
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

SVM Machine Learning Classifier to Automate the
Extraction of SRS Elements

Ayad Tareq Imam1, Aysh Alhroob2
Faculty of Information Technology

Isra University, Amman, Jordan

Wael Jumah Alzyadat3
Faculty of Science and Information Technology

Al-Zaytoonah University, Amman, Jordan

Abstract—The process of extraction of software entities such
as system, use case, and actor from an English natural language
description of a user’s software requirements is a linguistic and
semantic process of a natural language processing application.
Entity extraction is known to be a complicated and challenging
problem by researchers in the fields of linguistics or
computation, due to the ambiguities in natural languages. This
paper presents a named entity recognition method called
SyAcUcNER (System Actor Use-Case Named Entity Recognizer),
for extracting the system, actor, and use case entities from
unstructured English descriptions of user requirements for the
software. SyAcUcNER uses one of the Machine Learning (ML)
approaches, that is, the Support Vector Machine (SVM) as an
effective classifier. Also, SyAcUcNER uses a semantic role
labeling process to tag the words in the text of user software
requirements. SyAcUcNER is the first work that defines the
structure of a requirements engineering specialized NER, the
first work that uses a specialized NER model as an approach for
extracting actor and use case entities from English language
requirements description, and the first time an SVM has been
used to specify the semantic meanings of words in a certain
domain of discourse; that is the Software Requirements
Specification (SRS). The performance of SyAcUcNER, which
utilizes WEKA’s SVM, is evaluated using a binomial technique,
and the results gained from running SyAcUcNER on text
corpora from assorted sources give weighted averages of 76.2%
for precision, 76% for recall, and 72.1% for the F-measure.

Keywords—Information extraction; named entity recognition;
machine learning; support vector machine; software requirement
specification; WEKA; I-CASE

I. INTRODUCTION
The system, use case, and actor are the main entities of the

Software Requirements Specification (SRS), which is an
unformatted Natural Language (NL) text description of a
system. The extracting of these entities is considered the first
step in the development of desired information system, as the
actors are the individuals that use the system like humans,
external software, etc., in which each actor has certain roles,
and the use cases are used to (1) identify the functional
requirements of the developed system that would be used by
actors, (2) design the system's architecture, (3) control the
implementation of the system, (4) verify and validate the
developed system via generating test cases [1].

Based on the above, the extracting of the system, actor, and
use case entities from SRS has been recognized as a key step in
analyzing software user requirements and it is achieved by
using systematic definitions of these entities [2]. Usually, a

manual approach, which was described algorithmically by [3]
and [4], is used to achieve the process of extracting SRS
elements.

Due to the unstructured style of the written SRS, certain
problems exist that impose a careful linguistic analysis by a
human to be accomplished properly. As a consequence, the
manual approach can be error-prone and time-consuming [5]
[6]. To facilitate and speed up the performing of extracting the
SRS elements from an unstructured and natural language-
formed user requirement text, a set of solutions have been
proposed to automate this process.

The previously proposed solutions for automating the
extraction of SRS fall into two approaches. The first one is the
production rules approach, which is, in general, has
shortcomings like vagueness, inefficiency (time-consuming
execution, intelligent interpreter, and difficulty to follow the
execution control), absence of learning ability, and the
resolution's conflict [7] [8] [9]. The second approach is the
connectionist approach – or the Artificial Neural Networks
(ANN), which is (in addition to be computationally expensive)
has some problems like the poor ability to predict, the
excessive training required for developing a solution, the long
time that is required to develop a network, and the
unexplainable answer (Blackbox) [10] [11]. ANN approach is a
Machine Learning (ML) method, which has other methods.
Because of the problems that ANN has, this paper proposes the
use of another ML method that is the Support Vector Machine
(SVM) method to automatically extract system, actor, and use
case entities from unstructured NL requirements text
documents in English.

An SVM is used to create a learning model based on a
supervised learning approach that uses pre-labeled training data
to train the model to classify these data [12]. SVM is a non-
probabilistic binary classifier that categorizes data into several
classes. The binary classification SVM achieves classification
by mapping input data to classes (hyperplanes) in an N-
dimensional space based on a maximal margin, where N  is  the
number of features of a data point [12]. SVM is a very useful
classifier of undistributed data and irregularly distributed data,
which can be of different types like text, images, audio, and
other types. This is seen in the different and many real-world
applications where SVM is used such as sentiment analysis,
handwriting recognition, a cancer diagnosis.

Although there are many classification algorithms in
machine learning, yet, SVM has been shown to achieve

174 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

significantly better and more robust classification than other -
supervised learned- classification algorithms due to the
following outstanding properties [12] [13]:

1) SVM is distinguished in learning by:

• SVM has no overfitting problem.

• SVM can apply to semi-supervised learning models
also.

• SVM works stably and it generalizes well to data not
included in the training data set or that data that its
features would be changed. This is because the SVM
classification approach is principally reliant on a subset
of points only in its work to maximize the gap (margin)
between nearby points of classes. It means that only an
inliers subset of points is helpful and no need to
consider outliers points.

• SVM is a fast-learning algorithm as the kernel function
of SVM is performed for the classification per training
sample. Worthy to note that the Polynomial kernel was
proved as a better factor in SVM.

• SVM is robust, which is shown by its ability to produce
a unique solution.

2) SVM is more efficient in high n-dimensional space, in
cases where the number of samples is less than the number of
dimensions and is relatively memory efficient.

3) SVM delivers accurate results due to the following:

• The generated hyperplane creates a clear margin to
separate classes, and as the large margin is as a more
corrected classification of data would be gained. The
soft margin is used with non - linearly separable data
and the hard margin is used with linearly separable
data.

• The convex optimization nature of SVM makes the
answer a global minimum rather than a local minimum,
which in turn yields more optimality confidence in the
results.

4) SVM can be adapted to work with different data types.
This is because SVM has a built-in kernel function, which is a
technology that provides the ability to solve any complex
problem. Note that Kernel is a non-parametric (linear or
nonlinear) identifiable function that comes with different
forms depending on the data it operates on.

5) Generally, the SVM classifier has better computational
complexity than the other classifiers. SVM has a very little
execution time than the Artificial Neuron Network (ANN).
SVM has a faster prediction with better classification accuracy
than the Naive Bayes classifier. SVM has less time complexity
than the logistic regression classifier. SVM is more robust
than the logistic regression, just as there is some bias in the
training data set.

6) The availability of library SVM classifiers in many
programming languages and packages such as MATLAB,
Weka, and Python makes the work with SVM so easy.

As shown, the advantages of SVM make it an attractive
method that can be used instead of ANN. Worth mentioning
that SVM will underperform and being unsuitable when the
data sets are large has more noise (overlapped classes) and has
no clear probabilistic justification to have classification [12].
To achieve the goal of automating the extraction of SRS
elements, our work should answer the following research
questions:

• How can SVM be used to extract certain entities from
an unstructured text, and.

• What is the performance of a system that utilizes SVM
for extracting SRS elements?

Section 2 of this paper illustrates background theoretical
issues and Section 3 examines related works and approaches.
Section 4 describes the proposed approach, which is followed
by a discussion and evaluation of the experimental results in
Section 5, and finally, the conclusions, findings, and
recommendations are presented in Section 6.

II. BACKGROUND
This paper is about using the SVM machine learning

classifier as the main part of a Named Entity Recognition
(NER) system to automate the extraction of SRS elements.

NER is an ML-based process that is used to find and
classify names in unstructured or semi-structured texts. These
goals are achieved by annotating the words in the text words
with the names of categorized entities in the real world, such as
locations, places, organizations, companies, persons,
individuals, etc. Stanford CoreNLP [14] and the Apache
OpenNLP [15] are two well-known examples of NER that
extract real-world entities from a text. Also, there are NER
models for extracting beneficial information from biomedical
texts, such as mentions of proteins and genes and the
relationships between them [26]. There are two types of NER
methods: the first is an ontology-based NER, which strongly
relies on updates of knowledge to successfully distinguish
known terms and concepts in unstructured or semi-structured
texts [16], and the second is a deep learning NER, which aims
(in addition to recognizing terms and concepts) to cluster
words by using a word embedding technique that attempts to
understand both the semantics of a word and the syntactic
relationship between words [17]. As NER is a central
subfunction that extracts and classifies certain information
(names in a text) from either semi-structured or unstructured
text, it is considered an important sub-task of open information
extraction (OIE).

OIE is a process that creates a structured representation of
information in an unstructured or semi-structured text. The
resulting structured representation is usually in the form of n-
ary propositions [18]. OIE aims to extract all types of relations
that may exist in a text, whether these are pre-known relations
or under discovery. Based on this approach, OIE supports the
independent extraction of relations from small, large, and
heterogeneous corpora within a specific domain. Automation
of the OIE process needs to be efficient, to rely on
unsupervised extraction strategies, and to consider corpus
heterogeneity [19]. The OIE process is achieved by using

175 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

several types of NL processing approaches at the semantic
level, all of which function to infer the semantics of a word
from its particular linguistic attributes. These attributes are
linguistic annotations of a word and are used by a processing
technique to recognize a word's semantics (or connotation)
within a specific domain. Annotation, for example with part-
of-speech (POS) tags, is accomplished by using natural
language processing (NLP) tools such as parse trees, syntactic,
and dependency parsers [20] [9].

NLP is of great importance in creating human-machine
interfaces, and accordingly has become an attractive research
field, aiming to find and define algorithms, methods, and
approaches to give computers the ability to communicate with
a human via natural language [9]. NLP is dedicated to allowing
a computer system to perform analysis and comprehension, and
to specify the meanings of words or even statements that are
written in NL. NLP is a difficult issue in computer science; this
is due to the nature of NL, as it naturally suffers from the issues
of ambiguity and expressiveness, which easily lead to problems
with misunderstanding [21]. In general, working with NLP has
moved towards viewing the analysis processing of language as
being disintegrated into different sub-processes, illustrating the
theoretical linguistic singularity for each of the lexical,
syntactic, semantic, and pragmatic levels of NLP [20]. The
essential view is that the statements are first investigated
according to their syntax; this gives a structure that is
increasingly amenable to examination regarding semantics.
The next stage, which is a pragmatic analysis, aims to specify
the true meaning of the text or speech in the context. The three
core subprocesses are syntax, semantic, and pragmatic, all of
which serve as a starting point in the processing of texts
formed using NL [20]. The standard analysis stages in NLP are
[20] [9]:

1) Tokenization: The process of breaking up a sentence
into elements called tokens.

2) Lexical analysis: A process that aims to check whether
a word belongs to a language and to find the part of speech
(POS) for the word, or to reveal the class of a word (i.e., verb,
noun, or preposition). The lexical analysis also includes the
morphological processing of a word, which aims to isolate the
stem of the word and its affixes.

3) Syntactic analysis: This applies the grammar of the
language (using a parsing algorithm) to identify the legal
structure of the input statement.

4) Semantic analysis: This is the process of extracting the
exact meaning from the text.

5) Pragmatic analysis: This aims to infer the purpose of
the use of the word/text in situations and requires knowledge
about the domain of discourse. It is achieved by reinterpreting
the text as it really implies.

In short, the linguistic and semantic analysis of a text is
carried out either as a semantic analysis of the whole text as a
single unit or as a semantic analysis of individual words in a
text. The first approach is used to recognize the intention or
sentiment of a speaker, and the second is used to extract
specific information from a text, or in other words to convert
semi-structured and unstructured text to a structured form.

Here, NER has a key role in the semantic stage of NLP in
terms of extracting the meaning of words and sentences in
addition to their relationships.

III. RELATED WORKS AND APPROACHES
Automation of the manual approach to extracting actors

and use cases from software requirements statements shows
that several types of NLP tools and approaches have been used
for extracting certain semantics from software functional
requirements described in natural language.

The first approach described here is the use of the
production rules that govern linguistic properties to extract the
elements of the software requirements that are required to
develop each use case diagram and class diagram. This
approach was utilized by the UMGAR system [22]. A similar
technique known as a rule-based approach was proposed by
[23] for automatically extracting use cases and goal models
from unformatted, NL, and textual documents of requirements.
This approach combines a number of methods to detect goals
and the entities of use cases along with their relationships from
the textual document. The semantic parameterization of textual
specifications is used to guide the detection process of the
rules. Worth to report here that the Genetic Algorithm (GA)
can be utilized as a supporting step – for optimization
purposes- to select the best set of production rules that should
be manually created earlier. The approach can be seen in the
work of [24] to discover the best classification rules for the
Car, Zoo, and Mushroom classes, and the work of [25] that
used GA (with treebank) to develop a syntactic analyzer to
enhance the Parseval score of seed grammar rules.

Production rules may be supported by an NLP tool to
facilitate the development of more precise recognition rules. A
hybrid NLP tool that combines production rules with
predefined types of use cases and actors is used by [1]. Also, a
combined NLP and domain ontology approach was used in
RAPID, a scheme proposed by [26] that takes textual
requirements in NL form and extracts the primary concepts and
their relationships to create unified modeling language (UML)
diagrams.

An approach using a set of semantic heuristics rules to
generate the patterns used to extract the use case model, based
on a general NLP tool, was proposed by [27]. The software
requirements processed in this work are Arabic natural
language texts, and the generated patterns depend on the
sentence structure. The Stanford parser is the NLP tool utilized
in this approach. This scheme follows the work of [21], which
uses an open NLP tool called Semantic Business Vocabulary
and Rules to extract object-oriented models from user software
requirement specifications (SRS).

Conversion of the description of requirements from a
natural language form to structured natural language as a prior
step in utilizing other NLP analyzing processes is the approach
used by [28]. The conversion process is facilitated by an
elicitation process, both of which form part of an expert system
that elicits requirements from different stakeholders and
maintains a knowledge base that supports the future extraction
of certain elements from similar requirement descriptions. A
very similar approach is used by [29], who proposes an

176 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

approach that takes requirements in NL form and converts
them to an intermediate structured representation using
grammatical knowledge patterns and the dependency analyzing
of the requirements statements. This intermediate
representation is used to create a class diagram.

An approach using POS, pre-processing, and parsing to
extract certain UML models, called GUEST, is proposed by
[30]. This is a semi-automated rule-based approach that aims to
specify models of the goal and use case from unformatted
textual requirements documents. In this scheme, a number of
different techniques are utilized to discover and classify the
goals, use cases, and their relationships from a text, and
semantic parameterization of the textual specifications is
carried out. In two selected case studies, GUEST is used to
process software user requirements described in NL text, and
producing activity and sequence diagrams. A Recursive Object
Model (ROM) diagram is utilized to extract semantic
information from requirements by [31]. This extracted
semantic information then forms the elements required by
system modeling language (SysML), which is similar to UML,
to produce different system models.

Without denying the achieved results gained by supporting
the rule-based approach by GA, NLP tools, heuristic style, and
the modeling approach, the shortcomings of the rule-based
approach still exist. The general shortcomings of the rule-based
approach have been reported in the introduction. The best-
reported achievement of the rule-based approach is the one that
comes from the work of Marinos et al [1], which was 96% of
precision.

The alternative approach to the rule-based approach is the
connectionist approach that uses Artificial Neural Networks
(ANN) to elicit the SRS’s elements. This is a Machine
Learning (ML) approach that had been agreed as a good
solution to the problems accompanied by the rule-based
approach. ANN, together with Semantic Role Labeling (SRL),
was suggested by Al-Hroob et al [32] to extract the use case
and actor SRS entities from NL statements of user
requirements, as this work is the best-reported achievement
that is 47.2% of precision.

IV. PROPOSED SYACUCNER APPROACH
Examination of the related works and approaches described

above inspired us to seek a new approach to extract SRS

semantics, namely the system, actor, and use case. We aimed
to find an approach that relies on the linguistic (lexical and
semantic) attributes of a word to discover its true SRS
semantics.

In this work, we view NER as a process of extracting a
structured form (that is, a system, an actor, and a use case
form) from semi-structured or unstructured text (i.e. a user
requirements text). Here, NER is applied to the specific domain
of the user requirements of the software, rather than a real-
world domain. NER is accomplished as a mapping process of
certain nouns into a predefined system or actor classes of the
software requirement domain and certain verbs into a
predefined use case class of the software requirements domain.
In fact, NER has previously been used in a specific domain by
[33], who developed a rule-based NER model for knowledge
extraction of evidence-based dietary recommendations (in the
biomedical domain).

In our suggested SyAcUcNER approach, NER is an SVM-
based model that uses certain linguistic attributes of a word to
recognize the entities of the system, the use case, and the actor
from a textual description of software requirements. As
illustrated in Fig. 1, SyAcUcNER is created during the training
phase and is used for extraction during the testing phase. A
subprocess involving the linguistic annotation of a statement’s
tokens is performed in both phases to prepare the data that will
be used for recognition by the SVM data mining model in the
training phase and SyAcUcNER in the testing phase.

A. NL Functional Requirements
The data set used to train SVM contains 66 English

language statements with different structures, representing
software requirements. We collected these statements from
various sources, such as books and examples in the literature,
and also from actual software analysis tasks. In each statement,
the tokens representing a system, an actor, and a use case of
SRS are manually defined, and their linguistic attributes
(lexical category, SRL, and dependency relations) are
automatically extracted and exported to an Excel spreadsheet.
Due to the exceptional importance of the data set in creating an
effective classification model, certain properties are considered
when selecting these 66 NL statements of functional
requirements. These properties are the numbers and types of
system, use cases, and actors that exist in an NL functional
requirements statement.

Fig. 1. The Proposed SyAcUcNER Approach.

177 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

B. Annotation of the Tokens of the Sentence
The SRSs are tokenized into words, and each word is given

linguistic attributes that are used to distinguish the word. The
tokenization of a statement aims to isolate the words within it,
as a first step in eliciting the system, actors, and use cases. In
this paper, we use the following linguistic attributes of a word
to distinguish its true semantics in an NL functional
requirement statement (system, actor, and use case):

• Lexical attribute: This is the linguistic type of a word in
a language. In English, these include a noun, verb,
adjective, adverb, conjunction, particle, and adposition
[20] [9]. This attribute is usually given with the word
in a dictionary. The realization of the lexical category
of a word is automatically achieved using
computerized NLP systems [9].

• SRL attribute: This is the thematic role property of a
noun within a statement (rather than the lexical
semantics of a word).

The annotation of semantic roles is an approach in which
the arguments (nouns) of a predicate (usually a verb) are
classified based on a predefined set of participant types
(annotations). These participant types are either the semantic
relationships between the arguments of the verb or the
circumstance that is described by the verb. The participant
types (i.e., the annotations), which are known as semantic or
thematic roles, are defined by linguistics [34] [35] [36], as
illustrated by Table I, which lists the known thematic roles of a
noun. SRL is the process of automatically assigning a semantic
role to a noun [9]. In SRL, the verb is considered the predicate,
and the semantic role labels or annotations that label a verb’s
arguments (nouns) are used to specify the true meaning of the
verb (predicate) itself. The author in [37] gives an example to
illustrate the use of the SRL approach to realize the semantics
of a verb by explaining how to differentiate between break and
hit verbs: a hit verb has the argument (Agent, Instrument,
Place) and the verb break has the arguments (Agent,
Instrument, Object). In practice, the semantics of verbs have
been used in a number of studies where the verb is the core
element of a linguistic process, for example, the development
of an approach for converting pseudocode to C# [38].

• Dependency (clausal argument) relations attribute:
Dependency relations are a set of directed binary
grammatical relationships that exist among the words
of a text. These relations are used to encode significant
hidden information that results from the analysis of a
complex phrase structure. Dependency grammars are
the formalisms that use clausal argument relation
annotations to tag binary grammatical relationships
between the syntactic words (or lemmas) in a sentence.
This type of grammar and its parsing scheme is of key
importance in dealing with morphologically rich
languages that have a relatively free order of words
[39] [9]. Fig. 2 illustrates an example of a method
based on dependency grammars.

Clausal argument (dependency) relations are defined
(among other types of dependency) in a universal dependency
(UD) set, and this annotation method uses a dependency
parsing process to achieve this task [9]. UD dependency banks
are available for more than 50 languages. This is due to the fact
that each language has its own set of dependencies and may or
may not share these with other languages; in addition, some
languages have no UDs. This means that a balance must be
found between universality and meaningful dependencies, and
with other requirements such as parsing efficiency, ease of
human annotation, etc. Another challenge is presented by the
vagueness that limits the identification of all UD classes [8].

Although there are continuing efforts to define a cross-
linguistically and computationally useful set of dependency
relations, it is worth mentioning here a linguistically motivated
study of UDs that is handled by [41]. Table II shows a subset
of the clausal argument relations in UD (others are found at
https://universaldependencies.org/u/dep/).

TABLE I. LIST OF THEMATIC ROLES

Thematic Roles Definition

Agent An action’s doer/instigator, denoted by the predicate

Patient An action’s ‘undergoer’, denoted by the predicate

Theme An action’s moved entity, denoted by the predicate

Experiencer An action’s living-entity practitioner, denoted by the
predicate

Goal (direction) An object’s destination, indicated by a transfer event

Beneficiary The entity that gets the benefit denoted by the predicate

Source (origin) The location from which something moves

Instrument The medium used to act, denoted by the predicate

Locative The situation/location in which the action occurred

Stimulus Accidental sensory trigger

Force or natural
cause The entity that does the action

Recipient The entity that denotes a change in ownership,
possession

Time The time of occurrence of an action

Manner How an action is accomplished

Purpose The reason for performing an action

Cause The reason for the action occurring

Fig. 2. Results of Dependency Parsing of a Sentence [9].

178 | P a g e
www.ijacsa.thesai.org

https://universaldependencies.org/u/dep/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

TABLE II. SELECTED DEPENDENCY RELATIONS FROM THE UD SET [40]

Clausal argument relations Description

advmod adverbial modifier

amod adjectival modifiers

aux auxiliary

cc coordinating conjunction

ccomp clausal complement

conj conjunct

dep dependent

det determiner

dobj direct object

iobj indirect object

To facilitate the process of extracting the SRL and
dependency relationships between the words in an SRS, we
used an NLP software tool that can provide these linguistic
attributes for SRS tokens in English. The LTH (Lunds
Tekniska Högskola) System for Frame-Semantic Structure
Extraction (or SRL) software tool is used in this work, as it
allows for dependency parsing and SRL in addition to other
NLP processes such as tokenization, POS-tagging,
lemmatizing, morphological tagging, and graph visualization
[42]. Fig. 3 illustrates the semantic parsing results yielded by
the LTH system for an SRS. The LTH system provides a table

of annotation data for tokens (the second table of parsing
results) based on a CoNLL-2009 shared task.

A CoNLL-2008 shared task is used to define the format of
the data provided in a CoNLL-2009 shared task, with some
modifications related to enhancing the performance of the
CoNLL-2009 shared task over the CoNLL-2008 shared task.
Although they are similar for all-natural languages, they may
vary in terms of content [43]. The lexical attribute of a token is
obtained from the predicted part of the speech (PPOS) field
(coded as NN for the name, VB for the verb, etc.). The
dependency relation attribute is obtained from the PDEPREL
field. The semantic roles of the arguments of a predicate are
obtained by following the hyperlink of the predicate (verb) that
appears in the parsing table (the first table in Fig. 3). For
example, the arguments of the predicate (verb) change.01
shown in Fig. 4, are 'the user' (coded as A0, i.e. an Agent
semantic role), and ‘the meal date’ (coded as A1, i.e. a Patient
semantic role).

It is important to note the differences between the standard
values of the lexical, SRL, and dependency relations and those
of CoNLL-2009 (the core of the LHT system used here). The
latter aims to perform and evaluate SRL using a dependency-
based representation to predict syntactic and semantic relations
[44]. CoNLL-2009 [45] provides a more complicated model of
syntactic dependencies, based on a belief that more syntactic
dependencies lead to more effective semantic processing,
especially in applications such as IE.

Fig. 3. Semantic Parsing of a Software Requirement Statement using LTH [42].

179 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 4. SRL for Predicate Change.01 [42].

C. Set of Tokens with Annotation
The linguistic analysis information (lexical, dependency

relationships, and SRL) resulting from the LTH system
software tool were manually assigned to an Excel spreadsheet
of tokens (for a given SRS) with their annotations. We
considered only tokens that were system, actor, or use case.

As shown in Fig. 1, there are two versions of the set of
tokens with annotations. The first, which is used in the training
phase, contains the tokens and their linguistic annotations
(lexical, SRL, and dependency relations), which take the form
of a table with text values. The SRS identity of a word (token)
is specified manually, forming a training set of data that can be
used to train the SyAcUcNER (SVM-based), model. The
textual contents of this table can be converted to a numeric
form, allowing them to be handled by the SVM in the next
processing step. The second version of the set of tokens and
annotations is used in the testing phase and is similar to the
first except that the SRS’s entity is not manually assigned to
each token. Instead, SyAcUcNER is responsible for performing
this assignation or other word recognition of the SRS identity
of a token. In both versions of the table, the contents are
numerically coded and saved as a .csv file, conforming with
the format required by Weka software, in which its SVM was
used to perform the classification of the tokens. The coding of
the word (token) was neglected, and coding only the linguistic
features (lexical, SRL, and dependency relation) with their
corresponding SRS.

We developed and implemented an algorithm to code and
save the table of the set of tokens, as shown.

Create_Coded_Data_File (Table of tokens with their
features and annotations)

Begin
For all tokens in the table
− Code the lexical attribute field according to the

LexicalCodeTable
− Assign LexicalCodeValue to its column in the

Coded_Data Table
− Code the SRL attribute field according to the

SRLCodeTable
− Assign SRLCodeValue to its column in the SRLData

Table.
− Code the dependency relation attribute field according to

the DepRelCodeTable
− Assign DepRelCodeValue to its column in the

Coded_Data Table
− Code the SRS Field according to the SRSCodeTable
− Assign SRSCodeValue (in term of char ‘c’ and a

sequence) to its column in the Coded_Data Table
End For
Save Coded_Data Table in a .csv file.

End

We used Excel software to maintain tables of the software
statements, their tokens, linguistic attributes, and codes. We
used the VBA function in Excel to implement the
Create_Coded_Data_File algorithm. In practice, this function
forms a pre-processing step ensuring that the values of the
targeted attributes conform to the constraints of Weka, which is
used in the next processing step.

180 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

D. SVM Data Mining Model
Based on our view of the system, use case, and actor

semantics of SRS as classes, we used SVM to generate and
optimize combinations of classifications for each of these
SRS’s semantics.

In the example shown in Fig. 5, where SVM is used for
induction purposes, the training data are represented as vectors
{X1, ..., Xn} in a domain D, where Xi ∈ D and their labels are
represented as {Y1, …, Yn}. The vectors positioned on one
side of a hyperplane would be labeled as Yα, and the vectors
on the other would be labeled as Yε. The support vectors are
the lying instances that closest to the hyperplane that is the
decision surface [46].

Since we use SVM in this work, the training data vectors
{X1 ... Xn} are required, where Xi is represented as {x1, x2,
x3} in English language (El) space X ⊆ El. The labels {Y1, …,
Yn} are also needed, where Yi ∈ {1,2,3}, representing
{System, Actor, Use Case}. These training data were prepared
using the Create_Coded_Data_File function given above. In
general, SVM projects data in space (X) to a higher-
dimensional feature space (f) using a Mercer kernel operator K.
A set of classifiers are formed as follows [46]:

f (x) = (∑ α𝑖 𝐾(𝑋𝑖 ,𝑋))𝑛
𝑖=1 (1)

In the case where K satisfies Mercer’s condition, K(a,b) we
can be rewritten as [47]:

K(a,b) = Φ(a)·Φ(b) (2)

where Φ: X→F, and “·” symbolizes the inner product
operation.

Thus, f in (1) can be rewritten as:

f (x) = w. Φ(x), where w = ∑ α𝑖 Φ(𝑋𝑖)𝑛
𝑖=1 (3)

Consequently, the use of K enables us to implicitly project
the data into space (f), which usually has higher dimensional
features. SVM can then be used to map the αis, which agrees
with the maximal margin hyperplane in (f). Changing kernel
functions would implicitly project the data from space X into
space f, where their hyperplanes agree with the decision
boundaries of the more complex features in space X [47] [46].
SVM is a supervised learning method, in which a learning
algorithm utilizes pre-labeled training data to develop a
classification model that outlines classes and their
distinguished data values. The resulting trained classification
model can be used to classify new data. SVM has been
extended to perform non-linear classification, multi-class
classification, and regression analysis [13] [48]; therefore, is
recognized as a robust classifier.

Weka (Waikato Environment for Knowledge Analysis) is a
machine learning software technology that offers
implementation of SVM in addition to other machine learning
algorithms [49]. It is free software, licensed under the GNU
General Public License, and was developed at the University of
Waikato, New Zealand.

The SVM in Weka can handle numerical input data saved
in an Excel file with only one worksheet, as a .csv file. The
Create_Coded_Data_File VBA macro yields the
Coded_Data.csv file, which contains the coded SRS classes
and the value of their linguistic attributes as a table. The header
of this table is the metadata of its fields, which are a1
(representing the lexical attribute code), a2 (representing the
SRL attribute code), a3 (representing the dependency relation
attribute), and a4 (representing the SRS class attribute code),
where ‘a’ means ‘attribute’. It is important to note that the
values a4 are nominally in the form of a char c (meaning
‘class’) along with numbers such as c1, c2. Weka’s SVM is
referred to as ‘SMO’ in its classifier list. This stands for
sequential minimal optimization, and it is an efficient
optimization training algorithm for SVM [13] [49].

The training data file was loaded via the Open file
command button. The attributes of the data set were displayed
in the Attribute submenu, in addition to other related
information about the dataset. The classes (i.e. system, actor,
and use case in this study) appear in different colors in the
lower right-hand corner of the Weka Explorer interface.

Weka’s SVM is a Java class with certain properties, and
these can be displayed by clicking the text box near the Choose
command button. In this work, the properties of the SMO were
set using trial and error to obtain the most accurate SVM-based
NER model.

The SyAcUcNER model produced in this research is a
multi-class classification model that maps input data to system,
actor, or use case classes. To achieve multi-class classification
with Weka’s SMO (i.e., an SVM), the classification method
was set to Hastie and Tibshirani's pairwise coupling (also
known as ‘1-vs-1’). In order to achieve accurate possibility
estimates, an option is used that fits the calibration models to
the SVM’s outputs [50] [51]. When the properties are set, the
SMO is then trained, and this is achieved via the Start
command button in the Classify tab of the Explorer window in
Weka. The classifier output (analysis of the classification
performance) is then displayed in the lower right-hand corner
of the Weka Explorer window. Fig. 6 shows one of the training
runs.

Fig. 5. A Simple SVM for Induction [46].

181 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 6. Running (Training) Phase of Weka’s SMO Function [52].

The finalized and trained SMO model is then saved to an
external file so that it can be loaded later and used to make
predictions using the testing data. The SyAcUcNER Model

The final trained SyAcUcNER model is a specialized
named entity recognition model for software requirements
engineering based on SVM. This model can then perform the
classification of testing data (that have been pre-processed) in
the same way as for the training data. The testing data represent
the actual problems that a software requirement analyzer needs
to solve. The saved SyAcUcNER model has first loaded it from
its file; this is achieved by following the same steps used to

save the trained model but selecting the option Load model
instead of the Save model. Predictions are made for the new
testing data by loading the test and then selecting the Classify
tab, the Test options pane, and the Supplied test set option. The
file format of the output predictions is set to .csv, and the
evaluation metrics utilize each of the elements of the binomial
approach (TP, FP, Recall, Precision, and F-measure) and the
number of correct and incorrect predictions. When the Start
command button is clicked, the predictions for each test
instance are listed in the Classifier output pane. Fig. 7
illustrates a testing run for 99 instances of the testing data.

Fig. 7. Using the Trained SyAcUcNER Model on Testing Data [52].

182 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

V. RESULTS AND EVALUATION
The performance of the SyAcUcNER model and the

selection of distinguishing features (lexical, SRL, and
dependency relations) were assessed for a given testing data set
by selecting the Supplied test set option in the Test option pane
of the Classify tab in the Weka Explorer interface.

We scored SyAcUcNER’s performance in terms of its
accuracy, defined as the quality degree of a class achieved by
the proposed model compared with the true quality degree for
the same class [22]. Accuracy was quantified by calculating the
ratio of the number of correctly classified cases to the total
number of classified cases, and was mathematically described
using the following formula [53]:

Accuracy = number of correctly classified cases/total number
of cases (4)

The use of this naïve definition of accuracy to score the
performance of a classification model overlooks both the real
threats from the different forms of errors and the ability to be
free from error depending on the distribution of the classes in a
dataset while calculating the accuracy. A better analysis of the
error (in terms of recognizing the types of wrong classification
results) can be achieved by using a two-dimensional confusion
matrix. Each row of the confusion matrix contains a
forecasting class and its recorded incidence number, while each
column contains the actual class and its recorded incidence
number. An increase in the number of classes in the
classification leads to a larger confusion matrix, causing a
significant problem; this can be solved by classifying the
results as either positive or negative relative to the target class,
thus giving four different numbers [54] [55]:

• True positive (TP) value: The number of correct
positive classifications.

• True negative (TN) value: The number of correct
negative classifications.

• False-positive (FP) value: The number of incorrect
positive classifications.

• False-negative (FN) value: The number of incorrect
negative classifications.

As illustrated in Table III, these values are used to calculate
the set of performance metrics. Finally, we made a number of
train courses, each with different settings for the properties in
the SMO object (Weka’s SVM).

TABLE III. PERFORMANCE METRICS [54] [55]

Metric Formula

Percentage of TP value (TP rate) TP / (TP + FN)
Percentage of FP value (FP rate) FP / (FP + TN)
Percentage of TN value (TN rate) TN / (TN + FP)

Percentage of FN value (FN rate) FN / (FN + TP)
Percentage of TP to all true values (Precision) TP / (TN + TP)

Percentage of all true results (Accuracy) TP+TN / (TP+FN+FP+TN)

Precision & recall harmonic mean (F1 Score) 2*(Precision*Recall) /
(Precision+ Recall)

We used a common agreement among the users of Weka,
which is the trying of a suite of different values of kernels and
C parameters could lead to the best achievement. Thus, we got
good accuracy in terms of a weighted average of 76.2 percent
for precision, 76 percent for recall, and 72.1 percent for the F-
measure. Using this configuration, we obtained the highest F1
scores of 21.4 percent for the system entity, 82.5 percent for
the use-case entity, and 76.8 percent for the actor entity. The
weighted average of F1 was 72.1 percent.

VI. CONCLUSIONS, FINDINGS, AND RECOMMENDATIONS
In this work, we have proposed a solution to the problem of

the automatic extraction of the SRS’s entities: the system, the
use case, and the actor as a specialized SRS NER that is called
SyAcUcNER and uses the SVM to extract SRS elements from
an unstructured English language textual document of user
requirements. This systematic approach was inspired by the
Intelligent Computer Aided Software Engineering (I-CASE)
principle [56] and the known NER’s function, which is the
extraction of certain entities from an unstructured or semi-
structured text written in NL.

The SyAcUcNER approach is implemented as software
that has embedded other readymade free software tools such as
the LTH system (for the extraction of NLP frame-semantic
structure) and Weka (that offers SVM). This method facilitates
and speeds up the development process and makes the work
more robust. The proposed SyAcUcNER has been evaluated
using a confusion matrix technique; we believe that this
method is a realistic one since it gives the evaluation basing on
a comparison with human achievement, rather than a
comparison with other systems. The accuracy of SyAcUcNER
can be described as good, based on a weighted average of 76.2
percent for precision, 76 percent for recall, and 72.1 percent for
the F-measure. A comparison of the results from IT4RE [32],
which extracts only the use case and actor, with those of
SyAcUcNER, that extracts the system, use case, and actor,
gives some interesting results. The best F-measure for IT4RE
was 71 percent, while for SyAcUcNER, this was 72.1 percent.

The use of a new suite of linguistic properties, i.e., the
lexical, SRL, and dependency relations, demonstrates the
effectiveness of SyAcUcNER in reaching such good accuracy.
We believe that SyAcUcNER can also be used to recognize
more entities, especially if more effective NLP tools are used
that can handle the linguistic problems arising from the
particular text to be processed, as reported by [32]. The well-
structured design of SyAcUcNER also enables it to act as a
framework for similar future works. Besides, the use of Weka
may allow another data mining machine to be used in this
specialized NER rather than SVM. In addition to the
achievements in terms of accuracy, the contributions made by
this work include a new definition of an SRS-specialized NER
and the use of an SVM (i.e., a data mining machine) for NLP-
oriented applications at the semantic level. It should be noted
that the work of [46] aimed to classify text, rather than
engaging in deeper NLP tasks like SyAcUcNER, which
performs semantic analysis in the SRS domain. The main
contribution of this work is a framework for specialized NER
applications, and hence, a general NER structure can be
defined and implemented as an object for various discourses.

183 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Last but not the least, we suggest, as future work, to consider
the problem of revealing the true meaning of an entity as a
complex ambiguity that may be handled by using the Relative-
Fuzzy approach, as defined and used by [57].

REFERENCES
[1] M. G. Georgiades and A. S. Andreou, "Formalizing and Automating Use

Case Model Development," The Open Software Engineering Journal, vol.
6, pp. 21-40, 2012.

[2] Q. Stiévenart, J. Nicolay, D. M. Wolfgang, and C. D. Roover, "A general
method for rendering static analyses for diverse concurrency models
modular," Journal of Systems and Software, vol. 147, pp. 17-45, 2019.

[3] E. M. Jebril, A. T. Imam and M. Al-Fayuomi, "An Algorithmic Approach
to Extract Actions and Actors (AAEAA)," in Proceedings of the
International Conference on Geoinformatics and Data Analysis, Prague,
Czech, 2018.

[4] H. A. Nassar, A. Alhroob and A. T. Imam, "An Algorithmic Approach
for Sketching Sequence Diagram (AASSD)," in Proceedings of the
International Conference on Advances in Image Processing, Bangkok,
Thailand, 2017.

[5] I. Sommerville, Software Engineering, 10th ed., Essex, England: Pearson,
2015.

[6] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner's
Approach, 8/e, NY, USA: McGraw-Hill Global Education Holdings,
LLC, 2015.

[7] G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex
Problem Solving, 6th ed., Pearson, 2011.

[8] A. Copestake, Natural Language Processing: PartII Overview of Natural
Language Processing (L90): PartIII/ACS, Cambridge, 2017.

[9] D. Jurafsky and J. H. Martin, Speech and Language Processing, vol. 3,
London: Pearson London, 2018.

[10] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge,
MA: MIT Press, 2016.

[11] A. Oleinik, "What are neural networks not good at? On artificial
creativity," Big Data & Society, vol. 6, no. 1, pp. 1-13, 2019.

[12] R. Goswami, Selected Topics in Machine Learning, Michigan, USA:
Independently published, 2018.

[13] B. Bayat, C. Krauss, A. Merceron and S. Arbanowski, "Supervised
Speech Act Classification of Messages in German Online Discussions,"
in The 29th AAAI International Florida AI Research Society Conference,
Florida, USA, 2016.

[14] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D.
McClosky, "The Stanford Core NLP Natural Language Processing
Toolkit," in The 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, Baltimore,
Maryland, USA, 2014.

[15] T. A. S. Foundation, "Welcome to Apache OpenNLP," 2018. [Online].
Available: https://opennlp.apache.org/.

[16] V. Karkaletsis, P. Fragkou, G. Petasis, and E. Iosif, "Ontology Based
Information Extraction from Text," in Knowledge-Driven Multimedia
Information Extraction and Ontology Evolution, Berlin, Heidelberg,
Springer, 2011, pp. 89-109.

[17] J. Li, A. Sun, J. Han and C. Li, "A Survey on Deep Learning for Named
Entity Recognition," IEEE Transactions on Knowledge and Data
Engineering, p. Early Access Article, 2020.

[18] P. Groth, M. Lauruhn, A. Scerri and R. D. Jr, "Open Information
Extraction on Scientific Text: An Evaluation," in The 27th International
Conference on Computational Linguistics, Santa Fe, New Mexico, USA,
2018.

[19] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead and O. Etzioni,
"Open Information Extraction from the Web," in The 20th international
joint conference on Artificial intelligence, Hyderabad, India, 2017.

[20] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing, London, U.K: Chapman & Hall, 2010.

[21] M. Mohanan and P. Samuel, "Software Requirement Elicitation Using
Natural Language Processing," in Innovations in Bio-Inspired Computing

and Applications. Advances in Intelligent Systems and Computing, vol.
424, Cham , Springer, 2016, pp. 197-208.

[22] D. K. Deeptimahanti and M. A. Babar, "An Automated Tool for
Generating UML Models from Natural Language Requirements," in
International Conference on Automated Software Engineering, Auckland,
New Zealand, New Zealand, 2009.

[23] T. H. Nguyen, J. Grundy, and M. Almorsy, "Rule-Based Extraction of
Goal-Use Case Models from Text," in 10th Joint Meeting on Foundations
of Software Engineering, Bergamo, Italy, 2015.

[24] R. Robu and S. Holban, "A Genetic Algorithm for Classification," in
International Conference on Computers and computing, Canary Islands,
Spain, 2011.

[25] M. Junczys-Dowmunt, "A Genetic Programming Experiment in Natural
Language Grammar Engineering," in 15th International Conference on
Text, Speech and Dialogue, Brno, Czech Republic, 2012.

[26] P. More and R. Phalnikar, "Generating UML Diagrams from Natural
Language Specifications," International Journal of Applied Information
Systems, vol. 1, no. 8, pp. 19-23, 2012.

[27] N. Arman and S. Jabbarin, "Generating Use Case Models from Arabic
User Requirements in a Semiautomated Approach Using a Natural
Language Processing Tool," Journal of Intelligent Systems, vol. 24, no. 2,
pp. 277-286, 2015.

[28] M. Murtaza, J. H. Shah, A. Azeem, W. Nisar, and M. Masood,
"Structured Language Requirement Elicitation Using Case Base
Reasoning," Research Journal of Applied Sciences, Engineering and
Technology, vol. 6, pp. 4393-4398, 2013.

[29] R. Sharma, P. K. Srivastava, and K. K. Biswas, "From Natural Language
Requirements to UMLClass Diagrams," in IEEE Second International
Workshop on Artificial Intelligence for Requirements Engineering
(AIRE), Ottawa, ON, Canada, 2015.

[30] S. Gulia and T. Choudhury, "An Efficient Automated Design to Generate
UML Diagram from Natural Language Specifications," in 6th
International Conference - Cloud System and Big Data Engineering
(Confluence), Noida, India, 2016.

[31] W. Wan, H. Cheong, W. Li, Y. Zeng, and F. Iorio, "Automated
Transformation of Design Text ROM Diagram into SysML Models,"
Advanced Engineering Informatics, vol. 30, no. 3, pp. 585-603, 2016.

[32] A. Al-Hroob, A. T. Imam and R. Al-Heisa, "The Use of Artificial Neural
Networks for Extracting Actions and Actors from Requirements
Document," Information and Software Technology, vol. 101, pp. 1-15,
2018.

[33] T. Eftimov, B. K. Seljak, and P. Korošec, "A rule-based named-entity
recognition method for knowledge extraction of evidence-based dietary
recommendations," PLOS ONE, vol. 12, no. 6, pp. 1-32, 2017.

[34] L. M. Berk, English Syntax: From Word to Discourse, NY, USA: Oxford
University Press, 1999, p. 315.

[35] T. E. Payne, "Summary of Semantic Roles and Grammatical Relations,"
2007. [Online]. Available: https://pages.uoregon.edu/tpayne/EG595/HO-
Srs-and-GRs.pdf.

[36] V. Punyakanok, D. Roth and W.-t. Yih, "The importance of syntactic
parsing and inference in semantic role labeling," Computational
Linguistics, vol. 34, pp. 257--287, 2008.

[37] C. J. Fillmore, "Types of Lexical Information," in Semantics: an
interdisciplinary reader in philosophy, linguistics and psychology,
London, U.K, Cambridge University Press, 1971, pp. 370 - 392.

[38] A. T. Imam and A. J. Alnsour, "The Use of Natural Language Processing
Approach for Converting Pseudo Code to C# Code," Journal of
Intelligent Systems, vol. 28, no. 3, p. 362, 2019.

[39] T. Osborne and T. Gross, "Constructions are catenae: Construction
Grammar meets Dependency Grammar," Cognitive Linguistics, vol. 23,
no. 1, p. 163–214, 2012.

[40] M.-C. d. Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J.
Nivre and C. D. Manning, "Universal Stanford dependencies: A cross-
linguistic typology," in Ninth International Conference on Language
Resources and Evaluation, Reykjavik, Iceland, 2014.

[41] Universaldependencies.org, "Universal Dependencies," 2017. [Online].
Available: https://universaldependencies.org.

184 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

[42] D. o. C. S. Lund University, "Try the semantic role labeler," 2019.
[Online]. Available: http://barbar.cs.lth.se:8081/.

[43] J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Martí, L.
Màrquez, A. Meyers, J. Nivre, S. Padó, J. Štěpánek, P. Straňák, M.
Surdeanu, N. Xue and Y. Zhang, "The CoNLL-2009 Shared Task:
Syntactic and Semantic Dependencies in Multiple Languages," in CoNLL
'09 Proceedings of the Thirteenth Conference on Computational Natural
Language Learning: Shared Task, Boulder, Colorado, 2009.

[44] K. Hacioglu, "Semantic Role Labeling Using Dependency Trees," in 20th
international conference on Computational Linguistics, Geneva,
Switzerland, 2004.

[45] R. Johansson and P. Nugues, "Extended Constituent-to-Dependency
Conversion for English," in The 16th Nordic Conference of
Computational Linguistics (NODALIDA 2007), Tartu, Estonia, 2007.

[46] S. Tong and D. Koller, "Support Vector Machine Active Learning with
Applications to Text Classification," Journal of Machine Learning
Research, vol. 2, no. 1, pp. 45-66, 2001.

[47] C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern
Recognition," Data Mining and Knowledge Discovery, vol. 2, no. 2, p.
121–167, 1998.

[48] M. Fern, D. Delgado, E. Cernadas, S. Barro and D. Amorim, "Do we
Need Hundreds of Classifiers to Solve Real World Classification
Problems?," Journal of Machine Learning Research, vol. 15, no. 1, pp.
3133-3181, 2014.

[49] G. Holmes, A. Donkin and I. H. Witten, "Weka: A machine learning
workbench," in Second Australia and New Zealand Conference on
Intelligent Information Systems, Brisbane, Australia, 1994.

[50] S. Keerthi, S. Shevade, C. Bhattacharyya and K. Murthy, "Improvements
to Platt's SMO Algorithm for SVM Classifier Design.," Neural
Computation, vol. 13, no. 3, pp. 637-649, 2001.

[51] Nabble, "Explanation of SMO Parameters?," 2019. [Online]. Available:
http://weka.8497.n7.nabble.com/Explanation-of-SMO-Parameters-
td21768.html.

[52] R. S. R. Boddu and S. Kalyanapu, Waikato Environment for Knowledge
Analysis: Data Mining Tool, Mauritius: LAP LAMBERT Academic
Publishing, 2019, pp. 87-112.

[53] C. W. Ahn and R. Ramakrishna, "A Genetic Algorithm for Shortest Path
Routing Problem and The Sizing of Populations," IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 566 - 579, 2002.

[54] Kohavi and Provost, "The Case Against Accuracy Estimation for
Comparing Introduction Algorithm," in ICML '98 Proceedings of the
Fifteenth International Conference on Machine Learning, 1998.

[55] D. L. Olson and D. Delen, Advanced Data Mining Techniques, 1st ed.,
Springer, 2008, p. 38.

[56] A. T. Imam, A. J. Al-Nsour and A. Al-Hroob, "The Definition of
Intelligent Computer Aided Software Engineering (I-CASE) Tools,"
Journal of Information Engineering and Applications, vol. 5, no. 1, pp.
47-56, 2015.

[57] A. T. Imam, "Relative-Fuzzy: A Novel Approach for Handling Complex
Ambiguity for Software Engineering of Data Mining Models," De
Montfort University, Leicester, UK, 2010.

185 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	1) SVM is distinguished in learning by:
	2) SVM is more efficient in high n-dimensional space, in cases where the number of samples is less than the number of dimensions and is relatively memory efficient.
	3) SVM delivers accurate results due to the following:
	4) SVM can be adapted to work with different data types. This is because SVM has a built-in kernel function, which is a technology that provides the ability to solve any complex problem. Note that Kernel is a non-parametric (linear or nonlinear) identifiab�
	5) Generally, the SVM classifier has better computational complexity than the other classifiers. SVM has a very little execution time than the Artificial Neuron Network (ANN). SVM has a faster prediction with better classification accuracy than the Naive B�
	6) The availability of library SVM classifiers in many programming languages and packages such as MATLAB, Weka, and Python makes the work with SVM so easy.

	II. Background
	1) Tokenization: The process of breaking up a sentence into elements called tokens.
	2) Lexical analysis: A process that aims to check whether a word belongs to a language and to find the part of speech (POS) for the word, or to reveal the class of a word (i.e., verb, noun, or preposition). The lexical analysis also includes the morphologi�
	3) Syntactic analysis: This applies the grammar of the language (using a parsing algorithm) to identify the legal structure of the input statement.
	4) Semantic analysis: This is the process of extracting the exact meaning from the text.
	5) Pragmatic analysis: This aims to infer the purpose of the use of the word/text in situations and requires knowledge about the domain of discourse. It is achieved by reinterpreting the text as it really implies.

	III. Related Works and Approaches
	IV. Proposed SyAcUcNER Approach
	A. NL Functional Requirements
	B. Annotation of the Tokens of the Sentence
	C. Set of Tokens with Annotation
	D. SVM Data Mining Model

	V. Results and Evaluation
	VI. Conclusions, Findings, and Recommendations

