ffffffd0
W2[6] = ffffffd9 W2[7] = ffffffc3
W2[8] = ffffff92 W2[9] = ffffff8c
W2[10] = ffffffdc W2[11] = ffffffd0
W2[12] = ffffffda W2[13] = ffffffdf
W2[14] = ffffffc3 W2[15] = ffffffda
W2[16] = ffffffd8 W2[17] = ffffff2d
W2[18] = ffffffff W2[19] = ffffffa8
W2[20] = ffffffb0 W2[21] = ffffffad
W2[22] = ffffffb4 W2[23] = ffffffb6
W2[24] = ffffffb1 W2[25] = ffffffb8
W2[26] = ffffffff W2[27] = ffffffb7
W2[28] = ffffffbe W2[29] = ffffffad
W2[30] = ffffffba W2[31] = ffffff77

h) Concatenation function(Cfn): Connecting beginning

vector register an incentive in the accompanying design: (link

circularly S0 S1 S2 S3 S4 S0 S1 S2)

67 45 23 01
ef cd ab 89
98 ba dc fe
10 32 54 76
c3 d2 e1 f 0
67 45 23 01
ef cd ab 89
98 ba dc fe

i) 32- bit XOR operation (XORop): XOR activity is

performed on each 32-pieces of altered message with relating

32-pieces of extended beginning vector register esteems.

(Modified message) (Expanded vector) (Result)

ef8fcb92 c3 d2 e1 f 0 (S4) 2c5d2a62
93cfd8c3 10 32 54 76 (S3) 83fd8cb5
918bdbd0 98 ba dc fe (S2) 931072e
d9dec2da ef cd ab 89 (S1) 36136953
d72cfea8 67 45 23 01 (S0) b069dda9
afacb3b6 c3 d2 e1 f 0 (S4) 6c7e5246
b0b7feb7 10 32 54 76 (S3) a085aac1
bdacb977 98 ba dc fe (S2) 25166589

j) Segregation and Modification operation(Sop):

Separating the above result (256-bits) into 8 sub-block of 32-

bits each and then each 32 bit block is separated into four 8-bit

block, after that it modifies each eight bit block as shown in

Fig. 6. This process is repeated for all 32 bit block.

Fig. 6. Alteration of 8-Bit Value by Segregation and Modification

Operation.

The Result is

A1[0] is 42 B1[0] is 8a
 A2[0] is 8d B2[0] is ec

A1[1] is e5 B1[1] is 4c
 A2[1] is 2d B2[1] is b3

A1[2] is ce B1[2] is 77
 A2[2] is 21 B2[2] is 99

A1[3] is 63 B1[3] is f9
 A2[3] is 23 B2[3] is 56

A1[4] is 39 B1[4] is 0d
 A2[4] is f9 B2[4] is b0

A1[5] is 26 B1[5] is 72
 A2[5] is 9e B2[5] is ac

A1[6] is d1 B1[6] is 0a
 A2[6] is d5 B2[6] is a0

A1[7] is 19 B1[7] is 35
 A2[7] is 76 B2[7] is 75

k) New Point (on elliptic curve) calculation function:

Before calculating new point on elliptic curve the 32-bit block

is divided into four equal sub-blocks i.e 8-bit block as shown

in Fig. 7.

(xx1, yy1) and (xx2, yy2) bits are converted into integers.

for (t = 0; t < 8; t++)

{

A1 = W3[t] & 0xff; // A1=xx1

B1 = (W3[t] >> 8) & 0xff; //B1=yy1

A2 = (W3[t] >> 16) & 0xff; //A2=xx2

B2 = (W3[t] >> 24) & 0xff; //B2=yy2

M=(B2-B1)/(A2-A1); // Slope

A3[i]=(M*M)-A1-A2; //A3 = New point and method of

calculation.

A3[i]=A3[i]^T1; // New point altered by XOR it with it

adjacent (previous) new point except first new point which is

XOR with a array of size eight with all zeros.

B3[i]=M * (A1-A2)-B1; // B3= New point and method of

calculation.

B3[i]=B3[i] ^ A3[i]; //New point altered by XOR it with it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

630 | P a g e

www.ijacsa.thesai.org

adjacent (previous) new

point except first new point which is XOR with a array of size

eight with all zeros.

 T1=B3[i];

 i++;

 }

The Result is

Calculated New Point value A3[0] is ffffff32

Modified New Point value A3[0] is ffffff32

Calculated New Point value B3[0] is ffffff2b

Modified New Point value B3[0] is 19

Calculated New Point value A3[1] is fffffeee

Modified New Point value A3[1] is fffffef7

Calculated New Point value B3[1] is ffffffb4

Modified New Point value B3[1] is 143

Calculated New Point value A3[2] is ffffff11

Modified New Point value A3[2] is fffffe52

Calculated New Point value B3[2] is ffffff89

Modified New Point value B3[2] is 1db

Calculated New Point value A3[3] is ffffff7e

Modified New Point value A3[3] is fffffea5

Calculated New Point value B3[3] is ffffff87

Modified New Point value B3[3] is 122

Calculated New Point value A3[4] is fffffece

Modified New Point value A3[4] is ffffffec

Calculated New Point value B3[4] is fffffff3

Modified New Point value B3[4] is 1f

Calculated New Point value A3[5] is ffffff3c

Modified New Point value A3[5] is ffffff23

Calculated New Point value B3[5] is ffffff8e

Modified New Point value B3[5] is ad

Calculated New Point value A3[6] is 3b3

Modified New Point value A3[6] is 31e

Calculated New Point value B3[6] is ffffff62

Modified New Point value B3[6] is fffffc7c

Calculated New Point value A3[7] is ffffff71

Modified New Point value A3[7] is 30d

Calculated New Point value B3[7] is ffffffcb

Modified New Point value B3[7] is fffffcc6

Fig. 7. Portrayal of Four 8-Bit Blocks from 32-Cycle Block.

where in A1 , B1 , A2 , B2 and result A3 , B3 are real
numbers. The result A3 and B3 each of 16-bit sub block are
altered, then adjacent A3 and B3 are added so that they

amount to 32 bit and added with S0(initialize MD buffer) in
circular manner to get first 32-bit of hash code of nth 512 bit
of message. The process is repeated for other three 32-bit part
of hash code. The last 32-bit of hash code is derived by
performing some mathematical operation i.e. first 32-bit block
A is bitwise complimented(~), the second 32-bit block B is
bitwise left shifted by 5 bit, the third 32-bit block C is bitwise
complimented(~)and the fourth 32-bit block D is first bitwise
right shifted by 5 bit and then bitwise complimented(~) then
all A,B,C and D are XORed as shown below.

for(i=0;i<16;i=i+2)

 {

 if(i<2)

 AA = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 if(i>=2 && i<4)

 BB = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 if(i>=4 && i<6)

 CC = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 if(i>=6 && i<8)

 DD = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 }

EE=~(AA) ^ (BB>>5) ^ ~(CC) ^ ~(DD <<5);

printf("\n %08x %08x %08x %08x %08x\n\n", AA, BB,
CC, DD, EE);

Result of above operation:

AA= 3217f843

BB= 53d9a622

CC= ec1e23ad

DD= 1a7f09c6

EE= 6c89d1e0

l) Output: The 160-bit hash code is made by joining

four 32 bit sub block obtained in above process and the final

32-bit sub block is obtained by using the above four 32-bit sub

block generated in above process as shown below:

EE=~(AA) ^ (BB>>5) ^ ~(CC) ^ ~(DD <<5);

The value of AA,BB,CC,DD,EE is 3217f843 53d9a622

ec1e23ad 1a7f09c6 6c89d1e0

Then the final hash code for 512 bit block of the message
is generated by adding (S0 , S1 , S2 , S3 , S4) to individual 32
bit of above result as shown below:

AA = S0 = S0 + AA;

BB = S1 = S1 + BB;

CC = S2 = S2 + CC;

DD = S3 = S3 + DD;

EE = S4 = S4 + EE;

final hash code: d3cef4e1 0a4cb54f 84d900ab 1a7f09c5

97a1d6d1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

631 | P a g e

www.ijacsa.thesai.org

All hexadecimal numbers are replicated into instate MD
buffer, which is the message condensation of a given message
in the event that it is a 512-digit block in any case the above
cycle is rehashed until the last 512-bit block.

For ex: If Elliptic curve new point is (8, 12), then the
binary form is

and its modified form is shown below

8 in its binary form is 00001000

12 in its binary form is 00001100.

8 cycle XOR operation is as per the following:

Step 1: Let AA1 be a array of size 8 and duplicate these

qualities into AA1.

AA1 [] = { 0, 0, 0, 0; 1, 0, 0, 0 };

Step 2: Let Tempx8 be an array of size 8 and introduce with

zeroes.

Tempx8 [] = {0, 0, 0, 0, 0, 0, 0, 0};

Fig. 8. Operation of Step3.

Step 3: Perform XOR operation on every 8-bits of AA1
and Tempx8:

{0 0 0 0 0 0 0 0}^{0 0 0 0 1 0 0 0} = {0 0 0 0 1 0 0 0}

Now 1
st
 8-bit sub block is modified to {0 0 0 0 1 0 0 0}

and Tempx8[]={0 0 0 0 1 0 0 0} and AA1[] takes the other
value of new point so AA1[] = {0 0 0 0 1 1 0 0}. Now XOR
operation is done between AA1[] and Temp which is shown
below.

{0 0 0 0 1 0 0 0} ^ {0 0 0 0 1 1 0 0} = {0 0 0 0 0 1 0 0}

Again the 2
nd

 8-bit sub block is modified i.e. it becomes {0
0 0 0 0 1 0 0} and tempx8[] changes its value i.e. Tempx8 []
= {0, 0, 0, 0, 0, 1, 0, 0}; as shown in Fig. 8 and the process
continues for all the other seven new point.

Step 4: Above operation results in 128 bits i.e. 8 sub block
of 16 bits. Here two adjacent sub block are taken and added in
such a way that the result is 32 bit sub block. the process is
shown.

for(i=0; i<16; i=i+2)

 {

 if(i<2)

 AA = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 if(i>=2 && i<4)

 BB = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 if(i>=4 && i<6)

 CC = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 if(i>=6 && i<8)

 DD = (A3[i] << 24) + (B3[i] << 16) + (A3[i+1] << 8) +

(B3[i+1]);

 }

The above process results in four 32-bit sub block. By
using this four 32-bit sub block fifth 32 bit sub block is
computed which is shown below:

EE=~(AA) ^ (BB>>5) ^ ~(CC) ^ ~(DD <<5)

The result for the message ―I am from Jabalpur working
hard for kits singapur‖ is 3217f843 (AA) 53d9a622 (BB)
ec1e23ad (CC) 1a7f09c6 (DD) 6c89d1e0 (EE)

After computing AA , BB , CC , DD , EE , this values are
added with individual 32 bits of initialize MD buffer (S0 , S1 ,
S2 , S3 , S4) to generate the new expended value for next 512
bit of the given message. The process is shown below

AA = S0 = S0 + AA;

BB = S1 = S1 + BB;

CC = S2 = S2 + CC;

DD = S3 = S3 + DD;

EE = S4 = S4 + EE;

AA, BB , CC , DD , EE values generated for last 512 bit of
the given message will be the hash code for authentication.

The hash code for the message ―I am from Jabalpur
working hard for kits singapur‖ is d3cef4e1 0a4cb54f
84d900ab 1a7f09c5 97a1d6d1

IV. RESULTS AND DISCUSSION

SSLHA-160, RIPEMD 160, MD5 and SHA-1 when
implemented in and run on windows 7 32bit, processor 2.00
Giga Hz with 2 GB of internal memory.

Input String: ―The student tried hard but failed in the
exam‖.

Output (Hash Code): 293967e0 a2141c90 93f12216
b2467106 ed0c49d0.

When the given message is slightly changed, this results in
huge alteration in the yield due to the avalanche effect, which
is a property of Hash function. For example, when the word
exam is changed to rxam i.e. a single letter is changed this
produces a hash code which differs from the original hash
code by 92 bit out of 160.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

632 | P a g e

www.ijacsa.thesai.org

Input String: ―The student tried hard but failed in the
rxam‖.

Output (Hash Code): fab3ee1b facc7548 dc39da9e
0afec9be be86d00b

293967e0 :0010 1001 0011 1001 0110 0111 1110 0000
fab3ee1b : 1111 1010 1011 0011 1110 1110 0001 1011

 --
 3 2 1 2 1 2 4 3

a2141c90 :1010 0010 0001 0100 0001 1100 1001 0000
facc7548 : 1111 1010 1100 1100 0111 0101 0100 1000

--
 2 1 3 1 2 2 3 1

93f12216 : 1001 0011 1111 0001 0010 0010 0001 0110
dc39da9e: 1101 1100 0011 1001 1101 1010 1001 1110

 --
 1 4 2 1 4 1 1 1

b2467106: 1011 0010 0100 0110 0111 0001 0000 0110
0afec9be: 0000 1010 1111 1110 1100 1001 1101 1110

--
 3 2 3 1 3 1 3 1

ed0c49d0: 1110 1101 0000 1100 0100 1001 1101 0000
be86d00b: 1011 1110 1000 0110 1101 0000 0000 1011

 --
 2 2 1 2 2 2 3 3

Total number of bit changed is: 18+14+15+17+17 =81 bit
out of 160 bits. When the same experiment was done on SHA-
1 it also showed avalanche effect, but only 76 bits changed, in
case of MD5 74-bits (57-bits for 128 bits message digest) and
in case of RIPEMD-160 82 bits changed as shown in Fig. 9.

Fig. 9. Avalanche Effect is Demonstration for the Message ―The Student

Tried Hard but Failed in the Exam‖ and ―The Student Tried Hard but Failed in

the Rxam‖.

Table III shows the message digest produced by four
algorithm (SSLHA160, SHA-1, RIPEMD160 amd MD5) for
the message ―The student tried hard but failed in the exam‖.
The aftereffect of Table III is utilized for computing avalanche
impact appeared in above Fig. 8. Table IV shows the
adjustment in message digest when the message in Table III is
modified for example exam is supplanted with dxam, SSLHA-
160 produces a message digest with change of all hexadecimal
qualities aside from 9,6 and c(starting from left shown in
intense), SHA-1 yield is a hash code with change of all
hexadecimal qualities aside from 5,7,e,f and 5(starting from
left shown in intense) and RIPEMD 160 produces a message
digest with change of all hexadecimal qualities aside from 8
and 5(starting from left shown in strong) and Table V shows
the adjustment in hash code when the message in Table III is
modified for example exam is supplanted with fxam, SSLHA-
160 produces a message digest with change of all hexadecimal
qualities aside from 2 and e(starting from left appeared in
striking), SHA-1 yield is a hash code with change of all
hexadecimal qualities aside from 3(starting from leftshown in
intense) and RIPEMD 160 produces a message digest with
change of all hexadecimal qualities aside from b,0,0 and
5(starting from left shown in strong). So on an average
SSLHA-160 shows similar result when any character is
changed. The result is better than SHA160 and RIPEMD160
as shown in Fig. 10.

TABLE III. RESULT

Algo/Input : ―The student tried hard but failed in
 the exam‖
 SSLHA160: 293967e0 a2141c90 93f12216
 b2467106 ed0c49d0
 SHA1: d6574b20 5ecbfcec 90161a3f b5fb335a 2d20ed77
 RIPEMD160 : 996c99e3 8f901582 3b3bb008
 c0f452bf 42ff27bc
MD5 :6fa7ff78 11a4814a d4a0699e 7df98253

TABLE IV. RESULT (IN INPUT EXAM CHANGED TO DXAM)

Algo/Input: ―The student tried hard but failed in
 the dxam‖
 SSLHA160: d8596efa 5660515c c8a56eca
 6692a5d2 9c2c50ea
 SHA : 2f5798c9 fe6025a8 a648850e eaf42750
 474b9bce
 RIPEMD160: 51a8d28a 86b7344f b54efa6f
 a1dc5609 8f2216fd

TABLE V. RESULT (IN INPUT EXAM CHANGED TO FXAM)

Algo/Input : ―The student tried hard but failed in the
 fxam‖
SSLHA160: 20a60123 f3c16e3d e144d5a9 03f3c2b3
 e478e313
SHA1: 8086fa8b 3f5cd5da db0cd33d 5496a8b1
 e954ac0b
RIPEMD160: b6363eac 49652c09 9c0bdd07
 60a05bd6 e3d5759b

70

72

74

76

78

80

82

84

SSLHA-160 SHA-1 RIPEMD-160 MD5

N
u

m
b

e
r
 o

f
b

it
s

c
h

a
n

g
e
d

Schemes

Avalanche effect

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

633 | P a g e

www.ijacsa.thesai.org

Fig. 10. Comparing Three Algorithm with Two Inputs (Exam is Replaced by

Dxam and Fxam).

V. ANALYSIS OF SSLHA-160

A. Security Analysis

The hash work SSLHA-160 means to satisfy essentially
two targets, one is solid avalanche impact and another is one
way property (for example irreversible property of hash
work). The difference in a digit will mirror the difference in
the hash code by performing XOR activities as referenced in
Alteration capacity and XOR activity. In any case, XOR is
straight, and doesn't forestall differential assaults. Yet, change
of single piece mirrors a great deal of progress in hash code
(for our example 81 bit is changed). The one way property or
irreversibility property of hash value is achieved by new point
(on elliptic curve) estimation work as referenced in Section V.
The One way property is clarified underneath:

The yield of Section IV Segregation and modification
activity (Sop) Each 32-cycle square of the above outcome is
additionally partitioned into 2 sub-squares of 16-bits each.
Each 16-bits are modified i.e. it is separated into 8-bit each
then this 8-bit is altered, then this 8-bits goes about as a point
in the elliptic curve, for example initial 8-bits go about as X-
pivot worth and second 8-bits go about as Y-hub esteem. The
with the this four 8-bit values a new point on elliptic curve is
calculated , this new point is of 16-bits again it is partitioned
into two 8-bits sub block and each 8-bit sub block value is
modified. A similar system is followed for every one of the
32-bit blocks.

New point: The Calculated A3[0] value is ffffff32 and in

binary is 00110010

The Modified A3[0] value is ffffff32 and in

binary is 00110010

The Calculated B3[0] value is ffffff2b and in binary is

00101011

The Modified B3[0] value is 19 and in binary is 00011001.

Above way is adopted for calculating new point of
remaining sub blocks and then modify it, after modifying the
adjacent new point are added such that they becomes 32-bit
sub block. Repeating the process for rest of modified new
point’s results in four 32-bit numbers. By using this four 32-
bit sub block i.e. performing some mathematical operation and
XOR them results in fifth 32-bit sub block. The outcome is
linked and changed over to hexadecimal structure. In this way,
it shows the single direction(one way) property of SSLHA-
160 hash calculation.

Assaults not related with the calculation are:

Irregular assault- The likelihood of breaking this
calculation is 1/2160, the quantity of trails and the expected
values are the vital boundaries of this assault.

Birthday assault- The idea driving birthday assault came
from a well-known issue from probability theory, which is
called birthday paradox. By utilizing this idea assault on hash
capacity can be outlined. On the off chance that the length of
the Message digest is 160 pieces, at that point there are 2160
prospects. The Cryptanalyst produce two examples which are
P1 and P2 from digest, the estimated likelihood of two
examples is as per the following:

Assaults related on the calculation are:

Meet-in-the-middle assault- is a variant of the birthday
assault, here aggressor endeavors to locate any two q1 and q2
with the end goal that their hash esteems are equivalent to y =
h (q1) = h (q2). This assault is identified with discovering two
people with a similar birthday. Let x be the probability that
two person birthday are equal and x! be the probability that
the birthdays are not equal. Then the probability is defined as

1 – x! = x

Now suppose that there is only one person, then the
probability that his birthday is not same with any one is 1. If
there are two person then the probability that they have
birthdays on different dates are 1 * 364/365(considering year
to be of 365 days). Similarly if three persons are there then the
probability that they have birthday on different dates is 1 *
364/365 * 363/365. If we calculate for 9 persons i.e. the
probability that nine person have birthday on different dates
are:

1 * 364/365 * 363/365 * 362/365 ------9Person

When multiplied we get around 0.9 i.e. 90% which means
that the probability that out of nine person two persons having
birthday on same date is 10%. Going in the same way when
we calculate probability for 23 person having birthday on
different dates we get around 49.9% and the probability that
two persons out of 23 having birthday on same date will be
greater than 50%. One expects lower probability as there are
23*22/2 = 253 pairs of persons.

The birthday paradox can be utilized for assaulting hash
capacities. An enemy produces q1 varieties of a sham message
and q2 varieties of a veritable message; n is the quantity of

33

34

35

36

37

38

39

40

SSLHA-160 SHA-1 RIPEMD-160

N
o

 o
f

H
ex

a
d

e
c
im

a
l

v
a

lu
e
s

c
h

a
n

g
e
d

 o
u

t
o

f
4

0

Algorithm with two inputs change(d,f)

d

f

Message: “

 Compared with
d : ―

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

634 | P a g e

www.ijacsa.thesai.org

pieces of a hash esteem. At that point, the likelihood of
finding a sham message and a certified message as follows:

 (

)

Remedying block assault - The analyzer takes a message
and its hash code on which he attempts to change the block a
few times and notices the summary(digest) remaining parts
same or not.

Differential assault - The rule of an assault is the
investigation of social contrasts among information and yield.
An impact happens if the difference is zero.

B. Performance Analysis

These three calculations SSLHA-160, SHA1 and MD5
were tried for comparison dependent on the execution time
necessities as shown in Fig. 11, Fig. 12 and Fig. 13. All the
calculations have been actualized in C/C++ and run on
windows 7 32-bit, CPU 2.00 GHz with 2 GB of internal
memory. With the aftereffects of the analysis, it was
discovered that SHA1 and MD5 requests more execution time
than SSLHA160 to create hash code.

The result in above Fig. 14 demonstrates time taken by
three algorithm (SSLHA160, SHA1, and MD5) for generating
message digest for the message ―I am from Jabalpur working
hard for kits singapur‖.

Fig. 11. Time Taken by SSLHA160 for Executing ―I am from Jabalpur

Working Hard for Kits Singapur‖.

Fig. 12. Time Taken by MD5 for Executing ―I am from Jabalpur Working

Hard for Kits Singapur‖.

Fig. 13. Time Taken by SHA-1 for Executing ―I am from Jabalpur Working

Hard for Kits Singapur‖.

Fig. 14. Examination of SSLHA160, SHA1 and MD5 Concerning Time

Taken to Execute the Message ―I am from Jabalpur Working Hard for Kits

Singapur‖ i.e. 41 Bytes.

VI. CONCLUSION

The necessity for new hash plans is expanding to make
security viewpoints solid, for example, validation, message
honesty and secrecy as for present status of web as web
conditions are much of the time evolving. The specialists in
cryptography should invest solid energy to concoct better plan
measures utilizing which long haul and powerful security can
be given by hash capacities. The proposed hash work, A
strong and secure lightweight cryptographic hash algorithm
(SSLHA-160) is created utilizing elliptic curve ideas which is
contrasted with different cryptographic hash capacities. The
center qualities of SSLHA-160 are XOR activities, bitwise
compliment , bitwise left and right shift and new point
estimation(for elliptic curve), which bring about solid
nonlinear avalanche impact, expanded dispersion in yield and
make differential assaults troublesome. Consequently it is
safer and simple.

REFERENCES

[1] Venkateswara Rao Pallipamu, K Thammi Reddy, Suresh Varma ―ASH-
160: A novel algorithm for secure hashing using geometric concepts‖
2014 Elsevier Ltd.

[2] Venkateswara Rao Pallipamu, K Thammi Reddy, P Suresh Varma
―ASH-512: Design and implementation of cryptographic hash algorithm
using co-ordinate geometry concepts‖ 2014 Elsevier Ltd.

[3] Venkateswara Rao Pallipamu, K Thammi Reddy, P Suresh Varma
―Design and implementation of geometric based cryptographic hash
algorithm: ASH-256‖ 2016 IJESRT

[4] Dobbertin H, Bosselaers A, Preneel B. RIPMEMD-160: a strengthened
version of RIPMMD. In: Gollmann D, editor. Fast software encrzptions,
LNCS 1039. Springer-Verlag; 1996. pp. 71 - 82.

[5] Federal Information Processing Standards Publication. Secure Hash
Standard (SHS). FIPS PUB; March 2012. pp. 180 - 4.

[6] Federal Information Processing Standards Publication. Secure Hash
Standard (SHS).MD 20899-8900: Information Technology Laboratory,
NIST; October,2008

[7] K Bhaskar Prakash, Pasala Sanyasi Naidu2 ―Strong and powerful
cryptographic scheme for Industrial Internet of Thing using pseudo
stream cipher, elliptic curve cryptography and trigonometric techniques
(An efficient scheme to detect COVID-19 patient from Quarantine
people) Solid State Technology Volume: 63 Issue: 6 Year: 2020

[8] Kahate Atul. Cryptography and network security. Tata McGraw- Hill;
2006.

[9] Swayam Course in Information Security(Swayam is a program initiated
by Government of India and designed to achieve the three cardinal
principles of Education policy viz, access, equity and quality)

0

0.005

0.01

0.015

0.02

0.025

0.03

SSLHA-160 SHA-1 MD5

T
im

e
 i

n
 (

m
ic

r
o

se
c
o

n
d

s)

Schemes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

635 | P a g e

www.ijacsa.thesai.org

[10] NIST. Secure Hash Standars. FIPS PUB; 2002. pp. 180 - 2.

[11] Preenel B. Cryptographic hash functions. Transactions on
Telecommunications 1994;5:431 - 48.

[12] Rivest RL. The MD4 Message Digest Algorithm. RFC 1320; 1992.

[13] Rivest RL. The MD5 Message Digest Algorithm. RFC 1321; 1992.

[14] Rivest RL. The MD2 Message Digest Algorithm. RFC 1319; 1992.

[15] Stallings William. Cryptography and network security: Principles and
practice. 3/e PH; 2003.

[16] Status Report on the First Round of the SHA-3 Cryptographic Hash
Algorithm Competition; September 2009. http://csrc.nist.gov/
publications/nistir/ir7620/nistir_7620.pdf.

[17] Status Report on the Second Round of the SHA-3 Cryptographic Hash
Algorithm Competition.http://csrc.nist.gov/publications/nistir/ir7764/
nistir-7764.pdf; February 2011.

[18] Third-Round Report of the SHA-3 Cryptographic Hash Algorithm
Competition.http://dx.doi.org/10.6028/NIST.IR.7896; November 2012.

[19] Wang X, Yu H. How to break MD5 and Other hash functions. In:
Cramer R, editor. EUROCRYPT 2005, LNCS 3494; 2005. pp. 19 - 35.

[20] Wang X, Feng XD, Lai X, Yu H. Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD. rump session, CRYPTO 04; 2004.

[21] Wang X, Yin Y, Yu H. Finding Collisions in the Full SHA-1. Lecture
notes in Computer Science. CRYPTO 2005 Proceedings, Vol. 3621;
2005. pp. 17 - 36.

[22] Wang X, Feng D, Lai X, Yu H. Collisions for hash functions MD4,
MD5, HAVAL-128 and RIPEMD. Cryptology ePrint archive; 2004.

